xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 33e6aaacf1e8f327b33fe2db1f5e964b0adb41c7)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/debug_v8p9.h>
28 #include <lib/extensions/fgt2.h>
29 #include <lib/extensions/mpam.h>
30 #include <lib/extensions/pmuv3.h>
31 #include <lib/extensions/sme.h>
32 #include <lib/extensions/spe.h>
33 #include <lib/extensions/sve.h>
34 #include <lib/extensions/sys_reg_trace.h>
35 #include <lib/extensions/trbe.h>
36 #include <lib/extensions/trf.h>
37 #include <lib/utils.h>
38 
39 #if ENABLE_FEAT_TWED
40 /* Make sure delay value fits within the range(0-15) */
41 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
42 #endif /* ENABLE_FEAT_TWED */
43 
44 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
45 static bool has_secure_perworld_init;
46 
47 static void manage_extensions_common(cpu_context_t *ctx);
48 static void manage_extensions_nonsecure(cpu_context_t *ctx);
49 static void manage_extensions_secure(cpu_context_t *ctx);
50 static void manage_extensions_secure_per_world(void);
51 
52 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
53 {
54 	u_register_t sctlr_elx, actlr_elx;
55 
56 	/*
57 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
58 	 * execution state setting all fields rather than relying on the hw.
59 	 * Some fields have architecturally UNKNOWN reset values and these are
60 	 * set to zero.
61 	 *
62 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
63 	 *
64 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
65 	 * required by PSCI specification)
66 	 */
67 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
68 	if (GET_RW(ep->spsr) == MODE_RW_64) {
69 		sctlr_elx |= SCTLR_EL1_RES1;
70 	} else {
71 		/*
72 		 * If the target execution state is AArch32 then the following
73 		 * fields need to be set.
74 		 *
75 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
79 		 *  instructions are not trapped to EL1.
80 		 *
81 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
82 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
83 		 */
84 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
85 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
86 	}
87 
88 #if ERRATA_A75_764081
89 	/*
90 	 * If workaround of errata 764081 for Cortex-A75 is used then set
91 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
92 	 */
93 	sctlr_elx |= SCTLR_IESB_BIT;
94 #endif
95 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
96 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
97 
98 	/*
99 	 * Base the context ACTLR_EL1 on the current value, as it is
100 	 * implementation defined. The context restore process will write
101 	 * the value from the context to the actual register and can cause
102 	 * problems for processor cores that don't expect certain bits to
103 	 * be zero.
104 	 */
105 	actlr_elx = read_actlr_el1();
106 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
107 }
108 
109 /******************************************************************************
110  * This function performs initializations that are specific to SECURE state
111  * and updates the cpu context specified by 'ctx'.
112  *****************************************************************************/
113 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
114 {
115 	u_register_t scr_el3;
116 	el3_state_t *state;
117 
118 	state = get_el3state_ctx(ctx);
119 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
120 
121 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
122 	/*
123 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
124 	 * indicated by the interrupt routing model for BL31.
125 	 */
126 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
127 #endif
128 
129 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
130 	if (is_feat_mte2_supported()) {
131 		scr_el3 |= SCR_ATA_BIT;
132 	}
133 
134 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
135 
136 	/*
137 	 * Initialize EL1 context registers unless SPMC is running
138 	 * at S-EL2.
139 	 */
140 #if !SPMD_SPM_AT_SEL2
141 	setup_el1_context(ctx, ep);
142 #endif
143 
144 	manage_extensions_secure(ctx);
145 
146 	/**
147 	 * manage_extensions_secure_per_world api has to be executed once,
148 	 * as the registers getting initialised, maintain constant value across
149 	 * all the cpus for the secure world.
150 	 * Henceforth, this check ensures that the registers are initialised once
151 	 * and avoids re-initialization from multiple cores.
152 	 */
153 	if (!has_secure_perworld_init) {
154 		manage_extensions_secure_per_world();
155 	}
156 
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	/* CSV2 version 2 and above */
175 	if (is_feat_csv2_2_supported()) {
176 		/* Enable access to the SCXTNUM_ELx registers. */
177 		scr_el3 |= SCR_EnSCXT_BIT;
178 	}
179 
180 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
181 }
182 #endif /* ENABLE_RME */
183 
184 /******************************************************************************
185  * This function performs initializations that are specific to NON-SECURE state
186  * and updates the cpu context specified by 'ctx'.
187  *****************************************************************************/
188 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
189 {
190 	u_register_t scr_el3;
191 	el3_state_t *state;
192 
193 	state = get_el3state_ctx(ctx);
194 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
195 
196 	/* SCR_NS: Set the NS bit */
197 	scr_el3 |= SCR_NS_BIT;
198 
199 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
200 	if (is_feat_mte2_supported()) {
201 		scr_el3 |= SCR_ATA_BIT;
202 	}
203 
204 #if !CTX_INCLUDE_PAUTH_REGS
205 	/*
206 	 * Pointer Authentication feature, if present, is always enabled by default
207 	 * for Non secure lower exception levels. We do not have an explicit
208 	 * flag to set it.
209 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
210 	 * exception levels of secure and realm worlds.
211 	 *
212 	 * To prevent the leakage between the worlds during world switch,
213 	 * we enable it only for the non-secure world.
214 	 *
215 	 * If the Secure/realm world wants to use pointer authentication,
216 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
217 	 * it will be enabled globally for all the contexts.
218 	 *
219 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
220 	 *  other than EL3
221 	 *
222 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
223 	 *  than EL3
224 	 */
225 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
226 
227 #endif /* CTX_INCLUDE_PAUTH_REGS */
228 
229 #if HANDLE_EA_EL3_FIRST_NS
230 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
231 	scr_el3 |= SCR_EA_BIT;
232 #endif
233 
234 #if RAS_TRAP_NS_ERR_REC_ACCESS
235 	/*
236 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
237 	 * and RAS ERX registers from EL1 and EL2(from any security state)
238 	 * are trapped to EL3.
239 	 * Set here to trap only for NS EL1/EL2
240 	 *
241 	 */
242 	scr_el3 |= SCR_TERR_BIT;
243 #endif
244 
245 	/* CSV2 version 2 and above */
246 	if (is_feat_csv2_2_supported()) {
247 		/* Enable access to the SCXTNUM_ELx registers. */
248 		scr_el3 |= SCR_EnSCXT_BIT;
249 	}
250 
251 #ifdef IMAGE_BL31
252 	/*
253 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
254 	 *  indicated by the interrupt routing model for BL31.
255 	 */
256 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
257 #endif
258 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
259 
260 	/* Initialize EL1 context registers */
261 	setup_el1_context(ctx, ep);
262 
263 	/* Initialize EL2 context registers */
264 #if CTX_INCLUDE_EL2_REGS
265 
266 	/*
267 	 * Initialize SCTLR_EL2 context register with reset value.
268 	 */
269 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
270 
271 	if (is_feat_hcx_supported()) {
272 		/*
273 		 * Initialize register HCRX_EL2 with its init value.
274 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
275 		 * chance that this can lead to unexpected behavior in lower
276 		 * ELs that have not been updated since the introduction of
277 		 * this feature if not properly initialized, especially when
278 		 * it comes to those bits that enable/disable traps.
279 		 */
280 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
281 			HCRX_EL2_INIT_VAL);
282 	}
283 
284 	if (is_feat_fgt_supported()) {
285 		/*
286 		 * Initialize HFG*_EL2 registers with a default value so legacy
287 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
288 		 * of initialization for this feature.
289 		 */
290 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
291 			HFGITR_EL2_INIT_VAL);
292 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
293 			HFGRTR_EL2_INIT_VAL);
294 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
295 			HFGWTR_EL2_INIT_VAL);
296 	}
297 
298 #endif /* CTX_INCLUDE_EL2_REGS */
299 
300 	manage_extensions_nonsecure(ctx);
301 }
302 
303 /*******************************************************************************
304  * The following function performs initialization of the cpu_context 'ctx'
305  * for first use that is common to all security states, and sets the
306  * initial entrypoint state as specified by the entry_point_info structure.
307  *
308  * The EE and ST attributes are used to configure the endianness and secure
309  * timer availability for the new execution context.
310  ******************************************************************************/
311 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
312 {
313 	u_register_t scr_el3;
314 	u_register_t mdcr_el3;
315 	el3_state_t *state;
316 	gp_regs_t *gp_regs;
317 
318 	state = get_el3state_ctx(ctx);
319 
320 	/* Clear any residual register values from the context */
321 	zeromem(ctx, sizeof(*ctx));
322 
323 	/*
324 	 * The lower-EL context is zeroed so that no stale values leak to a world.
325 	 * It is assumed that an all-zero lower-EL context is good enough for it
326 	 * to boot correctly. However, there are very few registers where this
327 	 * is not true and some values need to be recreated.
328 	 */
329 #if CTX_INCLUDE_EL2_REGS
330 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
331 
332 	/*
333 	 * These bits are set in the gicv3 driver. Losing them (especially the
334 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
335 	 */
336 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
337 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
338 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
339 #endif /* CTX_INCLUDE_EL2_REGS */
340 
341 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
342 	scr_el3 = SCR_RESET_VAL;
343 
344 	/*
345 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
346 	 *  EL2, EL1 and EL0 are not trapped to EL3.
347 	 *
348 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
349 	 *  EL2, EL1 and EL0 are not trapped to EL3.
350 	 *
351 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
352 	 *  both Security states and both Execution states.
353 	 *
354 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
355 	 *  Non-secure memory.
356 	 */
357 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
358 
359 	scr_el3 |= SCR_SIF_BIT;
360 
361 	/*
362 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
363 	 *  Exception level as specified by SPSR.
364 	 */
365 	if (GET_RW(ep->spsr) == MODE_RW_64) {
366 		scr_el3 |= SCR_RW_BIT;
367 	}
368 
369 	/*
370 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
371 	 * Secure timer registers to EL3, from AArch64 state only, if specified
372 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
373 	 * bit always behaves as 1 (i.e. secure physical timer register access
374 	 * is not trapped)
375 	 */
376 	if (EP_GET_ST(ep->h.attr) != 0U) {
377 		scr_el3 |= SCR_ST_BIT;
378 	}
379 
380 	/*
381 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
382 	 * SCR_EL3.HXEn.
383 	 */
384 	if (is_feat_hcx_supported()) {
385 		scr_el3 |= SCR_HXEn_BIT;
386 	}
387 
388 	/*
389 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
390 	 * registers are trapped to EL3.
391 	 */
392 #if ENABLE_FEAT_RNG_TRAP
393 	scr_el3 |= SCR_TRNDR_BIT;
394 #endif
395 
396 #if FAULT_INJECTION_SUPPORT
397 	/* Enable fault injection from lower ELs */
398 	scr_el3 |= SCR_FIEN_BIT;
399 #endif
400 
401 #if CTX_INCLUDE_PAUTH_REGS
402 	/*
403 	 * Enable Pointer Authentication globally for all the worlds.
404 	 *
405 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
406 	 *  other than EL3
407 	 *
408 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
409 	 *  than EL3
410 	 */
411 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
412 #endif /* CTX_INCLUDE_PAUTH_REGS */
413 
414 	/*
415 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
416 	 */
417 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
418 		scr_el3 |= SCR_TCR2EN_BIT;
419 	}
420 
421 	/*
422 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
423 	 * registers for AArch64 if present.
424 	 */
425 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
426 		scr_el3 |= SCR_PIEN_BIT;
427 	}
428 
429 	/*
430 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
431 	 */
432 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
433 		scr_el3 |= SCR_GCSEn_BIT;
434 	}
435 
436 	/*
437 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
438 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
439 	 * next mode is Hyp.
440 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
441 	 * same conditions as HVC instructions and when the processor supports
442 	 * ARMv8.6-FGT.
443 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
444 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
445 	 * and when the processor supports ECV.
446 	 */
447 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
448 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
449 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
450 		scr_el3 |= SCR_HCE_BIT;
451 
452 		if (is_feat_fgt_supported()) {
453 			scr_el3 |= SCR_FGTEN_BIT;
454 		}
455 
456 		if (is_feat_ecv_supported()) {
457 			scr_el3 |= SCR_ECVEN_BIT;
458 		}
459 	}
460 
461 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
462 	if (is_feat_twed_supported()) {
463 		/* Set delay in SCR_EL3 */
464 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
465 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
466 				<< SCR_TWEDEL_SHIFT);
467 
468 		/* Enable WFE delay */
469 		scr_el3 |= SCR_TWEDEn_BIT;
470 	}
471 
472 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
473 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
474 	if (is_feat_sel2_supported()) {
475 		scr_el3 |= SCR_EEL2_BIT;
476 	}
477 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
478 
479 	/*
480 	 * Populate EL3 state so that we've the right context
481 	 * before doing ERET
482 	 */
483 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
484 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
485 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
486 
487 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
488 	mdcr_el3 = MDCR_EL3_RESET_VAL;
489 
490 	/* ---------------------------------------------------------------------
491 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
492 	 * Some fields are architecturally UNKNOWN on reset.
493 	 *
494 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
495 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
496 	 *  disabled from all ELs in Secure state.
497 	 *
498 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
499 	 *  privileged debug from S-EL1.
500 	 *
501 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
502 	 *  access to the powerdown debug registers do not trap to EL3.
503 	 *
504 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
505 	 *  debug registers, other than those registers that are controlled by
506 	 *  MDCR_EL3.TDOSA.
507 	 */
508 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
509 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
510 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
511 
512 	/*
513 	 * Configure MDCR_EL3 register as applicable for each world
514 	 * (NS/Secure/Realm) context.
515 	 */
516 	manage_extensions_common(ctx);
517 
518 	/*
519 	 * Store the X0-X7 value from the entrypoint into the context
520 	 * Use memcpy as we are in control of the layout of the structures
521 	 */
522 	gp_regs = get_gpregs_ctx(ctx);
523 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
524 }
525 
526 /*******************************************************************************
527  * Context management library initialization routine. This library is used by
528  * runtime services to share pointers to 'cpu_context' structures for secure
529  * non-secure and realm states. Management of the structures and their associated
530  * memory is not done by the context management library e.g. the PSCI service
531  * manages the cpu context used for entry from and exit to the non-secure state.
532  * The Secure payload dispatcher service manages the context(s) corresponding to
533  * the secure state. It also uses this library to get access to the non-secure
534  * state cpu context pointers.
535  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
536  * which will be used for programming an entry into a lower EL. The same context
537  * will be used to save state upon exception entry from that EL.
538  ******************************************************************************/
539 void __init cm_init(void)
540 {
541 	/*
542 	 * The context management library has only global data to initialize, but
543 	 * that will be done when the BSS is zeroed out.
544 	 */
545 }
546 
547 /*******************************************************************************
548  * This is the high-level function used to initialize the cpu_context 'ctx' for
549  * first use. It performs initializations that are common to all security states
550  * and initializations specific to the security state specified in 'ep'
551  ******************************************************************************/
552 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
553 {
554 	unsigned int security_state;
555 
556 	assert(ctx != NULL);
557 
558 	/*
559 	 * Perform initializations that are common
560 	 * to all security states
561 	 */
562 	setup_context_common(ctx, ep);
563 
564 	security_state = GET_SECURITY_STATE(ep->h.attr);
565 
566 	/* Perform security state specific initializations */
567 	switch (security_state) {
568 	case SECURE:
569 		setup_secure_context(ctx, ep);
570 		break;
571 #if ENABLE_RME
572 	case REALM:
573 		setup_realm_context(ctx, ep);
574 		break;
575 #endif
576 	case NON_SECURE:
577 		setup_ns_context(ctx, ep);
578 		break;
579 	default:
580 		ERROR("Invalid security state\n");
581 		panic();
582 		break;
583 	}
584 }
585 
586 /*******************************************************************************
587  * Enable architecture extensions for EL3 execution. This function only updates
588  * registers in-place which are expected to either never change or be
589  * overwritten by el3_exit.
590  ******************************************************************************/
591 #if IMAGE_BL31
592 void cm_manage_extensions_el3(void)
593 {
594 	if (is_feat_amu_supported()) {
595 		amu_init_el3();
596 	}
597 
598 	if (is_feat_sme_supported()) {
599 		sme_init_el3();
600 	}
601 
602 	pmuv3_init_el3();
603 }
604 #endif /* IMAGE_BL31 */
605 
606 /******************************************************************************
607  * Function to initialise the registers with the RESET values in the context
608  * memory, which are maintained per world.
609  ******************************************************************************/
610 #if IMAGE_BL31
611 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
612 {
613 	/*
614 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
615 	 *
616 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
617 	 *  by Advanced SIMD, floating-point or SVE instructions (if
618 	 *  implemented) do not trap to EL3.
619 	 *
620 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
621 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
622 	 */
623 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
624 
625 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
626 
627 	/*
628 	 * Initialize MPAM3_EL3 to its default reset value
629 	 *
630 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
631 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
632 	 */
633 
634 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
635 }
636 #endif /* IMAGE_BL31 */
637 
638 /*******************************************************************************
639  * Initialise per_world_context for Non-Secure world.
640  * This function enables the architecture extensions, which have same value
641  * across the cores for the non-secure world.
642  ******************************************************************************/
643 #if IMAGE_BL31
644 void manage_extensions_nonsecure_per_world(void)
645 {
646 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
647 
648 	if (is_feat_sme_supported()) {
649 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
650 	}
651 
652 	if (is_feat_sve_supported()) {
653 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
654 	}
655 
656 	if (is_feat_amu_supported()) {
657 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
658 	}
659 
660 	if (is_feat_sys_reg_trace_supported()) {
661 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
662 	}
663 
664 	if (is_feat_mpam_supported()) {
665 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
666 	}
667 }
668 #endif /* IMAGE_BL31 */
669 
670 /*******************************************************************************
671  * Initialise per_world_context for Secure world.
672  * This function enables the architecture extensions, which have same value
673  * across the cores for the secure world.
674  ******************************************************************************/
675 static void manage_extensions_secure_per_world(void)
676 {
677 #if IMAGE_BL31
678 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
679 
680 	if (is_feat_sme_supported()) {
681 
682 		if (ENABLE_SME_FOR_SWD) {
683 		/*
684 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
685 		 * SME, SVE, and FPU/SIMD context properly managed.
686 		 */
687 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
688 		} else {
689 		/*
690 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
691 		 * world can safely use the associated registers.
692 		 */
693 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
694 		}
695 	}
696 	if (is_feat_sve_supported()) {
697 		if (ENABLE_SVE_FOR_SWD) {
698 		/*
699 		 * Enable SVE and FPU in secure context, SPM must ensure
700 		 * that the SVE and FPU register contexts are properly managed.
701 		 */
702 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
703 		} else {
704 		/*
705 		 * Disable SVE and FPU in secure context so non-secure world
706 		 * can safely use them.
707 		 */
708 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
709 		}
710 	}
711 
712 	/* NS can access this but Secure shouldn't */
713 	if (is_feat_sys_reg_trace_supported()) {
714 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
715 	}
716 
717 	has_secure_perworld_init = true;
718 #endif /* IMAGE_BL31 */
719 }
720 
721 /*******************************************************************************
722  * Enable architecture extensions on first entry to Non-secure world only
723  * and disable for secure world.
724  *
725  * NOTE: Arch features which have been provided with the capability of getting
726  * enabled only for non-secure world and being disabled for secure world are
727  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
728  ******************************************************************************/
729 static void manage_extensions_common(cpu_context_t *ctx)
730 {
731 #if IMAGE_BL31
732 	if (is_feat_spe_supported()) {
733 		/*
734 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
735 		 */
736 		spe_enable(ctx);
737 	}
738 
739 	if (is_feat_trbe_supported()) {
740 		/*
741 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
742 		 * Realm state.
743 		 */
744 		trbe_enable(ctx);
745 	}
746 
747 	if (is_feat_trf_supported()) {
748 		/*
749 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
750 		 */
751 		trf_enable(ctx);
752 	}
753 
754 	if (is_feat_brbe_supported()) {
755 		/*
756 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
757 		 */
758 		brbe_enable(ctx);
759 	}
760 #endif /* IMAGE_BL31 */
761 }
762 
763 /*******************************************************************************
764  * Enable architecture extensions on first entry to Non-secure world.
765  ******************************************************************************/
766 static void manage_extensions_nonsecure(cpu_context_t *ctx)
767 {
768 #if IMAGE_BL31
769 	if (is_feat_amu_supported()) {
770 		amu_enable(ctx);
771 	}
772 
773 	if (is_feat_sme_supported()) {
774 		sme_enable(ctx);
775 	}
776 
777 	if (is_feat_fgt2_supported()) {
778 		fgt2_enable(ctx);
779 	}
780 
781 	if (is_feat_debugv8p9_supported()) {
782 		debugv8p9_extended_bp_wp_enable(ctx);
783 	}
784 
785 	pmuv3_enable(ctx);
786 #endif /* IMAGE_BL31 */
787 }
788 
789 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
790 static __unused void enable_pauth_el2(void)
791 {
792 	u_register_t hcr_el2 = read_hcr_el2();
793 	/*
794 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
795 	 *  accessing key registers or using pointer authentication instructions
796 	 *  from lower ELs.
797 	 */
798 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
799 
800 	write_hcr_el2(hcr_el2);
801 }
802 
803 #if INIT_UNUSED_NS_EL2
804 /*******************************************************************************
805  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
806  * world when EL2 is empty and unused.
807  ******************************************************************************/
808 static void manage_extensions_nonsecure_el2_unused(void)
809 {
810 #if IMAGE_BL31
811 	if (is_feat_spe_supported()) {
812 		spe_init_el2_unused();
813 	}
814 
815 	if (is_feat_amu_supported()) {
816 		amu_init_el2_unused();
817 	}
818 
819 	if (is_feat_mpam_supported()) {
820 		mpam_init_el2_unused();
821 	}
822 
823 	if (is_feat_trbe_supported()) {
824 		trbe_init_el2_unused();
825 	}
826 
827 	if (is_feat_sys_reg_trace_supported()) {
828 		sys_reg_trace_init_el2_unused();
829 	}
830 
831 	if (is_feat_trf_supported()) {
832 		trf_init_el2_unused();
833 	}
834 
835 	pmuv3_init_el2_unused();
836 
837 	if (is_feat_sve_supported()) {
838 		sve_init_el2_unused();
839 	}
840 
841 	if (is_feat_sme_supported()) {
842 		sme_init_el2_unused();
843 	}
844 
845 #if ENABLE_PAUTH
846 	enable_pauth_el2();
847 #endif /* ENABLE_PAUTH */
848 #endif /* IMAGE_BL31 */
849 }
850 #endif /* INIT_UNUSED_NS_EL2 */
851 
852 /*******************************************************************************
853  * Enable architecture extensions on first entry to Secure world.
854  ******************************************************************************/
855 static void manage_extensions_secure(cpu_context_t *ctx)
856 {
857 #if IMAGE_BL31
858 	if (is_feat_sme_supported()) {
859 		if (ENABLE_SME_FOR_SWD) {
860 		/*
861 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
862 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
863 		 */
864 			sme_init_el3();
865 			sme_enable(ctx);
866 		} else {
867 		/*
868 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
869 		 * world can safely use the associated registers.
870 		 */
871 			sme_disable(ctx);
872 		}
873 	}
874 #endif /* IMAGE_BL31 */
875 }
876 
877 #if !IMAGE_BL1
878 /*******************************************************************************
879  * The following function initializes the cpu_context for a CPU specified by
880  * its `cpu_idx` for first use, and sets the initial entrypoint state as
881  * specified by the entry_point_info structure.
882  ******************************************************************************/
883 void cm_init_context_by_index(unsigned int cpu_idx,
884 			      const entry_point_info_t *ep)
885 {
886 	cpu_context_t *ctx;
887 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
888 	cm_setup_context(ctx, ep);
889 }
890 #endif /* !IMAGE_BL1 */
891 
892 /*******************************************************************************
893  * The following function initializes the cpu_context for the current CPU
894  * for first use, and sets the initial entrypoint state as specified by the
895  * entry_point_info structure.
896  ******************************************************************************/
897 void cm_init_my_context(const entry_point_info_t *ep)
898 {
899 	cpu_context_t *ctx;
900 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
901 	cm_setup_context(ctx, ep);
902 }
903 
904 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
905 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
906 {
907 #if INIT_UNUSED_NS_EL2
908 	u_register_t hcr_el2 = HCR_RESET_VAL;
909 	u_register_t mdcr_el2;
910 	u_register_t scr_el3;
911 
912 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
913 
914 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
915 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
916 		hcr_el2 |= HCR_RW_BIT;
917 	}
918 
919 	write_hcr_el2(hcr_el2);
920 
921 	/*
922 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
923 	 * All fields have architecturally UNKNOWN reset values.
924 	 */
925 	write_cptr_el2(CPTR_EL2_RESET_VAL);
926 
927 	/*
928 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
929 	 * reset and are set to zero except for field(s) listed below.
930 	 *
931 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
932 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
933 	 *
934 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
935 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
936 	 */
937 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
938 
939 	/*
940 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
941 	 * UNKNOWN value.
942 	 */
943 	write_cntvoff_el2(0);
944 
945 	/*
946 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
947 	 * respectively.
948 	 */
949 	write_vpidr_el2(read_midr_el1());
950 	write_vmpidr_el2(read_mpidr_el1());
951 
952 	/*
953 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
954 	 *
955 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
956 	 * translation is disabled, cache maintenance operations depend on the
957 	 * VMID.
958 	 *
959 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
960 	 * disabled.
961 	 */
962 	write_vttbr_el2(VTTBR_RESET_VAL &
963 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
964 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
965 
966 	/*
967 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
968 	 * Some fields are architecturally UNKNOWN on reset.
969 	 *
970 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
971 	 * register accesses to the Debug ROM registers are not trapped to EL2.
972 	 *
973 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
974 	 * accesses to the powerdown debug registers are not trapped to EL2.
975 	 *
976 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
977 	 * debug registers do not trap to EL2.
978 	 *
979 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
980 	 * EL2.
981 	 */
982 	mdcr_el2 = MDCR_EL2_RESET_VAL &
983 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
984 		   MDCR_EL2_TDE_BIT);
985 
986 	write_mdcr_el2(mdcr_el2);
987 
988 	/*
989 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
990 	 *
991 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
992 	 * EL1 accesses to System registers do not trap to EL2.
993 	 */
994 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
995 
996 	/*
997 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
998 	 * reset.
999 	 *
1000 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1001 	 * and prevent timer interrupts.
1002 	 */
1003 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1004 
1005 	manage_extensions_nonsecure_el2_unused();
1006 #endif /* INIT_UNUSED_NS_EL2 */
1007 }
1008 
1009 /*******************************************************************************
1010  * Prepare the CPU system registers for first entry into realm, secure, or
1011  * normal world.
1012  *
1013  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1014  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1015  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1016  * For all entries, the EL1 registers are initialized from the cpu_context
1017  ******************************************************************************/
1018 void cm_prepare_el3_exit(uint32_t security_state)
1019 {
1020 	u_register_t sctlr_el2, scr_el3;
1021 	cpu_context_t *ctx = cm_get_context(security_state);
1022 
1023 	assert(ctx != NULL);
1024 
1025 	if (security_state == NON_SECURE) {
1026 		uint64_t el2_implemented = el_implemented(2);
1027 
1028 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1029 						 CTX_SCR_EL3);
1030 
1031 		if (el2_implemented != EL_IMPL_NONE) {
1032 
1033 			/*
1034 			 * If context is not being used for EL2, initialize
1035 			 * HCRX_EL2 with its init value here.
1036 			 */
1037 			if (is_feat_hcx_supported()) {
1038 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1039 			}
1040 
1041 			/*
1042 			 * Initialize Fine-grained trap registers introduced
1043 			 * by FEAT_FGT so all traps are initially disabled when
1044 			 * switching to EL2 or a lower EL, preventing undesired
1045 			 * behavior.
1046 			 */
1047 			if (is_feat_fgt_supported()) {
1048 				/*
1049 				 * Initialize HFG*_EL2 registers with a default
1050 				 * value so legacy systems unaware of FEAT_FGT
1051 				 * do not get trapped due to their lack of
1052 				 * initialization for this feature.
1053 				 */
1054 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1055 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1056 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1057 			}
1058 
1059 			/* Condition to ensure EL2 is being used. */
1060 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1061 				/* Initialize SCTLR_EL2 register with reset value. */
1062 				sctlr_el2 = SCTLR_EL2_RES1;
1063 #if ERRATA_A75_764081
1064 				/*
1065 				 * If workaround of errata 764081 for Cortex-A75
1066 				 * is used then set SCTLR_EL2.IESB to enable
1067 				 * Implicit Error Synchronization Barrier.
1068 				 */
1069 				sctlr_el2 |= SCTLR_IESB_BIT;
1070 #endif
1071 				write_sctlr_el2(sctlr_el2);
1072 			} else {
1073 				/*
1074 				 * (scr_el3 & SCR_HCE_BIT==0)
1075 				 * EL2 implemented but unused.
1076 				 */
1077 				init_nonsecure_el2_unused(ctx);
1078 			}
1079 		}
1080 	}
1081 	cm_el1_sysregs_context_restore(security_state);
1082 	cm_set_next_eret_context(security_state);
1083 }
1084 
1085 #if CTX_INCLUDE_EL2_REGS
1086 
1087 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1088 {
1089 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1090 	if (is_feat_amu_supported()) {
1091 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1092 	}
1093 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1094 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1095 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1096 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1097 }
1098 
1099 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1100 {
1101 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1102 	if (is_feat_amu_supported()) {
1103 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1104 	}
1105 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1106 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1107 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1108 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1109 }
1110 
1111 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1112 {
1113 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1114 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1115 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1116 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1117 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1118 }
1119 
1120 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1121 {
1122 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1123 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1124 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1125 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1126 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1127 }
1128 
1129 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1130 {
1131 	u_register_t mpam_idr = read_mpamidr_el1();
1132 
1133 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1134 
1135 	/*
1136 	 * The context registers that we intend to save would be part of the
1137 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1138 	 */
1139 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1140 		return;
1141 	}
1142 
1143 	/*
1144 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1145 	 * MPAMIDR_HAS_HCR_BIT == 1.
1146 	 */
1147 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1148 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1149 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1150 
1151 	/*
1152 	 * The number of MPAMVPM registers is implementation defined, their
1153 	 * number is stored in the MPAMIDR_EL1 register.
1154 	 */
1155 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1156 	case 7:
1157 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1158 		__fallthrough;
1159 	case 6:
1160 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1161 		__fallthrough;
1162 	case 5:
1163 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1164 		__fallthrough;
1165 	case 4:
1166 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1167 		__fallthrough;
1168 	case 3:
1169 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1170 		__fallthrough;
1171 	case 2:
1172 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1173 		__fallthrough;
1174 	case 1:
1175 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1176 		break;
1177 	}
1178 }
1179 
1180 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1181 {
1182 	u_register_t mpam_idr = read_mpamidr_el1();
1183 
1184 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1185 
1186 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1187 		return;
1188 	}
1189 
1190 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1191 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1192 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1193 
1194 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1195 	case 7:
1196 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1197 		__fallthrough;
1198 	case 6:
1199 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1200 		__fallthrough;
1201 	case 5:
1202 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1203 		__fallthrough;
1204 	case 4:
1205 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1206 		__fallthrough;
1207 	case 3:
1208 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1209 		__fallthrough;
1210 	case 2:
1211 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1212 		__fallthrough;
1213 	case 1:
1214 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1215 		break;
1216 	}
1217 }
1218 
1219 /* ---------------------------------------------------------------------------
1220  * The following registers are not added:
1221  * ICH_AP0R<n>_EL2
1222  * ICH_AP1R<n>_EL2
1223  * ICH_LR<n>_EL2
1224  *
1225  * NOTE: For a system with S-EL2 present but not enabled, accessing
1226  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1227  * SCR_EL3.NS = 1 before accessing this register.
1228  * ---------------------------------------------------------------------------
1229  */
1230 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1231 {
1232 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1233 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1234 #else
1235 	u_register_t scr_el3 = read_scr_el3();
1236 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1237 	isb();
1238 
1239 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1240 
1241 	write_scr_el3(scr_el3);
1242 	isb();
1243 #endif
1244 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1245 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1246 }
1247 
1248 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1249 {
1250 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1251 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1252 #else
1253 	u_register_t scr_el3 = read_scr_el3();
1254 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1255 	isb();
1256 
1257 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1258 
1259 	write_scr_el3(scr_el3);
1260 	isb();
1261 #endif
1262 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1263 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1264 }
1265 
1266 /* -----------------------------------------------------
1267  * The following registers are not added:
1268  * AMEVCNTVOFF0<n>_EL2
1269  * AMEVCNTVOFF1<n>_EL2
1270  * -----------------------------------------------------
1271  */
1272 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1273 {
1274 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1275 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1276 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1277 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1278 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1279 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1280 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1281 	if (CTX_INCLUDE_AARCH32_REGS) {
1282 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1283 	}
1284 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1285 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1286 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1287 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1288 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1289 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1290 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1291 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1292 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1293 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1294 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1295 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1296 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1297 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1298 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1299 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1300 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1301 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1302 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1303 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1304 }
1305 
1306 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1307 {
1308 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1309 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1310 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1311 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1312 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1313 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1314 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1315 	if (CTX_INCLUDE_AARCH32_REGS) {
1316 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1317 	}
1318 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1319 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1320 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1321 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1322 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1323 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1324 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1325 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1326 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1327 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1328 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1329 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1330 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1331 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1332 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1333 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1334 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1335 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1336 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1337 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1338 }
1339 
1340 /*******************************************************************************
1341  * Save EL2 sysreg context
1342  ******************************************************************************/
1343 void cm_el2_sysregs_context_save(uint32_t security_state)
1344 {
1345 	cpu_context_t *ctx;
1346 	el2_sysregs_t *el2_sysregs_ctx;
1347 
1348 	ctx = cm_get_context(security_state);
1349 	assert(ctx != NULL);
1350 
1351 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1352 
1353 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1354 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1355 
1356 	if (is_feat_mte2_supported()) {
1357 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1358 	}
1359 
1360 	if (is_feat_mpam_supported()) {
1361 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1362 	}
1363 
1364 	if (is_feat_fgt_supported()) {
1365 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1366 	}
1367 
1368 	if (is_feat_fgt2_supported()) {
1369 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1370 	}
1371 
1372 	if (is_feat_ecv_v2_supported()) {
1373 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1374 	}
1375 
1376 	if (is_feat_vhe_supported()) {
1377 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1378 					read_contextidr_el2());
1379 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1380 	}
1381 
1382 	if (is_feat_ras_supported()) {
1383 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1384 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1385 	}
1386 
1387 	if (is_feat_nv2_supported()) {
1388 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1389 	}
1390 
1391 	if (is_feat_trf_supported()) {
1392 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1393 	}
1394 
1395 	if (is_feat_csv2_2_supported()) {
1396 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1397 					read_scxtnum_el2());
1398 	}
1399 
1400 	if (is_feat_hcx_supported()) {
1401 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1402 	}
1403 
1404 	if (is_feat_tcr2_supported()) {
1405 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1406 	}
1407 
1408 	if (is_feat_sxpie_supported()) {
1409 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1410 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1411 	}
1412 
1413 	if (is_feat_sxpoe_supported()) {
1414 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1415 	}
1416 
1417 	if (is_feat_s2pie_supported()) {
1418 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1419 	}
1420 
1421 	if (is_feat_gcs_supported()) {
1422 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1423 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1424 	}
1425 }
1426 
1427 /*******************************************************************************
1428  * Restore EL2 sysreg context
1429  ******************************************************************************/
1430 void cm_el2_sysregs_context_restore(uint32_t security_state)
1431 {
1432 	cpu_context_t *ctx;
1433 	el2_sysregs_t *el2_sysregs_ctx;
1434 
1435 	ctx = cm_get_context(security_state);
1436 	assert(ctx != NULL);
1437 
1438 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1439 
1440 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1441 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1442 
1443 	if (is_feat_mte2_supported()) {
1444 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1445 	}
1446 
1447 	if (is_feat_mpam_supported()) {
1448 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1449 	}
1450 
1451 	if (is_feat_fgt_supported()) {
1452 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1453 	}
1454 
1455 	if (is_feat_fgt2_supported()) {
1456 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1457 	}
1458 
1459 	if (is_feat_ecv_v2_supported()) {
1460 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1461 	}
1462 
1463 	if (is_feat_vhe_supported()) {
1464 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1465 					contextidr_el2));
1466 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1467 	}
1468 
1469 	if (is_feat_ras_supported()) {
1470 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1471 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1472 	}
1473 
1474 	if (is_feat_nv2_supported()) {
1475 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1476 	}
1477 
1478 	if (is_feat_trf_supported()) {
1479 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1480 	}
1481 
1482 	if (is_feat_csv2_2_supported()) {
1483 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1484 					scxtnum_el2));
1485 	}
1486 
1487 	if (is_feat_hcx_supported()) {
1488 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1489 	}
1490 
1491 	if (is_feat_tcr2_supported()) {
1492 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1493 	}
1494 
1495 	if (is_feat_sxpie_supported()) {
1496 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1497 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1498 	}
1499 
1500 	if (is_feat_sxpoe_supported()) {
1501 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1502 	}
1503 
1504 	if (is_feat_s2pie_supported()) {
1505 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1506 	}
1507 
1508 	if (is_feat_gcs_supported()) {
1509 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1510 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1511 	}
1512 }
1513 #endif /* CTX_INCLUDE_EL2_REGS */
1514 
1515 /*******************************************************************************
1516  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1517  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1518  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1519  * cm_prepare_el3_exit function.
1520  ******************************************************************************/
1521 void cm_prepare_el3_exit_ns(void)
1522 {
1523 #if CTX_INCLUDE_EL2_REGS
1524 #if ENABLE_ASSERTIONS
1525 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1526 	assert(ctx != NULL);
1527 
1528 	/* Assert that EL2 is used. */
1529 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1530 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1531 			(el_implemented(2U) != EL_IMPL_NONE));
1532 #endif /* ENABLE_ASSERTIONS */
1533 
1534 	/* Restore EL2 and EL1 sysreg contexts */
1535 	cm_el2_sysregs_context_restore(NON_SECURE);
1536 	cm_el1_sysregs_context_restore(NON_SECURE);
1537 	cm_set_next_eret_context(NON_SECURE);
1538 #else
1539 	cm_prepare_el3_exit(NON_SECURE);
1540 #endif /* CTX_INCLUDE_EL2_REGS */
1541 }
1542 
1543 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1544 {
1545 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1546 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1547 
1548 #if !ERRATA_SPECULATIVE_AT
1549 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1550 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1551 #endif /* (!ERRATA_SPECULATIVE_AT) */
1552 
1553 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1554 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1555 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1556 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1557 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1558 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1559 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1560 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1561 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1562 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1563 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1564 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1565 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1566 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1567 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1568 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1569 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1570 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1571 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1572 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1573 
1574 #if CTX_INCLUDE_AARCH32_REGS
1575 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1576 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1577 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1578 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1579 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1580 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1581 #endif /* CTX_INCLUDE_AARCH32_REGS */
1582 
1583 #if NS_TIMER_SWITCH
1584 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1585 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1586 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1587 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1588 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1589 #endif /* NS_TIMER_SWITCH */
1590 
1591 #if ENABLE_FEAT_MTE2
1592 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1593 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1594 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1595 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1596 #endif /* ENABLE_FEAT_MTE2 */
1597 
1598 #if ENABLE_FEAT_RAS
1599 	if (is_feat_ras_supported()) {
1600 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1601 	}
1602 #endif
1603 
1604 #if ENABLE_FEAT_S1PIE
1605 	if (is_feat_s1pie_supported()) {
1606 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1607 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1608 	}
1609 #endif
1610 
1611 #if ENABLE_FEAT_S1POE
1612 	if (is_feat_s1poe_supported()) {
1613 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1614 	}
1615 #endif
1616 
1617 #if ENABLE_FEAT_S2POE
1618 	if (is_feat_s2poe_supported()) {
1619 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1620 	}
1621 #endif
1622 
1623 #if ENABLE_FEAT_TCR2
1624 	if (is_feat_tcr2_supported()) {
1625 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1626 	}
1627 #endif
1628 
1629 #if ENABLE_TRF_FOR_NS
1630 	if (is_feat_trf_supported()) {
1631 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1632 	}
1633 #endif
1634 
1635 #if ENABLE_FEAT_CSV2_2
1636 	if (is_feat_csv2_2_supported()) {
1637 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1638 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1639 	}
1640 #endif
1641 
1642 #if ENABLE_FEAT_GCS
1643 	if (is_feat_gcs_supported()) {
1644 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1645 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1646 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1647 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1648 	}
1649 #endif
1650 }
1651 
1652 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1653 {
1654 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1655 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1656 
1657 #if !ERRATA_SPECULATIVE_AT
1658 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1659 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1660 #endif /* (!ERRATA_SPECULATIVE_AT) */
1661 
1662 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1663 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1664 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1665 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1666 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1667 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1668 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1669 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1670 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1671 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1672 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1673 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1674 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1675 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1676 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1677 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1678 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1679 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1680 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1681 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1682 
1683 #if CTX_INCLUDE_AARCH32_REGS
1684 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1685 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1686 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1687 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1688 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1689 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1690 #endif /* CTX_INCLUDE_AARCH32_REGS */
1691 
1692 #if NS_TIMER_SWITCH
1693 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1694 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1695 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1696 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1697 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1698 #endif /* NS_TIMER_SWITCH */
1699 
1700 #if ENABLE_FEAT_MTE2
1701 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1702 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1703 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1704 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1705 #endif /* ENABLE_FEAT_MTE2 */
1706 
1707 #if ENABLE_FEAT_RAS
1708 	if (is_feat_ras_supported()) {
1709 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1710 	}
1711 #endif
1712 
1713 #if ENABLE_FEAT_S1PIE
1714 	if (is_feat_s1pie_supported()) {
1715 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1716 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1717 	}
1718 #endif
1719 
1720 #if ENABLE_FEAT_S1POE
1721 	if (is_feat_s1poe_supported()) {
1722 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1723 	}
1724 #endif
1725 
1726 #if ENABLE_FEAT_S2POE
1727 	if (is_feat_s2poe_supported()) {
1728 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1729 	}
1730 #endif
1731 
1732 #if ENABLE_FEAT_TCR2
1733 	if (is_feat_tcr2_supported()) {
1734 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1735 	}
1736 #endif
1737 
1738 #if ENABLE_TRF_FOR_NS
1739 	if (is_feat_trf_supported()) {
1740 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1741 	}
1742 #endif
1743 
1744 #if ENABLE_FEAT_CSV2_2
1745 	if (is_feat_csv2_2_supported()) {
1746 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1747 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1748 	}
1749 #endif
1750 
1751 #if ENABLE_FEAT_GCS
1752 	if (is_feat_gcs_supported()) {
1753 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1754 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1755 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1756 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1757 	}
1758 #endif
1759 }
1760 
1761 /*******************************************************************************
1762  * The next four functions are used by runtime services to save and restore
1763  * EL1 context on the 'cpu_context' structure for the specified security
1764  * state.
1765  ******************************************************************************/
1766 void cm_el1_sysregs_context_save(uint32_t security_state)
1767 {
1768 	cpu_context_t *ctx;
1769 
1770 	ctx = cm_get_context(security_state);
1771 	assert(ctx != NULL);
1772 
1773 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1774 
1775 #if IMAGE_BL31
1776 	if (security_state == SECURE)
1777 		PUBLISH_EVENT(cm_exited_secure_world);
1778 	else
1779 		PUBLISH_EVENT(cm_exited_normal_world);
1780 #endif
1781 }
1782 
1783 void cm_el1_sysregs_context_restore(uint32_t security_state)
1784 {
1785 	cpu_context_t *ctx;
1786 
1787 	ctx = cm_get_context(security_state);
1788 	assert(ctx != NULL);
1789 
1790 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1791 
1792 #if IMAGE_BL31
1793 	if (security_state == SECURE)
1794 		PUBLISH_EVENT(cm_entering_secure_world);
1795 	else
1796 		PUBLISH_EVENT(cm_entering_normal_world);
1797 #endif
1798 }
1799 
1800 /*******************************************************************************
1801  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1802  * given security state with the given entrypoint
1803  ******************************************************************************/
1804 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1805 {
1806 	cpu_context_t *ctx;
1807 	el3_state_t *state;
1808 
1809 	ctx = cm_get_context(security_state);
1810 	assert(ctx != NULL);
1811 
1812 	/* Populate EL3 state so that ERET jumps to the correct entry */
1813 	state = get_el3state_ctx(ctx);
1814 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1815 }
1816 
1817 /*******************************************************************************
1818  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1819  * pertaining to the given security state
1820  ******************************************************************************/
1821 void cm_set_elr_spsr_el3(uint32_t security_state,
1822 			uintptr_t entrypoint, uint32_t spsr)
1823 {
1824 	cpu_context_t *ctx;
1825 	el3_state_t *state;
1826 
1827 	ctx = cm_get_context(security_state);
1828 	assert(ctx != NULL);
1829 
1830 	/* Populate EL3 state so that ERET jumps to the correct entry */
1831 	state = get_el3state_ctx(ctx);
1832 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1833 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1834 }
1835 
1836 /*******************************************************************************
1837  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1838  * pertaining to the given security state using the value and bit position
1839  * specified in the parameters. It preserves all other bits.
1840  ******************************************************************************/
1841 void cm_write_scr_el3_bit(uint32_t security_state,
1842 			  uint32_t bit_pos,
1843 			  uint32_t value)
1844 {
1845 	cpu_context_t *ctx;
1846 	el3_state_t *state;
1847 	u_register_t scr_el3;
1848 
1849 	ctx = cm_get_context(security_state);
1850 	assert(ctx != NULL);
1851 
1852 	/* Ensure that the bit position is a valid one */
1853 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1854 
1855 	/* Ensure that the 'value' is only a bit wide */
1856 	assert(value <= 1U);
1857 
1858 	/*
1859 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1860 	 * and set it to its new value.
1861 	 */
1862 	state = get_el3state_ctx(ctx);
1863 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1864 	scr_el3 &= ~(1UL << bit_pos);
1865 	scr_el3 |= (u_register_t)value << bit_pos;
1866 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1867 }
1868 
1869 /*******************************************************************************
1870  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1871  * given security state.
1872  ******************************************************************************/
1873 u_register_t cm_get_scr_el3(uint32_t security_state)
1874 {
1875 	cpu_context_t *ctx;
1876 	el3_state_t *state;
1877 
1878 	ctx = cm_get_context(security_state);
1879 	assert(ctx != NULL);
1880 
1881 	/* Populate EL3 state so that ERET jumps to the correct entry */
1882 	state = get_el3state_ctx(ctx);
1883 	return read_ctx_reg(state, CTX_SCR_EL3);
1884 }
1885 
1886 /*******************************************************************************
1887  * This function is used to program the context that's used for exception
1888  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1889  * the required security state
1890  ******************************************************************************/
1891 void cm_set_next_eret_context(uint32_t security_state)
1892 {
1893 	cpu_context_t *ctx;
1894 
1895 	ctx = cm_get_context(security_state);
1896 	assert(ctx != NULL);
1897 
1898 	cm_set_next_context(ctx);
1899 }
1900