xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 380559c1c3ac80c0d2581a931c80323d1fefbfd6)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <amu.h>
8 #include <arch.h>
9 #include <arch_helpers.h>
10 #include <assert.h>
11 #include <bl_common.h>
12 #include <context.h>
13 #include <context_mgmt.h>
14 #include <interrupt_mgmt.h>
15 #include <platform.h>
16 #include <platform_def.h>
17 #include <pubsub_events.h>
18 #include <smcc_helpers.h>
19 #include <spe.h>
20 #include <string.h>
21 #include <utils.h>
22 
23 
24 /*******************************************************************************
25  * Context management library initialisation routine. This library is used by
26  * runtime services to share pointers to 'cpu_context' structures for the secure
27  * and non-secure states. Management of the structures and their associated
28  * memory is not done by the context management library e.g. the PSCI service
29  * manages the cpu context used for entry from and exit to the non-secure state.
30  * The Secure payload dispatcher service manages the context(s) corresponding to
31  * the secure state. It also uses this library to get access to the non-secure
32  * state cpu context pointers.
33  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
34  * which will used for programming an entry into a lower EL. The same context
35  * will used to save state upon exception entry from that EL.
36  ******************************************************************************/
37 void cm_init(void)
38 {
39 	/*
40 	 * The context management library has only global data to intialize, but
41 	 * that will be done when the BSS is zeroed out
42 	 */
43 }
44 
45 /*******************************************************************************
46  * The following function initializes the cpu_context 'ctx' for
47  * first use, and sets the initial entrypoint state as specified by the
48  * entry_point_info structure.
49  *
50  * The security state to initialize is determined by the SECURE attribute
51  * of the entry_point_info. The function returns a pointer to the initialized
52  * context and sets this as the next context to return to.
53  *
54  * The EE and ST attributes are used to configure the endianess and secure
55  * timer availability for the new execution context.
56  *
57  * To prepare the register state for entry call cm_prepare_el3_exit() and
58  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
59  * cm_e1_sysreg_context_restore().
60  ******************************************************************************/
61 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
62 {
63 	unsigned int security_state;
64 	uint32_t scr_el3, pmcr_el0;
65 	el3_state_t *state;
66 	gp_regs_t *gp_regs;
67 	unsigned long sctlr_elx;
68 
69 	assert(ctx);
70 
71 	security_state = GET_SECURITY_STATE(ep->h.attr);
72 
73 	/* Clear any residual register values from the context */
74 	zeromem(ctx, sizeof(*ctx));
75 
76 	/*
77 	 * SCR_EL3 was initialised during reset sequence in macro
78 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
79 	 * affect the next EL.
80 	 *
81 	 * The following fields are initially set to zero and then updated to
82 	 * the required value depending on the state of the SPSR_EL3 and the
83 	 * Security state and entrypoint attributes of the next EL.
84 	 */
85 	scr_el3 = read_scr();
86 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
87 			SCR_ST_BIT | SCR_HCE_BIT);
88 	/*
89 	 * SCR_NS: Set the security state of the next EL.
90 	 */
91 	if (security_state != SECURE)
92 		scr_el3 |= SCR_NS_BIT;
93 	/*
94 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
95 	 *  Exception level as specified by SPSR.
96 	 */
97 	if (GET_RW(ep->spsr) == MODE_RW_64)
98 		scr_el3 |= SCR_RW_BIT;
99 	/*
100 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
101 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
102 	 *  by the entrypoint attributes.
103 	 */
104 	if (EP_GET_ST(ep->h.attr))
105 		scr_el3 |= SCR_ST_BIT;
106 
107 #ifndef HANDLE_EA_EL3_FIRST
108 	/*
109 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
110 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
111 	 *  Aborts are taken to EL3.
112 	 */
113 	scr_el3 &= ~SCR_EA_BIT;
114 #endif
115 
116 #ifdef IMAGE_BL31
117 	/*
118 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
119 	 *  indicated by the interrupt routing model for BL31.
120 	 */
121 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
122 #endif
123 
124 	/*
125 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
126 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
127 	 * next mode is Hyp.
128 	 */
129 	if ((GET_RW(ep->spsr) == MODE_RW_64
130 	     && GET_EL(ep->spsr) == MODE_EL2)
131 	    || (GET_RW(ep->spsr) != MODE_RW_64
132 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
133 		scr_el3 |= SCR_HCE_BIT;
134 	}
135 
136 	/*
137 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
138 	 * execution state setting all fields rather than relying of the hw.
139 	 * Some fields have architecturally UNKNOWN reset values and these are
140 	 * set to zero.
141 	 *
142 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
143 	 *
144 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
145 	 *  required by PSCI specification)
146 	 */
147 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
148 	if (GET_RW(ep->spsr) == MODE_RW_64)
149 		sctlr_elx |= SCTLR_EL1_RES1;
150 	else {
151 		/*
152 		 * If the target execution state is AArch32 then the following
153 		 * fields need to be set.
154 		 *
155 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
156 		 *  instructions are not trapped to EL1.
157 		 *
158 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
159 		 *  instructions are not trapped to EL1.
160 		 *
161 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
162 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
163 		 */
164 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
165 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
166 	}
167 
168 	/*
169 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
170 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
171 	 * are not part of the stored cpu_context.
172 	 */
173 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
174 
175 	if (security_state == SECURE) {
176 		/*
177 		 * Initialise PMCR_EL0 for secure context only, setting all
178 		 * fields rather than relying on hw. Some fields are
179 		 * architecturally UNKNOWN on reset.
180 		 *
181 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
182 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
183 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
184 		 *
185 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
186 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
187 		 *
188 		 * PMCR_EL0.X: Set to zero to disable export of events.
189 		 *
190 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
191 		 *  counts on every clock cycle.
192 		 */
193 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
194 				| PMCR_EL0_DP_BIT)
195 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
196 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
197 	}
198 
199 	/* Populate EL3 state so that we've the right context before doing ERET */
200 	state = get_el3state_ctx(ctx);
201 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
202 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
203 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
204 
205 	/*
206 	 * Store the X0-X7 value from the entrypoint into the context
207 	 * Use memcpy as we are in control of the layout of the structures
208 	 */
209 	gp_regs = get_gpregs_ctx(ctx);
210 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
211 }
212 
213 /*******************************************************************************
214  * Enable architecture extensions on first entry to Non-secure world.
215  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
216  * it is zero.
217  ******************************************************************************/
218 static void enable_extensions_nonsecure(int el2_unused)
219 {
220 #if IMAGE_BL31
221 #if ENABLE_SPE_FOR_LOWER_ELS
222 	spe_enable(el2_unused);
223 #endif
224 
225 #if ENABLE_AMU
226 	amu_enable(el2_unused);
227 #endif
228 #endif
229 }
230 
231 /*******************************************************************************
232  * The following function initializes the cpu_context for a CPU specified by
233  * its `cpu_idx` for first use, and sets the initial entrypoint state as
234  * specified by the entry_point_info structure.
235  ******************************************************************************/
236 void cm_init_context_by_index(unsigned int cpu_idx,
237 			      const entry_point_info_t *ep)
238 {
239 	cpu_context_t *ctx;
240 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
241 	cm_init_context_common(ctx, ep);
242 }
243 
244 /*******************************************************************************
245  * The following function initializes the cpu_context for the current CPU
246  * for first use, and sets the initial entrypoint state as specified by the
247  * entry_point_info structure.
248  ******************************************************************************/
249 void cm_init_my_context(const entry_point_info_t *ep)
250 {
251 	cpu_context_t *ctx;
252 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
253 	cm_init_context_common(ctx, ep);
254 }
255 
256 /*******************************************************************************
257  * Prepare the CPU system registers for first entry into secure or normal world
258  *
259  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
260  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
261  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
262  * For all entries, the EL1 registers are initialized from the cpu_context
263  ******************************************************************************/
264 void cm_prepare_el3_exit(uint32_t security_state)
265 {
266 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
267 	cpu_context_t *ctx = cm_get_context(security_state);
268 	int el2_unused = 0;
269 
270 	assert(ctx);
271 
272 	if (security_state == NON_SECURE) {
273 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
274 		if (scr_el3 & SCR_HCE_BIT) {
275 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
276 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
277 						 CTX_SCTLR_EL1);
278 			sctlr_elx &= SCTLR_EE_BIT;
279 			sctlr_elx |= SCTLR_EL2_RES1;
280 			write_sctlr_el2(sctlr_elx);
281 		} else if (EL_IMPLEMENTED(2)) {
282 			el2_unused = 1;
283 
284 			/*
285 			 * EL2 present but unused, need to disable safely.
286 			 * SCTLR_EL2 can be ignored in this case.
287 			 *
288 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
289 			 * to zero so that Non-secure operations do not trap to
290 			 * EL2.
291 			 *
292 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
293 			 */
294 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
295 
296 			/*
297 			 * Initialise CPTR_EL2 setting all fields rather than
298 			 * relying on the hw. All fields have architecturally
299 			 * UNKNOWN reset values.
300 			 *
301 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
302 			 *  accesses to the CPACR_EL1 or CPACR from both
303 			 *  Execution states do not trap to EL2.
304 			 *
305 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
306 			 *  register accesses to the trace registers from both
307 			 *  Execution states do not trap to EL2.
308 			 *
309 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
310 			 *  to SIMD and floating-point functionality from both
311 			 *  Execution states do not trap to EL2.
312 			 */
313 			write_cptr_el2(CPTR_EL2_RESET_VAL &
314 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
315 					| CPTR_EL2_TFP_BIT));
316 
317 			/*
318 			 * Initiliase CNTHCTL_EL2. All fields are
319 			 * architecturally UNKNOWN on reset and are set to zero
320 			 * except for field(s) listed below.
321 			 *
322 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
323 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
324 			 *  physical timer registers.
325 			 *
326 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
327 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
328 			 *  physical counter registers.
329 			 */
330 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
331 						EL1PCEN_BIT | EL1PCTEN_BIT);
332 
333 			/*
334 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
335 			 * architecturally UNKNOWN value.
336 			 */
337 			write_cntvoff_el2(0);
338 
339 			/*
340 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
341 			 * MPIDR_EL1 respectively.
342 			 */
343 			write_vpidr_el2(read_midr_el1());
344 			write_vmpidr_el2(read_mpidr_el1());
345 
346 			/*
347 			 * Initialise VTTBR_EL2. All fields are architecturally
348 			 * UNKNOWN on reset.
349 			 *
350 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
351 			 *  2 address translation is disabled, cache maintenance
352 			 *  operations depend on the VMID.
353 			 *
354 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
355 			 *  translation is disabled.
356 			 */
357 			write_vttbr_el2(VTTBR_RESET_VAL &
358 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
359 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
360 
361 			/*
362 			 * Initialise MDCR_EL2, setting all fields rather than
363 			 * relying on hw. Some fields are architecturally
364 			 * UNKNOWN on reset.
365 			 *
366 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
367 			 *  EL1 System register accesses to the Debug ROM
368 			 *  registers are not trapped to EL2.
369 			 *
370 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
371 			 *  System register accesses to the powerdown debug
372 			 *  registers are not trapped to EL2.
373 			 *
374 			 * MDCR_EL2.TDA: Set to zero so that System register
375 			 *  accesses to the debug registers do not trap to EL2.
376 			 *
377 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
378 			 *  are not routed to EL2.
379 			 *
380 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
381 			 *  Monitors.
382 			 *
383 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
384 			 *  EL1 accesses to all Performance Monitors registers
385 			 *  are not trapped to EL2.
386 			 *
387 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
388 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
389 			 *  trapped to EL2.
390 			 *
391 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
392 			 *  architecturally-defined reset value.
393 			 */
394 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
395 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
396 					>> PMCR_EL0_N_SHIFT)) &
397 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
398 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
399 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
400 					| MDCR_EL2_TPMCR_BIT));
401 
402 			write_mdcr_el2(mdcr_el2);
403 
404 			/*
405 			 * Initialise HSTR_EL2. All fields are architecturally
406 			 * UNKNOWN on reset.
407 			 *
408 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
409 			 *  Non-secure EL0 or EL1 accesses to System registers
410 			 *  do not trap to EL2.
411 			 */
412 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
413 			/*
414 			 * Initialise CNTHP_CTL_EL2. All fields are
415 			 * architecturally UNKNOWN on reset.
416 			 *
417 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
418 			 *  physical timer and prevent timer interrupts.
419 			 */
420 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
421 						~(CNTHP_CTL_ENABLE_BIT));
422 		}
423 		enable_extensions_nonsecure(el2_unused);
424 	}
425 
426 	cm_el1_sysregs_context_restore(security_state);
427 	cm_set_next_eret_context(security_state);
428 }
429 
430 /*******************************************************************************
431  * The next four functions are used by runtime services to save and restore
432  * EL1 context on the 'cpu_context' structure for the specified security
433  * state.
434  ******************************************************************************/
435 void cm_el1_sysregs_context_save(uint32_t security_state)
436 {
437 	cpu_context_t *ctx;
438 
439 	ctx = cm_get_context(security_state);
440 	assert(ctx);
441 
442 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
443 
444 #if IMAGE_BL31
445 	if (security_state == SECURE)
446 		PUBLISH_EVENT(cm_exited_secure_world);
447 	else
448 		PUBLISH_EVENT(cm_exited_normal_world);
449 #endif
450 }
451 
452 void cm_el1_sysregs_context_restore(uint32_t security_state)
453 {
454 	cpu_context_t *ctx;
455 
456 	ctx = cm_get_context(security_state);
457 	assert(ctx);
458 
459 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
460 
461 #if IMAGE_BL31
462 	if (security_state == SECURE)
463 		PUBLISH_EVENT(cm_entering_secure_world);
464 	else
465 		PUBLISH_EVENT(cm_entering_normal_world);
466 #endif
467 }
468 
469 /*******************************************************************************
470  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
471  * given security state with the given entrypoint
472  ******************************************************************************/
473 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
474 {
475 	cpu_context_t *ctx;
476 	el3_state_t *state;
477 
478 	ctx = cm_get_context(security_state);
479 	assert(ctx);
480 
481 	/* Populate EL3 state so that ERET jumps to the correct entry */
482 	state = get_el3state_ctx(ctx);
483 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
484 }
485 
486 /*******************************************************************************
487  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
488  * pertaining to the given security state
489  ******************************************************************************/
490 void cm_set_elr_spsr_el3(uint32_t security_state,
491 			uintptr_t entrypoint, uint32_t spsr)
492 {
493 	cpu_context_t *ctx;
494 	el3_state_t *state;
495 
496 	ctx = cm_get_context(security_state);
497 	assert(ctx);
498 
499 	/* Populate EL3 state so that ERET jumps to the correct entry */
500 	state = get_el3state_ctx(ctx);
501 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
502 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
503 }
504 
505 /*******************************************************************************
506  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
507  * pertaining to the given security state using the value and bit position
508  * specified in the parameters. It preserves all other bits.
509  ******************************************************************************/
510 void cm_write_scr_el3_bit(uint32_t security_state,
511 			  uint32_t bit_pos,
512 			  uint32_t value)
513 {
514 	cpu_context_t *ctx;
515 	el3_state_t *state;
516 	uint32_t scr_el3;
517 
518 	ctx = cm_get_context(security_state);
519 	assert(ctx);
520 
521 	/* Ensure that the bit position is a valid one */
522 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
523 
524 	/* Ensure that the 'value' is only a bit wide */
525 	assert(value <= 1);
526 
527 	/*
528 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
529 	 * and set it to its new value.
530 	 */
531 	state = get_el3state_ctx(ctx);
532 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
533 	scr_el3 &= ~(1 << bit_pos);
534 	scr_el3 |= value << bit_pos;
535 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
536 }
537 
538 /*******************************************************************************
539  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
540  * given security state.
541  ******************************************************************************/
542 uint32_t cm_get_scr_el3(uint32_t security_state)
543 {
544 	cpu_context_t *ctx;
545 	el3_state_t *state;
546 
547 	ctx = cm_get_context(security_state);
548 	assert(ctx);
549 
550 	/* Populate EL3 state so that ERET jumps to the correct entry */
551 	state = get_el3state_ctx(ctx);
552 	return read_ctx_reg(state, CTX_SCR_EL3);
553 }
554 
555 /*******************************************************************************
556  * This function is used to program the context that's used for exception
557  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
558  * the required security state
559  ******************************************************************************/
560 void cm_set_next_eret_context(uint32_t security_state)
561 {
562 	cpu_context_t *ctx;
563 
564 	ctx = cm_get_context(security_state);
565 	assert(ctx);
566 
567 	cm_set_next_context(ctx);
568 }
569