xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 351f9cd8897fd3ea52db2421721a152494b16328)
1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <drivers/arm/gicv3.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/el3_runtime/pubsub_events.h>
22 #include <lib/extensions/amu.h>
23 #include <lib/extensions/brbe.h>
24 #include <lib/extensions/mpam.h>
25 #include <lib/extensions/sme.h>
26 #include <lib/extensions/spe.h>
27 #include <lib/extensions/sve.h>
28 #include <lib/extensions/sys_reg_trace.h>
29 #include <lib/extensions/trbe.h>
30 #include <lib/extensions/trf.h>
31 #include <lib/utils.h>
32 
33 #if ENABLE_FEAT_TWED
34 /* Make sure delay value fits within the range(0-15) */
35 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
36 #endif /* ENABLE_FEAT_TWED */
37 
38 static void manage_extensions_secure(cpu_context_t *ctx);
39 
40 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
41 {
42 	u_register_t sctlr_elx, actlr_elx;
43 
44 	/*
45 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
46 	 * execution state setting all fields rather than relying on the hw.
47 	 * Some fields have architecturally UNKNOWN reset values and these are
48 	 * set to zero.
49 	 *
50 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
51 	 *
52 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
53 	 * required by PSCI specification)
54 	 */
55 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
56 	if (GET_RW(ep->spsr) == MODE_RW_64) {
57 		sctlr_elx |= SCTLR_EL1_RES1;
58 	} else {
59 		/*
60 		 * If the target execution state is AArch32 then the following
61 		 * fields need to be set.
62 		 *
63 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
64 		 *  instructions are not trapped to EL1.
65 		 *
66 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
67 		 *  instructions are not trapped to EL1.
68 		 *
69 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
70 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
71 		 */
72 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
73 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
74 	}
75 
76 #if ERRATA_A75_764081
77 	/*
78 	 * If workaround of errata 764081 for Cortex-A75 is used then set
79 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
80 	 */
81 	sctlr_elx |= SCTLR_IESB_BIT;
82 #endif
83 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
84 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
85 
86 	/*
87 	 * Base the context ACTLR_EL1 on the current value, as it is
88 	 * implementation defined. The context restore process will write
89 	 * the value from the context to the actual register and can cause
90 	 * problems for processor cores that don't expect certain bits to
91 	 * be zero.
92 	 */
93 	actlr_elx = read_actlr_el1();
94 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
95 }
96 
97 /******************************************************************************
98  * This function performs initializations that are specific to SECURE state
99  * and updates the cpu context specified by 'ctx'.
100  *****************************************************************************/
101 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
102 {
103 	u_register_t scr_el3;
104 	el3_state_t *state;
105 
106 	state = get_el3state_ctx(ctx);
107 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
108 
109 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
110 	/*
111 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
112 	 * indicated by the interrupt routing model for BL31.
113 	 */
114 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
115 #endif
116 
117 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
118 	/* Get Memory Tagging Extension support level */
119 	unsigned int mte = get_armv8_5_mte_support();
120 #endif
121 	/*
122 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
123 	 * is set, or when MTE is only implemented at EL0.
124 	 */
125 #if CTX_INCLUDE_MTE_REGS
126 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
127 	scr_el3 |= SCR_ATA_BIT;
128 #else
129 	if (mte == MTE_IMPLEMENTED_EL0) {
130 		scr_el3 |= SCR_ATA_BIT;
131 	}
132 #endif /* CTX_INCLUDE_MTE_REGS */
133 
134 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
135 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
136 		if (GET_RW(ep->spsr) != MODE_RW_64) {
137 			ERROR("S-EL2 can not be used in AArch32\n.");
138 			panic();
139 		}
140 
141 		scr_el3 |= SCR_EEL2_BIT;
142 	}
143 
144 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
145 
146 	/*
147 	 * Initialize EL1 context registers unless SPMC is running
148 	 * at S-EL2.
149 	 */
150 #if !SPMD_SPM_AT_SEL2
151 	setup_el1_context(ctx, ep);
152 #endif
153 
154 	manage_extensions_secure(ctx);
155 }
156 
157 #if ENABLE_RME
158 /******************************************************************************
159  * This function performs initializations that are specific to REALM state
160  * and updates the cpu context specified by 'ctx'.
161  *****************************************************************************/
162 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
163 {
164 	u_register_t scr_el3;
165 	el3_state_t *state;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 
170 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
171 
172 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
173 }
174 #endif /* ENABLE_RME */
175 
176 /******************************************************************************
177  * This function performs initializations that are specific to NON-SECURE state
178  * and updates the cpu context specified by 'ctx'.
179  *****************************************************************************/
180 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
181 {
182 	u_register_t scr_el3;
183 	el3_state_t *state;
184 
185 	state = get_el3state_ctx(ctx);
186 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
187 
188 	/* SCR_NS: Set the NS bit */
189 	scr_el3 |= SCR_NS_BIT;
190 
191 #if !CTX_INCLUDE_PAUTH_REGS
192 	/*
193 	 * If the pointer authentication registers aren't saved during world
194 	 * switches the value of the registers can be leaked from the Secure to
195 	 * the Non-secure world. To prevent this, rather than enabling pointer
196 	 * authentication everywhere, we only enable it in the Non-secure world.
197 	 *
198 	 * If the Secure world wants to use pointer authentication,
199 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
200 	 */
201 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
202 #endif /* !CTX_INCLUDE_PAUTH_REGS */
203 
204 	/* Allow access to Allocation Tags when MTE is implemented. */
205 	scr_el3 |= SCR_ATA_BIT;
206 
207 #ifdef IMAGE_BL31
208 	/*
209 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
210 	 *  indicated by the interrupt routing model for BL31.
211 	 */
212 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
213 #endif
214 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
215 
216 	/* Initialize EL1 context registers */
217 	setup_el1_context(ctx, ep);
218 
219 	/* Initialize EL2 context registers */
220 #if CTX_INCLUDE_EL2_REGS
221 
222 	/*
223 	 * Initialize SCTLR_EL2 context register using Endianness value
224 	 * taken from the entrypoint attribute.
225 	 */
226 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
227 	sctlr_el2 |= SCTLR_EL2_RES1;
228 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
229 			sctlr_el2);
230 
231 	/*
232 	 * The GICv3 driver initializes the ICC_SRE_EL2 register during
233 	 * platform setup. Use the same setting for the corresponding
234 	 * context register to make sure the correct bits are set when
235 	 * restoring NS context.
236 	 */
237 	u_register_t icc_sre_el2 = read_icc_sre_el2();
238 	icc_sre_el2 |= (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT);
239 	icc_sre_el2 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
240 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
241 			icc_sre_el2);
242 #endif /* CTX_INCLUDE_EL2_REGS */
243 }
244 
245 /*******************************************************************************
246  * The following function performs initialization of the cpu_context 'ctx'
247  * for first use that is common to all security states, and sets the
248  * initial entrypoint state as specified by the entry_point_info structure.
249  *
250  * The EE and ST attributes are used to configure the endianness and secure
251  * timer availability for the new execution context.
252  ******************************************************************************/
253 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
254 {
255 	u_register_t scr_el3;
256 	el3_state_t *state;
257 	gp_regs_t *gp_regs;
258 
259 	/* Clear any residual register values from the context */
260 	zeromem(ctx, sizeof(*ctx));
261 
262 	/*
263 	 * SCR_EL3 was initialised during reset sequence in macro
264 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
265 	 * affect the next EL.
266 	 *
267 	 * The following fields are initially set to zero and then updated to
268 	 * the required value depending on the state of the SPSR_EL3 and the
269 	 * Security state and entrypoint attributes of the next EL.
270 	 */
271 	scr_el3 = read_scr();
272 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
273 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
274 
275 	/*
276 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
277 	 *  Exception level as specified by SPSR.
278 	 */
279 	if (GET_RW(ep->spsr) == MODE_RW_64) {
280 		scr_el3 |= SCR_RW_BIT;
281 	}
282 
283 	/*
284 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
285 	 * Secure timer registers to EL3, from AArch64 state only, if specified
286 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
287 	 * bit always behaves as 1 (i.e. secure physical timer register access
288 	 * is not trapped)
289 	 */
290 	if (EP_GET_ST(ep->h.attr) != 0U) {
291 		scr_el3 |= SCR_ST_BIT;
292 	}
293 
294 	/*
295 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
296 	 * SCR_EL3.HXEn.
297 	 */
298 #if ENABLE_FEAT_HCX
299 	scr_el3 |= SCR_HXEn_BIT;
300 #endif
301 
302 	/*
303 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
304 	 * registers are trapped to EL3.
305 	 */
306 #if ENABLE_FEAT_RNG_TRAP
307 	scr_el3 |= SCR_TRNDR_BIT;
308 #endif
309 
310 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
311 	/*
312 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
313 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
314 	 */
315 	scr_el3 |= SCR_TERR_BIT;
316 #endif
317 
318 #if !HANDLE_EA_EL3_FIRST
319 	/*
320 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
321 	 * to EL3 when executing at a lower EL. When executing at EL3, External
322 	 * Aborts are taken to EL3.
323 	 */
324 	scr_el3 &= ~SCR_EA_BIT;
325 #endif
326 
327 #if FAULT_INJECTION_SUPPORT
328 	/* Enable fault injection from lower ELs */
329 	scr_el3 |= SCR_FIEN_BIT;
330 #endif
331 
332 	/*
333 	 * CPTR_EL3 was initialized out of reset, copy that value to the
334 	 * context register.
335 	 */
336 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
337 
338 	/*
339 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
340 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
341 	 * next mode is Hyp.
342 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
343 	 * same conditions as HVC instructions and when the processor supports
344 	 * ARMv8.6-FGT.
345 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
346 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
347 	 * and when the processor supports ECV.
348 	 */
349 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
350 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
351 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
352 		scr_el3 |= SCR_HCE_BIT;
353 
354 		if (is_armv8_6_fgt_present()) {
355 			scr_el3 |= SCR_FGTEN_BIT;
356 		}
357 
358 		if (get_armv8_6_ecv_support()
359 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
360 			scr_el3 |= SCR_ECVEN_BIT;
361 		}
362 	}
363 
364 #if ENABLE_FEAT_TWED
365 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
366 	/* Set delay in SCR_EL3 */
367 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
368 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
369 			<< SCR_TWEDEL_SHIFT);
370 
371 	/* Enable WFE delay */
372 	scr_el3 |= SCR_TWEDEn_BIT;
373 #endif /* ENABLE_FEAT_TWED */
374 
375 	/*
376 	 * Populate EL3 state so that we've the right context
377 	 * before doing ERET
378 	 */
379 	state = get_el3state_ctx(ctx);
380 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
381 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
382 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
383 
384 	/*
385 	 * Store the X0-X7 value from the entrypoint into the context
386 	 * Use memcpy as we are in control of the layout of the structures
387 	 */
388 	gp_regs = get_gpregs_ctx(ctx);
389 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
390 }
391 
392 /*******************************************************************************
393  * Context management library initialization routine. This library is used by
394  * runtime services to share pointers to 'cpu_context' structures for secure
395  * non-secure and realm states. Management of the structures and their associated
396  * memory is not done by the context management library e.g. the PSCI service
397  * manages the cpu context used for entry from and exit to the non-secure state.
398  * The Secure payload dispatcher service manages the context(s) corresponding to
399  * the secure state. It also uses this library to get access to the non-secure
400  * state cpu context pointers.
401  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
402  * which will be used for programming an entry into a lower EL. The same context
403  * will be used to save state upon exception entry from that EL.
404  ******************************************************************************/
405 void __init cm_init(void)
406 {
407 	/*
408 	 * The context management library has only global data to intialize, but
409 	 * that will be done when the BSS is zeroed out.
410 	 */
411 }
412 
413 /*******************************************************************************
414  * This is the high-level function used to initialize the cpu_context 'ctx' for
415  * first use. It performs initializations that are common to all security states
416  * and initializations specific to the security state specified in 'ep'
417  ******************************************************************************/
418 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
419 {
420 	unsigned int security_state;
421 
422 	assert(ctx != NULL);
423 
424 	/*
425 	 * Perform initializations that are common
426 	 * to all security states
427 	 */
428 	setup_context_common(ctx, ep);
429 
430 	security_state = GET_SECURITY_STATE(ep->h.attr);
431 
432 	/* Perform security state specific initializations */
433 	switch (security_state) {
434 	case SECURE:
435 		setup_secure_context(ctx, ep);
436 		break;
437 #if ENABLE_RME
438 	case REALM:
439 		setup_realm_context(ctx, ep);
440 		break;
441 #endif
442 	case NON_SECURE:
443 		setup_ns_context(ctx, ep);
444 		break;
445 	default:
446 		ERROR("Invalid security state\n");
447 		panic();
448 		break;
449 	}
450 }
451 
452 /*******************************************************************************
453  * Enable architecture extensions on first entry to Non-secure world.
454  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
455  * it is zero.
456  ******************************************************************************/
457 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
458 {
459 #if IMAGE_BL31
460 #if ENABLE_SPE_FOR_LOWER_ELS
461 	spe_enable(el2_unused);
462 #endif
463 
464 #if ENABLE_AMU
465 	amu_enable(el2_unused, ctx);
466 #endif
467 
468 #if ENABLE_SME_FOR_NS
469 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
470 	sme_enable(ctx);
471 #elif ENABLE_SVE_FOR_NS
472 	/* Enable SVE and FPU/SIMD for non-secure world. */
473 	sve_enable(ctx);
474 #endif
475 
476 #if ENABLE_MPAM_FOR_LOWER_ELS
477 	mpam_enable(el2_unused);
478 #endif
479 
480 #if ENABLE_TRBE_FOR_NS
481 	trbe_enable();
482 #endif /* ENABLE_TRBE_FOR_NS */
483 
484 #if ENABLE_BRBE_FOR_NS
485 	brbe_enable();
486 #endif /* ENABLE_BRBE_FOR_NS */
487 
488 #if ENABLE_SYS_REG_TRACE_FOR_NS
489 	sys_reg_trace_enable(ctx);
490 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
491 
492 #if ENABLE_TRF_FOR_NS
493 	trf_enable();
494 #endif /* ENABLE_TRF_FOR_NS */
495 #endif
496 }
497 
498 /*******************************************************************************
499  * Enable architecture extensions on first entry to Secure world.
500  ******************************************************************************/
501 static void manage_extensions_secure(cpu_context_t *ctx)
502 {
503 #if IMAGE_BL31
504  #if ENABLE_SME_FOR_NS
505   #if ENABLE_SME_FOR_SWD
506 	/*
507 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
508 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
509 	 */
510 	sme_enable(ctx);
511   #else /* ENABLE_SME_FOR_SWD */
512 	/*
513 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
514 	 * safely use the associated registers.
515 	 */
516 	sme_disable(ctx);
517   #endif /* ENABLE_SME_FOR_SWD */
518  #elif ENABLE_SVE_FOR_NS
519   #if ENABLE_SVE_FOR_SWD
520 	/*
521 	 * Enable SVE and FPU in secure context, secure manager must ensure that
522 	 * the SVE and FPU register contexts are properly managed.
523 	 */
524 	sve_enable(ctx);
525  #else /* ENABLE_SVE_FOR_SWD */
526 	/*
527 	 * Disable SVE and FPU in secure context so non-secure world can safely
528 	 * use them.
529 	 */
530 	sve_disable(ctx);
531   #endif /* ENABLE_SVE_FOR_SWD */
532  #endif /* ENABLE_SVE_FOR_NS */
533 #endif /* IMAGE_BL31 */
534 }
535 
536 /*******************************************************************************
537  * The following function initializes the cpu_context for a CPU specified by
538  * its `cpu_idx` for first use, and sets the initial entrypoint state as
539  * specified by the entry_point_info structure.
540  ******************************************************************************/
541 void cm_init_context_by_index(unsigned int cpu_idx,
542 			      const entry_point_info_t *ep)
543 {
544 	cpu_context_t *ctx;
545 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
546 	cm_setup_context(ctx, ep);
547 }
548 
549 /*******************************************************************************
550  * The following function initializes the cpu_context for the current CPU
551  * for first use, and sets the initial entrypoint state as specified by the
552  * entry_point_info structure.
553  ******************************************************************************/
554 void cm_init_my_context(const entry_point_info_t *ep)
555 {
556 	cpu_context_t *ctx;
557 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
558 	cm_setup_context(ctx, ep);
559 }
560 
561 /*******************************************************************************
562  * Prepare the CPU system registers for first entry into realm, secure, or
563  * normal world.
564  *
565  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
566  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
567  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
568  * For all entries, the EL1 registers are initialized from the cpu_context
569  ******************************************************************************/
570 void cm_prepare_el3_exit(uint32_t security_state)
571 {
572 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
573 	cpu_context_t *ctx = cm_get_context(security_state);
574 	bool el2_unused = false;
575 	uint64_t hcr_el2 = 0U;
576 
577 	assert(ctx != NULL);
578 
579 	if (security_state == NON_SECURE) {
580 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
581 						 CTX_SCR_EL3);
582 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
583 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
584 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
585 							   CTX_SCTLR_EL1);
586 			sctlr_elx &= SCTLR_EE_BIT;
587 			sctlr_elx |= SCTLR_EL2_RES1;
588 #if ERRATA_A75_764081
589 			/*
590 			 * If workaround of errata 764081 for Cortex-A75 is used
591 			 * then set SCTLR_EL2.IESB to enable Implicit Error
592 			 * Synchronization Barrier.
593 			 */
594 			sctlr_elx |= SCTLR_IESB_BIT;
595 #endif
596 			write_sctlr_el2(sctlr_elx);
597 		} else if (el_implemented(2) != EL_IMPL_NONE) {
598 			el2_unused = true;
599 
600 			/*
601 			 * EL2 present but unused, need to disable safely.
602 			 * SCTLR_EL2 can be ignored in this case.
603 			 *
604 			 * Set EL2 register width appropriately: Set HCR_EL2
605 			 * field to match SCR_EL3.RW.
606 			 */
607 			if ((scr_el3 & SCR_RW_BIT) != 0U)
608 				hcr_el2 |= HCR_RW_BIT;
609 
610 			/*
611 			 * For Armv8.3 pointer authentication feature, disable
612 			 * traps to EL2 when accessing key registers or using
613 			 * pointer authentication instructions from lower ELs.
614 			 */
615 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
616 
617 			write_hcr_el2(hcr_el2);
618 
619 			/*
620 			 * Initialise CPTR_EL2 setting all fields rather than
621 			 * relying on the hw. All fields have architecturally
622 			 * UNKNOWN reset values.
623 			 *
624 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
625 			 *  accesses to the CPACR_EL1 or CPACR from both
626 			 *  Execution states do not trap to EL2.
627 			 *
628 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
629 			 *  register accesses to the trace registers from both
630 			 *  Execution states do not trap to EL2.
631 			 *  If PE trace unit System registers are not implemented
632 			 *  then this bit is reserved, and must be set to zero.
633 			 *
634 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
635 			 *  to SIMD and floating-point functionality from both
636 			 *  Execution states do not trap to EL2.
637 			 */
638 			write_cptr_el2(CPTR_EL2_RESET_VAL &
639 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
640 					| CPTR_EL2_TFP_BIT));
641 
642 			/*
643 			 * Initialise CNTHCTL_EL2. All fields are
644 			 * architecturally UNKNOWN on reset and are set to zero
645 			 * except for field(s) listed below.
646 			 *
647 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
648 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
649 			 *  physical timer registers.
650 			 *
651 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
652 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
653 			 *  physical counter registers.
654 			 */
655 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
656 						EL1PCEN_BIT | EL1PCTEN_BIT);
657 
658 			/*
659 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
660 			 * architecturally UNKNOWN value.
661 			 */
662 			write_cntvoff_el2(0);
663 
664 			/*
665 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
666 			 * MPIDR_EL1 respectively.
667 			 */
668 			write_vpidr_el2(read_midr_el1());
669 			write_vmpidr_el2(read_mpidr_el1());
670 
671 			/*
672 			 * Initialise VTTBR_EL2. All fields are architecturally
673 			 * UNKNOWN on reset.
674 			 *
675 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
676 			 *  2 address translation is disabled, cache maintenance
677 			 *  operations depend on the VMID.
678 			 *
679 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
680 			 *  translation is disabled.
681 			 */
682 			write_vttbr_el2(VTTBR_RESET_VAL &
683 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
684 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
685 
686 			/*
687 			 * Initialise MDCR_EL2, setting all fields rather than
688 			 * relying on hw. Some fields are architecturally
689 			 * UNKNOWN on reset.
690 			 *
691 			 * MDCR_EL2.HLP: Set to one so that event counter
692 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
693 			 *  occurs on the increment that changes
694 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
695 			 *  implemented. This bit is RES0 in versions of the
696 			 *  architecture earlier than ARMv8.5, setting it to 1
697 			 *  doesn't have any effect on them.
698 			 *
699 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
700 			 *  Filter Control register TRFCR_EL1 at EL1 is not
701 			 *  trapped to EL2. This bit is RES0 in versions of
702 			 *  the architecture earlier than ARMv8.4.
703 			 *
704 			 * MDCR_EL2.HPMD: Set to one so that event counting is
705 			 *  prohibited at EL2. This bit is RES0 in versions of
706 			 *  the architecture earlier than ARMv8.1, setting it
707 			 *  to 1 doesn't have any effect on them.
708 			 *
709 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
710 			 *  Statistical Profiling control registers from EL1
711 			 *  do not trap to EL2. This bit is RES0 when SPE is
712 			 *  not implemented.
713 			 *
714 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
715 			 *  EL1 System register accesses to the Debug ROM
716 			 *  registers are not trapped to EL2.
717 			 *
718 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
719 			 *  System register accesses to the powerdown debug
720 			 *  registers are not trapped to EL2.
721 			 *
722 			 * MDCR_EL2.TDA: Set to zero so that System register
723 			 *  accesses to the debug registers do not trap to EL2.
724 			 *
725 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
726 			 *  are not routed to EL2.
727 			 *
728 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
729 			 *  Monitors.
730 			 *
731 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
732 			 *  EL1 accesses to all Performance Monitors registers
733 			 *  are not trapped to EL2.
734 			 *
735 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
736 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
737 			 *  trapped to EL2.
738 			 *
739 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
740 			 *  architecturally-defined reset value.
741 			 *
742 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
743 			 *  owning exception level is NS-EL1 and, tracing is
744 			 *  prohibited at NS-EL2. These bits are RES0 when
745 			 *  FEAT_TRBE is not implemented.
746 			 */
747 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
748 				     MDCR_EL2_HPMD) |
749 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
750 				   >> PMCR_EL0_N_SHIFT)) &
751 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
752 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
753 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
754 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
755 				     MDCR_EL2_TPMCR_BIT |
756 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
757 
758 			write_mdcr_el2(mdcr_el2);
759 
760 			/*
761 			 * Initialise HSTR_EL2. All fields are architecturally
762 			 * UNKNOWN on reset.
763 			 *
764 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
765 			 *  Non-secure EL0 or EL1 accesses to System registers
766 			 *  do not trap to EL2.
767 			 */
768 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
769 			/*
770 			 * Initialise CNTHP_CTL_EL2. All fields are
771 			 * architecturally UNKNOWN on reset.
772 			 *
773 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
774 			 *  physical timer and prevent timer interrupts.
775 			 */
776 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
777 						~(CNTHP_CTL_ENABLE_BIT));
778 		}
779 		manage_extensions_nonsecure(el2_unused, ctx);
780 	}
781 
782 	cm_el1_sysregs_context_restore(security_state);
783 	cm_set_next_eret_context(security_state);
784 }
785 
786 #if CTX_INCLUDE_EL2_REGS
787 /*******************************************************************************
788  * Save EL2 sysreg context
789  ******************************************************************************/
790 void cm_el2_sysregs_context_save(uint32_t security_state)
791 {
792 	u_register_t scr_el3 = read_scr();
793 
794 	/*
795 	 * Always save the non-secure and realm EL2 context, only save the
796 	 * S-EL2 context if S-EL2 is enabled.
797 	 */
798 	if ((security_state != SECURE) ||
799 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
800 		cpu_context_t *ctx;
801 		el2_sysregs_t *el2_sysregs_ctx;
802 
803 		ctx = cm_get_context(security_state);
804 		assert(ctx != NULL);
805 
806 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
807 
808 		el2_sysregs_context_save_common(el2_sysregs_ctx);
809 #if ENABLE_SPE_FOR_LOWER_ELS
810 		el2_sysregs_context_save_spe(el2_sysregs_ctx);
811 #endif
812 #if CTX_INCLUDE_MTE_REGS
813 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
814 #endif
815 #if ENABLE_MPAM_FOR_LOWER_ELS
816 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
817 #endif
818 #if ENABLE_FEAT_FGT
819 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
820 #endif
821 #if ENABLE_FEAT_ECV
822 		el2_sysregs_context_save_ecv(el2_sysregs_ctx);
823 #endif
824 #if ENABLE_FEAT_VHE
825 		el2_sysregs_context_save_vhe(el2_sysregs_ctx);
826 #endif
827 #if RAS_EXTENSION
828 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
829 #endif
830 #if CTX_INCLUDE_NEVE_REGS
831 		el2_sysregs_context_save_nv2(el2_sysregs_ctx);
832 #endif
833 #if ENABLE_TRF_FOR_NS
834 		el2_sysregs_context_save_trf(el2_sysregs_ctx);
835 #endif
836 #if ENABLE_FEAT_CSV2_2
837 		el2_sysregs_context_save_csv2(el2_sysregs_ctx);
838 #endif
839 #if ENABLE_FEAT_HCX
840 		el2_sysregs_context_save_hcx(el2_sysregs_ctx);
841 #endif
842 	}
843 }
844 
845 /*******************************************************************************
846  * Restore EL2 sysreg context
847  ******************************************************************************/
848 void cm_el2_sysregs_context_restore(uint32_t security_state)
849 {
850 	u_register_t scr_el3 = read_scr();
851 
852 	/*
853 	 * Always restore the non-secure and realm EL2 context, only restore the
854 	 * S-EL2 context if S-EL2 is enabled.
855 	 */
856 	if ((security_state != SECURE) ||
857 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
858 		cpu_context_t *ctx;
859 		el2_sysregs_t *el2_sysregs_ctx;
860 
861 		ctx = cm_get_context(security_state);
862 		assert(ctx != NULL);
863 
864 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
865 
866 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
867 #if ENABLE_SPE_FOR_LOWER_ELS
868 		el2_sysregs_context_restore_spe(el2_sysregs_ctx);
869 #endif
870 #if CTX_INCLUDE_MTE_REGS
871 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
872 #endif
873 #if ENABLE_MPAM_FOR_LOWER_ELS
874 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
875 #endif
876 #if ENABLE_FEAT_FGT
877 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
878 #endif
879 #if ENABLE_FEAT_ECV
880 		el2_sysregs_context_restore_ecv(el2_sysregs_ctx);
881 #endif
882 #if ENABLE_FEAT_VHE
883 		el2_sysregs_context_restore_vhe(el2_sysregs_ctx);
884 #endif
885 #if RAS_EXTENSION
886 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
887 #endif
888 #if CTX_INCLUDE_NEVE_REGS
889 		el2_sysregs_context_restore_nv2(el2_sysregs_ctx);
890 #endif
891 #if ENABLE_TRF_FOR_NS
892 		el2_sysregs_context_restore_trf(el2_sysregs_ctx);
893 #endif
894 #if ENABLE_FEAT_CSV2_2
895 		el2_sysregs_context_restore_csv2(el2_sysregs_ctx);
896 #endif
897 #if ENABLE_FEAT_HCX
898 		el2_sysregs_context_restore_hcx(el2_sysregs_ctx);
899 #endif
900 	}
901 }
902 #endif /* CTX_INCLUDE_EL2_REGS */
903 
904 /*******************************************************************************
905  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
906  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
907  * updating EL1 and EL2 registers. Otherwise, it calls the generic
908  * cm_prepare_el3_exit function.
909  ******************************************************************************/
910 void cm_prepare_el3_exit_ns(void)
911 {
912 #if CTX_INCLUDE_EL2_REGS
913 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
914 	assert(ctx != NULL);
915 
916 	/* Assert that EL2 is used. */
917 #if ENABLE_ASSERTIONS
918 	el3_state_t *state = get_el3state_ctx(ctx);
919 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
920 #endif
921 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
922 			(el_implemented(2U) != EL_IMPL_NONE));
923 
924 	/*
925 	 * Currently some extensions are configured using
926 	 * direct register updates. Therefore, do this here
927 	 * instead of when setting up context.
928 	 */
929 	manage_extensions_nonsecure(0, ctx);
930 
931 	/*
932 	 * Set the NS bit to be able to access the ICC_SRE_EL2
933 	 * register when restoring context.
934 	 */
935 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
936 
937 	/*
938 	 * Ensure the NS bit change is committed before the EL2/EL1
939 	 * state restoration.
940 	 */
941 	isb();
942 
943 	/* Restore EL2 and EL1 sysreg contexts */
944 	cm_el2_sysregs_context_restore(NON_SECURE);
945 	cm_el1_sysregs_context_restore(NON_SECURE);
946 	cm_set_next_eret_context(NON_SECURE);
947 #else
948 	cm_prepare_el3_exit(NON_SECURE);
949 #endif /* CTX_INCLUDE_EL2_REGS */
950 }
951 
952 /*******************************************************************************
953  * The next four functions are used by runtime services to save and restore
954  * EL1 context on the 'cpu_context' structure for the specified security
955  * state.
956  ******************************************************************************/
957 void cm_el1_sysregs_context_save(uint32_t security_state)
958 {
959 	cpu_context_t *ctx;
960 
961 	ctx = cm_get_context(security_state);
962 	assert(ctx != NULL);
963 
964 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
965 
966 #if IMAGE_BL31
967 	if (security_state == SECURE)
968 		PUBLISH_EVENT(cm_exited_secure_world);
969 	else
970 		PUBLISH_EVENT(cm_exited_normal_world);
971 #endif
972 }
973 
974 void cm_el1_sysregs_context_restore(uint32_t security_state)
975 {
976 	cpu_context_t *ctx;
977 
978 	ctx = cm_get_context(security_state);
979 	assert(ctx != NULL);
980 
981 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
982 
983 #if IMAGE_BL31
984 	if (security_state == SECURE)
985 		PUBLISH_EVENT(cm_entering_secure_world);
986 	else
987 		PUBLISH_EVENT(cm_entering_normal_world);
988 #endif
989 }
990 
991 /*******************************************************************************
992  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
993  * given security state with the given entrypoint
994  ******************************************************************************/
995 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
996 {
997 	cpu_context_t *ctx;
998 	el3_state_t *state;
999 
1000 	ctx = cm_get_context(security_state);
1001 	assert(ctx != NULL);
1002 
1003 	/* Populate EL3 state so that ERET jumps to the correct entry */
1004 	state = get_el3state_ctx(ctx);
1005 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1006 }
1007 
1008 /*******************************************************************************
1009  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1010  * pertaining to the given security state
1011  ******************************************************************************/
1012 void cm_set_elr_spsr_el3(uint32_t security_state,
1013 			uintptr_t entrypoint, uint32_t spsr)
1014 {
1015 	cpu_context_t *ctx;
1016 	el3_state_t *state;
1017 
1018 	ctx = cm_get_context(security_state);
1019 	assert(ctx != NULL);
1020 
1021 	/* Populate EL3 state so that ERET jumps to the correct entry */
1022 	state = get_el3state_ctx(ctx);
1023 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1024 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1025 }
1026 
1027 /*******************************************************************************
1028  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1029  * pertaining to the given security state using the value and bit position
1030  * specified in the parameters. It preserves all other bits.
1031  ******************************************************************************/
1032 void cm_write_scr_el3_bit(uint32_t security_state,
1033 			  uint32_t bit_pos,
1034 			  uint32_t value)
1035 {
1036 	cpu_context_t *ctx;
1037 	el3_state_t *state;
1038 	u_register_t scr_el3;
1039 
1040 	ctx = cm_get_context(security_state);
1041 	assert(ctx != NULL);
1042 
1043 	/* Ensure that the bit position is a valid one */
1044 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1045 
1046 	/* Ensure that the 'value' is only a bit wide */
1047 	assert(value <= 1U);
1048 
1049 	/*
1050 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1051 	 * and set it to its new value.
1052 	 */
1053 	state = get_el3state_ctx(ctx);
1054 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1055 	scr_el3 &= ~(1UL << bit_pos);
1056 	scr_el3 |= (u_register_t)value << bit_pos;
1057 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1058 }
1059 
1060 /*******************************************************************************
1061  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1062  * given security state.
1063  ******************************************************************************/
1064 u_register_t cm_get_scr_el3(uint32_t security_state)
1065 {
1066 	cpu_context_t *ctx;
1067 	el3_state_t *state;
1068 
1069 	ctx = cm_get_context(security_state);
1070 	assert(ctx != NULL);
1071 
1072 	/* Populate EL3 state so that ERET jumps to the correct entry */
1073 	state = get_el3state_ctx(ctx);
1074 	return read_ctx_reg(state, CTX_SCR_EL3);
1075 }
1076 
1077 /*******************************************************************************
1078  * This function is used to program the context that's used for exception
1079  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1080  * the required security state
1081  ******************************************************************************/
1082 void cm_set_next_eret_context(uint32_t security_state)
1083 {
1084 	cpu_context_t *ctx;
1085 
1086 	ctx = cm_get_context(security_state);
1087 	assert(ctx != NULL);
1088 
1089 	cm_set_next_context(ctx);
1090 }
1091