1 /* 2 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <amu.h> 8 #include <arch.h> 9 #include <arch_helpers.h> 10 #include <assert.h> 11 #include <bl_common.h> 12 #include <context.h> 13 #include <context_mgmt.h> 14 #include <interrupt_mgmt.h> 15 #include <platform.h> 16 #include <platform_def.h> 17 #include <pubsub_events.h> 18 #include <smcc_helpers.h> 19 #include <spe.h> 20 #include <string.h> 21 #include <utils.h> 22 23 24 /******************************************************************************* 25 * Context management library initialisation routine. This library is used by 26 * runtime services to share pointers to 'cpu_context' structures for the secure 27 * and non-secure states. Management of the structures and their associated 28 * memory is not done by the context management library e.g. the PSCI service 29 * manages the cpu context used for entry from and exit to the non-secure state. 30 * The Secure payload dispatcher service manages the context(s) corresponding to 31 * the secure state. It also uses this library to get access to the non-secure 32 * state cpu context pointers. 33 * Lastly, this library provides the api to make SP_EL3 point to the cpu context 34 * which will used for programming an entry into a lower EL. The same context 35 * will used to save state upon exception entry from that EL. 36 ******************************************************************************/ 37 void cm_init(void) 38 { 39 /* 40 * The context management library has only global data to intialize, but 41 * that will be done when the BSS is zeroed out 42 */ 43 } 44 45 /******************************************************************************* 46 * The following function initializes the cpu_context 'ctx' for 47 * first use, and sets the initial entrypoint state as specified by the 48 * entry_point_info structure. 49 * 50 * The security state to initialize is determined by the SECURE attribute 51 * of the entry_point_info. The function returns a pointer to the initialized 52 * context and sets this as the next context to return to. 53 * 54 * The EE and ST attributes are used to configure the endianess and secure 55 * timer availability for the new execution context. 56 * 57 * To prepare the register state for entry call cm_prepare_el3_exit() and 58 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 59 * cm_e1_sysreg_context_restore(). 60 ******************************************************************************/ 61 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 62 { 63 unsigned int security_state; 64 uint32_t scr_el3, pmcr_el0; 65 el3_state_t *state; 66 gp_regs_t *gp_regs; 67 unsigned long sctlr_elx; 68 69 assert(ctx); 70 71 security_state = GET_SECURITY_STATE(ep->h.attr); 72 73 /* Clear any residual register values from the context */ 74 zeromem(ctx, sizeof(*ctx)); 75 76 /* 77 * SCR_EL3 was initialised during reset sequence in macro 78 * el3_arch_init_common. This code modifies the SCR_EL3 fields that 79 * affect the next EL. 80 * 81 * The following fields are initially set to zero and then updated to 82 * the required value depending on the state of the SPSR_EL3 and the 83 * Security state and entrypoint attributes of the next EL. 84 */ 85 scr_el3 = read_scr(); 86 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 87 SCR_ST_BIT | SCR_HCE_BIT); 88 /* 89 * SCR_NS: Set the security state of the next EL. 90 */ 91 if (security_state != SECURE) 92 scr_el3 |= SCR_NS_BIT; 93 /* 94 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 95 * Exception level as specified by SPSR. 96 */ 97 if (GET_RW(ep->spsr) == MODE_RW_64) 98 scr_el3 |= SCR_RW_BIT; 99 /* 100 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 101 * Secure timer registers to EL3, from AArch64 state only, if specified 102 * by the entrypoint attributes. 103 */ 104 if (EP_GET_ST(ep->h.attr)) 105 scr_el3 |= SCR_ST_BIT; 106 107 #ifndef HANDLE_EA_EL3_FIRST 108 /* 109 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 110 * to EL3 when executing at a lower EL. When executing at EL3, External 111 * Aborts are taken to EL3. 112 */ 113 scr_el3 &= ~SCR_EA_BIT; 114 #endif 115 116 #ifdef IMAGE_BL31 117 /* 118 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 119 * indicated by the interrupt routing model for BL31. 120 */ 121 scr_el3 |= get_scr_el3_from_routing_model(security_state); 122 #endif 123 124 /* 125 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 126 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 127 * next mode is Hyp. 128 */ 129 if ((GET_RW(ep->spsr) == MODE_RW_64 130 && GET_EL(ep->spsr) == MODE_EL2) 131 || (GET_RW(ep->spsr) != MODE_RW_64 132 && GET_M32(ep->spsr) == MODE32_hyp)) { 133 scr_el3 |= SCR_HCE_BIT; 134 } 135 136 /* 137 * Initialise SCTLR_EL1 to the reset value corresponding to the target 138 * execution state setting all fields rather than relying of the hw. 139 * Some fields have architecturally UNKNOWN reset values and these are 140 * set to zero. 141 * 142 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 143 * 144 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 145 * required by PSCI specification) 146 */ 147 sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 148 if (GET_RW(ep->spsr) == MODE_RW_64) 149 sctlr_elx |= SCTLR_EL1_RES1; 150 else { 151 /* 152 * If the target execution state is AArch32 then the following 153 * fields need to be set. 154 * 155 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 156 * instructions are not trapped to EL1. 157 * 158 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 159 * instructions are not trapped to EL1. 160 * 161 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 162 * CP15DMB, CP15DSB, and CP15ISB instructions. 163 */ 164 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 165 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 166 } 167 168 /* 169 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 170 * and other EL2 registers are set up by cm_preapre_ns_entry() as they 171 * are not part of the stored cpu_context. 172 */ 173 write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 174 175 if (security_state == SECURE) { 176 /* 177 * Initialise PMCR_EL0 for secure context only, setting all 178 * fields rather than relying on hw. Some fields are 179 * architecturally UNKNOWN on reset. 180 * 181 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 182 * is recorded in PMOVSCLR_EL0[31], occurs on the increment 183 * that changes PMCCNTR_EL0[63] from 1 to 0. 184 * 185 * PMCR_EL0.DP: Set to one so that the cycle counter, 186 * PMCCNTR_EL0 does not count when event counting is prohibited. 187 * 188 * PMCR_EL0.X: Set to zero to disable export of events. 189 * 190 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 191 * counts on every clock cycle. 192 */ 193 pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 194 | PMCR_EL0_DP_BIT) 195 & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 196 write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 197 } 198 199 /* Populate EL3 state so that we've the right context before doing ERET */ 200 state = get_el3state_ctx(ctx); 201 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 202 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 203 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 204 205 /* 206 * Store the X0-X7 value from the entrypoint into the context 207 * Use memcpy as we are in control of the layout of the structures 208 */ 209 gp_regs = get_gpregs_ctx(ctx); 210 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 211 } 212 213 /******************************************************************************* 214 * Enable architecture extensions on first entry to Non-secure world. 215 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 216 * it is zero. 217 ******************************************************************************/ 218 static void enable_extensions_nonsecure(int el2_unused) 219 { 220 #if IMAGE_BL31 221 #if ENABLE_SPE_FOR_LOWER_ELS 222 spe_enable(el2_unused); 223 #endif 224 225 #if ENABLE_AMU 226 amu_enable(el2_unused); 227 #endif 228 #endif 229 } 230 231 /******************************************************************************* 232 * The following function initializes the cpu_context for a CPU specified by 233 * its `cpu_idx` for first use, and sets the initial entrypoint state as 234 * specified by the entry_point_info structure. 235 ******************************************************************************/ 236 void cm_init_context_by_index(unsigned int cpu_idx, 237 const entry_point_info_t *ep) 238 { 239 cpu_context_t *ctx; 240 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 241 cm_init_context_common(ctx, ep); 242 } 243 244 /******************************************************************************* 245 * The following function initializes the cpu_context for the current CPU 246 * for first use, and sets the initial entrypoint state as specified by the 247 * entry_point_info structure. 248 ******************************************************************************/ 249 void cm_init_my_context(const entry_point_info_t *ep) 250 { 251 cpu_context_t *ctx; 252 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 253 cm_init_context_common(ctx, ep); 254 } 255 256 /******************************************************************************* 257 * Prepare the CPU system registers for first entry into secure or normal world 258 * 259 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 260 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 261 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 262 * For all entries, the EL1 registers are initialized from the cpu_context 263 ******************************************************************************/ 264 void cm_prepare_el3_exit(uint32_t security_state) 265 { 266 uint32_t sctlr_elx, scr_el3, mdcr_el2; 267 cpu_context_t *ctx = cm_get_context(security_state); 268 int el2_unused = 0; 269 270 assert(ctx); 271 272 if (security_state == NON_SECURE) { 273 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 274 if (scr_el3 & SCR_HCE_BIT) { 275 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 276 sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 277 CTX_SCTLR_EL1); 278 sctlr_elx &= SCTLR_EE_BIT; 279 sctlr_elx |= SCTLR_EL2_RES1; 280 write_sctlr_el2(sctlr_elx); 281 } else if (EL_IMPLEMENTED(2)) { 282 el2_unused = 1; 283 284 /* 285 * EL2 present but unused, need to disable safely. 286 * SCTLR_EL2 can be ignored in this case. 287 * 288 * Initialise all fields in HCR_EL2, except HCR_EL2.RW, 289 * to zero so that Non-secure operations do not trap to 290 * EL2. 291 * 292 * HCR_EL2.RW: Set this field to match SCR_EL3.RW 293 */ 294 write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 295 296 /* 297 * Initialise CPTR_EL2 setting all fields rather than 298 * relying on the hw. All fields have architecturally 299 * UNKNOWN reset values. 300 * 301 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 302 * accesses to the CPACR_EL1 or CPACR from both 303 * Execution states do not trap to EL2. 304 * 305 * CPTR_EL2.TTA: Set to zero so that Non-secure System 306 * register accesses to the trace registers from both 307 * Execution states do not trap to EL2. 308 * 309 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 310 * to SIMD and floating-point functionality from both 311 * Execution states do not trap to EL2. 312 */ 313 write_cptr_el2(CPTR_EL2_RESET_VAL & 314 ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 315 | CPTR_EL2_TFP_BIT)); 316 317 /* 318 * Initiliase CNTHCTL_EL2. All fields are 319 * architecturally UNKNOWN on reset and are set to zero 320 * except for field(s) listed below. 321 * 322 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 323 * Hyp mode of Non-secure EL0 and EL1 accesses to the 324 * physical timer registers. 325 * 326 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 327 * Hyp mode of Non-secure EL0 and EL1 accesses to the 328 * physical counter registers. 329 */ 330 write_cnthctl_el2(CNTHCTL_RESET_VAL | 331 EL1PCEN_BIT | EL1PCTEN_BIT); 332 333 /* 334 * Initialise CNTVOFF_EL2 to zero as it resets to an 335 * architecturally UNKNOWN value. 336 */ 337 write_cntvoff_el2(0); 338 339 /* 340 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 341 * MPIDR_EL1 respectively. 342 */ 343 write_vpidr_el2(read_midr_el1()); 344 write_vmpidr_el2(read_mpidr_el1()); 345 346 /* 347 * Initialise VTTBR_EL2. All fields are architecturally 348 * UNKNOWN on reset. 349 * 350 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 351 * 2 address translation is disabled, cache maintenance 352 * operations depend on the VMID. 353 * 354 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 355 * translation is disabled. 356 */ 357 write_vttbr_el2(VTTBR_RESET_VAL & 358 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 359 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 360 361 /* 362 * Initialise MDCR_EL2, setting all fields rather than 363 * relying on hw. Some fields are architecturally 364 * UNKNOWN on reset. 365 * 366 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 367 * EL1 System register accesses to the Debug ROM 368 * registers are not trapped to EL2. 369 * 370 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 371 * System register accesses to the powerdown debug 372 * registers are not trapped to EL2. 373 * 374 * MDCR_EL2.TDA: Set to zero so that System register 375 * accesses to the debug registers do not trap to EL2. 376 * 377 * MDCR_EL2.TDE: Set to zero so that debug exceptions 378 * are not routed to EL2. 379 * 380 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 381 * Monitors. 382 * 383 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 384 * EL1 accesses to all Performance Monitors registers 385 * are not trapped to EL2. 386 * 387 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 388 * and EL1 accesses to the PMCR_EL0 or PMCR are not 389 * trapped to EL2. 390 * 391 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 392 * architecturally-defined reset value. 393 */ 394 mdcr_el2 = ((MDCR_EL2_RESET_VAL | 395 ((read_pmcr_el0() & PMCR_EL0_N_BITS) 396 >> PMCR_EL0_N_SHIFT)) & 397 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 398 | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 399 | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 400 | MDCR_EL2_TPMCR_BIT)); 401 402 write_mdcr_el2(mdcr_el2); 403 404 /* 405 * Initialise HSTR_EL2. All fields are architecturally 406 * UNKNOWN on reset. 407 * 408 * HSTR_EL2.T<n>: Set all these fields to zero so that 409 * Non-secure EL0 or EL1 accesses to System registers 410 * do not trap to EL2. 411 */ 412 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 413 /* 414 * Initialise CNTHP_CTL_EL2. All fields are 415 * architecturally UNKNOWN on reset. 416 * 417 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 418 * physical timer and prevent timer interrupts. 419 */ 420 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 421 ~(CNTHP_CTL_ENABLE_BIT)); 422 } 423 enable_extensions_nonsecure(el2_unused); 424 } 425 426 cm_el1_sysregs_context_restore(security_state); 427 cm_set_next_eret_context(security_state); 428 } 429 430 /******************************************************************************* 431 * The next four functions are used by runtime services to save and restore 432 * EL1 context on the 'cpu_context' structure for the specified security 433 * state. 434 ******************************************************************************/ 435 void cm_el1_sysregs_context_save(uint32_t security_state) 436 { 437 cpu_context_t *ctx; 438 439 ctx = cm_get_context(security_state); 440 assert(ctx); 441 442 el1_sysregs_context_save(get_sysregs_ctx(ctx)); 443 444 #if IMAGE_BL31 445 if (security_state == SECURE) 446 PUBLISH_EVENT(cm_exited_secure_world); 447 else 448 PUBLISH_EVENT(cm_exited_normal_world); 449 #endif 450 } 451 452 void cm_el1_sysregs_context_restore(uint32_t security_state) 453 { 454 cpu_context_t *ctx; 455 456 ctx = cm_get_context(security_state); 457 assert(ctx); 458 459 el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 460 461 #if IMAGE_BL31 462 if (security_state == SECURE) 463 PUBLISH_EVENT(cm_entering_secure_world); 464 else 465 PUBLISH_EVENT(cm_entering_normal_world); 466 #endif 467 } 468 469 /******************************************************************************* 470 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 471 * given security state with the given entrypoint 472 ******************************************************************************/ 473 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 474 { 475 cpu_context_t *ctx; 476 el3_state_t *state; 477 478 ctx = cm_get_context(security_state); 479 assert(ctx); 480 481 /* Populate EL3 state so that ERET jumps to the correct entry */ 482 state = get_el3state_ctx(ctx); 483 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 484 } 485 486 /******************************************************************************* 487 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 488 * pertaining to the given security state 489 ******************************************************************************/ 490 void cm_set_elr_spsr_el3(uint32_t security_state, 491 uintptr_t entrypoint, uint32_t spsr) 492 { 493 cpu_context_t *ctx; 494 el3_state_t *state; 495 496 ctx = cm_get_context(security_state); 497 assert(ctx); 498 499 /* Populate EL3 state so that ERET jumps to the correct entry */ 500 state = get_el3state_ctx(ctx); 501 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 502 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 503 } 504 505 /******************************************************************************* 506 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 507 * pertaining to the given security state using the value and bit position 508 * specified in the parameters. It preserves all other bits. 509 ******************************************************************************/ 510 void cm_write_scr_el3_bit(uint32_t security_state, 511 uint32_t bit_pos, 512 uint32_t value) 513 { 514 cpu_context_t *ctx; 515 el3_state_t *state; 516 uint32_t scr_el3; 517 518 ctx = cm_get_context(security_state); 519 assert(ctx); 520 521 /* Ensure that the bit position is a valid one */ 522 assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 523 524 /* Ensure that the 'value' is only a bit wide */ 525 assert(value <= 1); 526 527 /* 528 * Get the SCR_EL3 value from the cpu context, clear the desired bit 529 * and set it to its new value. 530 */ 531 state = get_el3state_ctx(ctx); 532 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 533 scr_el3 &= ~(1 << bit_pos); 534 scr_el3 |= value << bit_pos; 535 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 536 } 537 538 /******************************************************************************* 539 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 540 * given security state. 541 ******************************************************************************/ 542 uint32_t cm_get_scr_el3(uint32_t security_state) 543 { 544 cpu_context_t *ctx; 545 el3_state_t *state; 546 547 ctx = cm_get_context(security_state); 548 assert(ctx); 549 550 /* Populate EL3 state so that ERET jumps to the correct entry */ 551 state = get_el3state_ctx(ctx); 552 return read_ctx_reg(state, CTX_SCR_EL3); 553 } 554 555 /******************************************************************************* 556 * This function is used to program the context that's used for exception 557 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 558 * the required security state 559 ******************************************************************************/ 560 void cm_set_next_eret_context(uint32_t security_state) 561 { 562 cpu_context_t *ctx; 563 564 ctx = cm_get_context(security_state); 565 assert(ctx); 566 567 cm_set_next_context(ctx); 568 } 569