xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 2ab9617ef2fa6f60c59d58f61e2d5c45bf965b1f)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <amu.h>
8 #include <arch.h>
9 #include <arch_helpers.h>
10 #include <assert.h>
11 #include <bl_common.h>
12 #include <context.h>
13 #include <context_mgmt.h>
14 #include <interrupt_mgmt.h>
15 #include <platform.h>
16 #include <platform_def.h>
17 #include <pubsub_events.h>
18 #include <smccc_helpers.h>
19 #include <spe.h>
20 #include <string.h>
21 #include <sve.h>
22 #include <utils.h>
23 
24 
25 /*******************************************************************************
26  * Context management library initialisation routine. This library is used by
27  * runtime services to share pointers to 'cpu_context' structures for the secure
28  * and non-secure states. Management of the structures and their associated
29  * memory is not done by the context management library e.g. the PSCI service
30  * manages the cpu context used for entry from and exit to the non-secure state.
31  * The Secure payload dispatcher service manages the context(s) corresponding to
32  * the secure state. It also uses this library to get access to the non-secure
33  * state cpu context pointers.
34  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
35  * which will used for programming an entry into a lower EL. The same context
36  * will used to save state upon exception entry from that EL.
37  ******************************************************************************/
38 void cm_init(void)
39 {
40 	/*
41 	 * The context management library has only global data to intialize, but
42 	 * that will be done when the BSS is zeroed out
43 	 */
44 }
45 
46 /*******************************************************************************
47  * The following function initializes the cpu_context 'ctx' for
48  * first use, and sets the initial entrypoint state as specified by the
49  * entry_point_info structure.
50  *
51  * The security state to initialize is determined by the SECURE attribute
52  * of the entry_point_info. The function returns a pointer to the initialized
53  * context and sets this as the next context to return to.
54  *
55  * The EE and ST attributes are used to configure the endianess and secure
56  * timer availability for the new execution context.
57  *
58  * To prepare the register state for entry call cm_prepare_el3_exit() and
59  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
60  * cm_e1_sysreg_context_restore().
61  ******************************************************************************/
62 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
63 {
64 	unsigned int security_state;
65 	uint32_t scr_el3, pmcr_el0;
66 	el3_state_t *state;
67 	gp_regs_t *gp_regs;
68 	unsigned long sctlr_elx, actlr_elx;
69 
70 	assert(ctx);
71 
72 	security_state = GET_SECURITY_STATE(ep->h.attr);
73 
74 	/* Clear any residual register values from the context */
75 	zeromem(ctx, sizeof(*ctx));
76 
77 	/*
78 	 * SCR_EL3 was initialised during reset sequence in macro
79 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
80 	 * affect the next EL.
81 	 *
82 	 * The following fields are initially set to zero and then updated to
83 	 * the required value depending on the state of the SPSR_EL3 and the
84 	 * Security state and entrypoint attributes of the next EL.
85 	 */
86 	scr_el3 = read_scr();
87 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
88 			SCR_ST_BIT | SCR_HCE_BIT);
89 	/*
90 	 * SCR_NS: Set the security state of the next EL.
91 	 */
92 	if (security_state != SECURE)
93 		scr_el3 |= SCR_NS_BIT;
94 	/*
95 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
96 	 *  Exception level as specified by SPSR.
97 	 */
98 	if (GET_RW(ep->spsr) == MODE_RW_64)
99 		scr_el3 |= SCR_RW_BIT;
100 	/*
101 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
102 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
103 	 *  by the entrypoint attributes.
104 	 */
105 	if (EP_GET_ST(ep->h.attr))
106 		scr_el3 |= SCR_ST_BIT;
107 
108 #ifndef HANDLE_EA_EL3_FIRST
109 	/*
110 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
111 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
112 	 *  Aborts are taken to EL3.
113 	 */
114 	scr_el3 &= ~SCR_EA_BIT;
115 #endif
116 
117 #ifdef IMAGE_BL31
118 	/*
119 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
120 	 *  indicated by the interrupt routing model for BL31.
121 	 */
122 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
123 #endif
124 
125 	/*
126 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
127 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
128 	 * next mode is Hyp.
129 	 */
130 	if ((GET_RW(ep->spsr) == MODE_RW_64
131 	     && GET_EL(ep->spsr) == MODE_EL2)
132 	    || (GET_RW(ep->spsr) != MODE_RW_64
133 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
134 		scr_el3 |= SCR_HCE_BIT;
135 	}
136 
137 	/*
138 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
139 	 * execution state setting all fields rather than relying of the hw.
140 	 * Some fields have architecturally UNKNOWN reset values and these are
141 	 * set to zero.
142 	 *
143 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
144 	 *
145 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
146 	 *  required by PSCI specification)
147 	 */
148 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
149 	if (GET_RW(ep->spsr) == MODE_RW_64)
150 		sctlr_elx |= SCTLR_EL1_RES1;
151 	else {
152 		/*
153 		 * If the target execution state is AArch32 then the following
154 		 * fields need to be set.
155 		 *
156 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
157 		 *  instructions are not trapped to EL1.
158 		 *
159 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
160 		 *  instructions are not trapped to EL1.
161 		 *
162 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
163 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
164 		 */
165 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
166 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
167 	}
168 
169 	/*
170 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
171 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
172 	 * are not part of the stored cpu_context.
173 	 */
174 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
175 
176 	/*
177 	 * Base the context ACTLR_EL1 on the current value, as it is
178 	 * implementation defined. The context restore process will write
179 	 * the value from the context to the actual register and can cause
180 	 * problems for processor cores that don't expect certain bits to
181 	 * be zero.
182 	 */
183 	actlr_elx = read_actlr_el1();
184 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
185 
186 	if (security_state == SECURE) {
187 		/*
188 		 * Initialise PMCR_EL0 for secure context only, setting all
189 		 * fields rather than relying on hw. Some fields are
190 		 * architecturally UNKNOWN on reset.
191 		 *
192 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
193 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
194 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
195 		 *
196 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
197 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
198 		 *
199 		 * PMCR_EL0.X: Set to zero to disable export of events.
200 		 *
201 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
202 		 *  counts on every clock cycle.
203 		 */
204 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
205 				| PMCR_EL0_DP_BIT)
206 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
207 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
208 	}
209 
210 	/* Populate EL3 state so that we've the right context before doing ERET */
211 	state = get_el3state_ctx(ctx);
212 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
213 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
214 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
215 
216 	/*
217 	 * Store the X0-X7 value from the entrypoint into the context
218 	 * Use memcpy as we are in control of the layout of the structures
219 	 */
220 	gp_regs = get_gpregs_ctx(ctx);
221 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
222 }
223 
224 /*******************************************************************************
225  * Enable architecture extensions on first entry to Non-secure world.
226  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
227  * it is zero.
228  ******************************************************************************/
229 static void enable_extensions_nonsecure(int el2_unused)
230 {
231 #if IMAGE_BL31
232 #if ENABLE_SPE_FOR_LOWER_ELS
233 	spe_enable(el2_unused);
234 #endif
235 
236 #if ENABLE_AMU
237 	amu_enable(el2_unused);
238 #endif
239 
240 #if ENABLE_SVE_FOR_NS
241 	sve_enable(el2_unused);
242 #endif
243 #endif
244 }
245 
246 /*******************************************************************************
247  * The following function initializes the cpu_context for a CPU specified by
248  * its `cpu_idx` for first use, and sets the initial entrypoint state as
249  * specified by the entry_point_info structure.
250  ******************************************************************************/
251 void cm_init_context_by_index(unsigned int cpu_idx,
252 			      const entry_point_info_t *ep)
253 {
254 	cpu_context_t *ctx;
255 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
256 	cm_init_context_common(ctx, ep);
257 }
258 
259 /*******************************************************************************
260  * The following function initializes the cpu_context for the current CPU
261  * for first use, and sets the initial entrypoint state as specified by the
262  * entry_point_info structure.
263  ******************************************************************************/
264 void cm_init_my_context(const entry_point_info_t *ep)
265 {
266 	cpu_context_t *ctx;
267 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
268 	cm_init_context_common(ctx, ep);
269 }
270 
271 /*******************************************************************************
272  * Prepare the CPU system registers for first entry into secure or normal world
273  *
274  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
275  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
276  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
277  * For all entries, the EL1 registers are initialized from the cpu_context
278  ******************************************************************************/
279 void cm_prepare_el3_exit(uint32_t security_state)
280 {
281 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
282 	cpu_context_t *ctx = cm_get_context(security_state);
283 	int el2_unused = 0;
284 
285 	assert(ctx);
286 
287 	if (security_state == NON_SECURE) {
288 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
289 		if (scr_el3 & SCR_HCE_BIT) {
290 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
291 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
292 						 CTX_SCTLR_EL1);
293 			sctlr_elx &= SCTLR_EE_BIT;
294 			sctlr_elx |= SCTLR_EL2_RES1;
295 			write_sctlr_el2(sctlr_elx);
296 		} else if (EL_IMPLEMENTED(2)) {
297 			el2_unused = 1;
298 
299 			/*
300 			 * EL2 present but unused, need to disable safely.
301 			 * SCTLR_EL2 can be ignored in this case.
302 			 *
303 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
304 			 * to zero so that Non-secure operations do not trap to
305 			 * EL2.
306 			 *
307 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
308 			 */
309 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
310 
311 			/*
312 			 * Initialise CPTR_EL2 setting all fields rather than
313 			 * relying on the hw. All fields have architecturally
314 			 * UNKNOWN reset values.
315 			 *
316 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
317 			 *  accesses to the CPACR_EL1 or CPACR from both
318 			 *  Execution states do not trap to EL2.
319 			 *
320 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
321 			 *  register accesses to the trace registers from both
322 			 *  Execution states do not trap to EL2.
323 			 *
324 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
325 			 *  to SIMD and floating-point functionality from both
326 			 *  Execution states do not trap to EL2.
327 			 */
328 			write_cptr_el2(CPTR_EL2_RESET_VAL &
329 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
330 					| CPTR_EL2_TFP_BIT));
331 
332 			/*
333 			 * Initiliase CNTHCTL_EL2. All fields are
334 			 * architecturally UNKNOWN on reset and are set to zero
335 			 * except for field(s) listed below.
336 			 *
337 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
338 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
339 			 *  physical timer registers.
340 			 *
341 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
342 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
343 			 *  physical counter registers.
344 			 */
345 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
346 						EL1PCEN_BIT | EL1PCTEN_BIT);
347 
348 			/*
349 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
350 			 * architecturally UNKNOWN value.
351 			 */
352 			write_cntvoff_el2(0);
353 
354 			/*
355 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
356 			 * MPIDR_EL1 respectively.
357 			 */
358 			write_vpidr_el2(read_midr_el1());
359 			write_vmpidr_el2(read_mpidr_el1());
360 
361 			/*
362 			 * Initialise VTTBR_EL2. All fields are architecturally
363 			 * UNKNOWN on reset.
364 			 *
365 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
366 			 *  2 address translation is disabled, cache maintenance
367 			 *  operations depend on the VMID.
368 			 *
369 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
370 			 *  translation is disabled.
371 			 */
372 			write_vttbr_el2(VTTBR_RESET_VAL &
373 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
374 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
375 
376 			/*
377 			 * Initialise MDCR_EL2, setting all fields rather than
378 			 * relying on hw. Some fields are architecturally
379 			 * UNKNOWN on reset.
380 			 *
381 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
382 			 *  EL1 System register accesses to the Debug ROM
383 			 *  registers are not trapped to EL2.
384 			 *
385 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
386 			 *  System register accesses to the powerdown debug
387 			 *  registers are not trapped to EL2.
388 			 *
389 			 * MDCR_EL2.TDA: Set to zero so that System register
390 			 *  accesses to the debug registers do not trap to EL2.
391 			 *
392 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
393 			 *  are not routed to EL2.
394 			 *
395 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
396 			 *  Monitors.
397 			 *
398 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
399 			 *  EL1 accesses to all Performance Monitors registers
400 			 *  are not trapped to EL2.
401 			 *
402 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
403 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
404 			 *  trapped to EL2.
405 			 *
406 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
407 			 *  architecturally-defined reset value.
408 			 */
409 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
410 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
411 					>> PMCR_EL0_N_SHIFT)) &
412 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
413 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
414 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
415 					| MDCR_EL2_TPMCR_BIT));
416 
417 			write_mdcr_el2(mdcr_el2);
418 
419 			/*
420 			 * Initialise HSTR_EL2. All fields are architecturally
421 			 * UNKNOWN on reset.
422 			 *
423 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
424 			 *  Non-secure EL0 or EL1 accesses to System registers
425 			 *  do not trap to EL2.
426 			 */
427 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
428 			/*
429 			 * Initialise CNTHP_CTL_EL2. All fields are
430 			 * architecturally UNKNOWN on reset.
431 			 *
432 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
433 			 *  physical timer and prevent timer interrupts.
434 			 */
435 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
436 						~(CNTHP_CTL_ENABLE_BIT));
437 		}
438 		enable_extensions_nonsecure(el2_unused);
439 	}
440 
441 	cm_el1_sysregs_context_restore(security_state);
442 	cm_set_next_eret_context(security_state);
443 }
444 
445 /*******************************************************************************
446  * The next four functions are used by runtime services to save and restore
447  * EL1 context on the 'cpu_context' structure for the specified security
448  * state.
449  ******************************************************************************/
450 void cm_el1_sysregs_context_save(uint32_t security_state)
451 {
452 	cpu_context_t *ctx;
453 
454 	ctx = cm_get_context(security_state);
455 	assert(ctx);
456 
457 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
458 
459 #if IMAGE_BL31
460 	if (security_state == SECURE)
461 		PUBLISH_EVENT(cm_exited_secure_world);
462 	else
463 		PUBLISH_EVENT(cm_exited_normal_world);
464 #endif
465 }
466 
467 void cm_el1_sysregs_context_restore(uint32_t security_state)
468 {
469 	cpu_context_t *ctx;
470 
471 	ctx = cm_get_context(security_state);
472 	assert(ctx);
473 
474 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
475 
476 #if IMAGE_BL31
477 	if (security_state == SECURE)
478 		PUBLISH_EVENT(cm_entering_secure_world);
479 	else
480 		PUBLISH_EVENT(cm_entering_normal_world);
481 #endif
482 }
483 
484 /*******************************************************************************
485  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
486  * given security state with the given entrypoint
487  ******************************************************************************/
488 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
489 {
490 	cpu_context_t *ctx;
491 	el3_state_t *state;
492 
493 	ctx = cm_get_context(security_state);
494 	assert(ctx);
495 
496 	/* Populate EL3 state so that ERET jumps to the correct entry */
497 	state = get_el3state_ctx(ctx);
498 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
499 }
500 
501 /*******************************************************************************
502  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
503  * pertaining to the given security state
504  ******************************************************************************/
505 void cm_set_elr_spsr_el3(uint32_t security_state,
506 			uintptr_t entrypoint, uint32_t spsr)
507 {
508 	cpu_context_t *ctx;
509 	el3_state_t *state;
510 
511 	ctx = cm_get_context(security_state);
512 	assert(ctx);
513 
514 	/* Populate EL3 state so that ERET jumps to the correct entry */
515 	state = get_el3state_ctx(ctx);
516 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
517 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
518 }
519 
520 /*******************************************************************************
521  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
522  * pertaining to the given security state using the value and bit position
523  * specified in the parameters. It preserves all other bits.
524  ******************************************************************************/
525 void cm_write_scr_el3_bit(uint32_t security_state,
526 			  uint32_t bit_pos,
527 			  uint32_t value)
528 {
529 	cpu_context_t *ctx;
530 	el3_state_t *state;
531 	uint32_t scr_el3;
532 
533 	ctx = cm_get_context(security_state);
534 	assert(ctx);
535 
536 	/* Ensure that the bit position is a valid one */
537 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
538 
539 	/* Ensure that the 'value' is only a bit wide */
540 	assert(value <= 1);
541 
542 	/*
543 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
544 	 * and set it to its new value.
545 	 */
546 	state = get_el3state_ctx(ctx);
547 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
548 	scr_el3 &= ~(1 << bit_pos);
549 	scr_el3 |= value << bit_pos;
550 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
551 }
552 
553 /*******************************************************************************
554  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
555  * given security state.
556  ******************************************************************************/
557 uint32_t cm_get_scr_el3(uint32_t security_state)
558 {
559 	cpu_context_t *ctx;
560 	el3_state_t *state;
561 
562 	ctx = cm_get_context(security_state);
563 	assert(ctx);
564 
565 	/* Populate EL3 state so that ERET jumps to the correct entry */
566 	state = get_el3state_ctx(ctx);
567 	return read_ctx_reg(state, CTX_SCR_EL3);
568 }
569 
570 /*******************************************************************************
571  * This function is used to program the context that's used for exception
572  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
573  * the required security state
574  ******************************************************************************/
575 void cm_set_next_eret_context(uint32_t security_state)
576 {
577 	cpu_context_t *ctx;
578 
579 	ctx = cm_get_context(security_state);
580 	assert(ctx);
581 
582 	cm_set_next_context(ctx);
583 }
584