xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 284c01c6d0f9a8d30c14b57e6ed7ebc0d686c900)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if (!SPMD_SPM_AT_SEL2)
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 }
152 
153 #if ENABLE_RME && IMAGE_BL31
154 /******************************************************************************
155  * This function performs initializations that are specific to REALM state
156  * and updates the cpu context specified by 'ctx'.
157  *
158  * NOTE: any changes to this function must be verified by an RMMD maintainer.
159  *****************************************************************************/
160 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
161 {
162 	u_register_t scr_el3;
163 	el3_state_t *state;
164 	el2_sysregs_t *el2_ctx;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 	el2_ctx = get_el2_sysregs_ctx(ctx);
169 
170 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
171 
172 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
173 
174 	/* CSV2 version 2 and above */
175 	if (is_feat_csv2_2_supported()) {
176 		/* Enable access to the SCXTNUM_ELx registers. */
177 		scr_el3 |= SCR_EnSCXT_BIT;
178 	}
179 
180 	if (is_feat_sctlr2_supported()) {
181 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
182 		 * SCTLR2_ELx registers.
183 		 */
184 		scr_el3 |= SCR_SCTLR2En_BIT;
185 	}
186 
187 	if (is_feat_d128_supported()) {
188 		/*
189 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
190 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
191 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
192 		 */
193 		scr_el3 |= SCR_D128En_BIT;
194 	}
195 
196 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
197 
198 	if (is_feat_fgt2_supported()) {
199 		fgt2_enable(ctx);
200 	}
201 
202 	if (is_feat_debugv8p9_supported()) {
203 		debugv8p9_extended_bp_wp_enable(ctx);
204 	}
205 
206 	if (is_feat_brbe_supported()) {
207 		brbe_enable(ctx);
208 	}
209 
210 	/*
211 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
212 	 */
213 	if (is_feat_sme_supported()) {
214 		sme_enable(ctx);
215 	}
216 
217 	/*
218 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
219 	 * sysreg access can. In case the EL1 controls leave them active on
220 	 * context switch, we want the owning security state to be NS so Realm
221 	 * can't be DOSed.
222 	 */
223 	if (is_feat_spe_supported()) {
224 		spe_disable(ctx);
225 	}
226 
227 	if (is_feat_trbe_supported()) {
228 		trbe_disable(ctx);
229 	}
230 }
231 #endif /* ENABLE_RME && IMAGE_BL31 */
232 
233 /******************************************************************************
234  * This function performs initializations that are specific to NON-SECURE state
235  * and updates the cpu context specified by 'ctx'.
236  *****************************************************************************/
237 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
238 {
239 	u_register_t scr_el3;
240 	el3_state_t *state;
241 
242 	state = get_el3state_ctx(ctx);
243 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
244 
245 	/* SCR_NS: Set the NS bit */
246 	scr_el3 |= SCR_NS_BIT;
247 
248 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
249 	if (is_feat_mte2_supported()) {
250 		scr_el3 |= SCR_ATA_BIT;
251 	}
252 
253 	/*
254 	 * Pointer Authentication feature, if present, is always enabled by
255 	 * default for Non secure lower exception levels. We do not have an
256 	 * explicit flag to set it. To prevent the leakage between the worlds
257 	 * during world switch, we enable it only for the non-secure world.
258 	 *
259 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
260 	 * exception levels of secure and realm worlds.
261 	 *
262 	 * If the Secure/realm world wants to use pointer authentication,
263 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
264 	 * it will be enabled globally for all the contexts.
265 	 *
266 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
267 	 *  other than EL3
268 	 *
269 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
270 	 *  than EL3
271 	 */
272 	if (!is_ctx_pauth_supported()) {
273 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
274 	}
275 
276 #if HANDLE_EA_EL3_FIRST_NS
277 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
278 	scr_el3 |= SCR_EA_BIT;
279 #endif
280 
281 #if RAS_TRAP_NS_ERR_REC_ACCESS
282 	/*
283 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
284 	 * and RAS ERX registers from EL1 and EL2(from any security state)
285 	 * are trapped to EL3.
286 	 * Set here to trap only for NS EL1/EL2
287 	 */
288 	scr_el3 |= SCR_TERR_BIT;
289 #endif
290 
291 	/* CSV2 version 2 and above */
292 	if (is_feat_csv2_2_supported()) {
293 		/* Enable access to the SCXTNUM_ELx registers. */
294 		scr_el3 |= SCR_EnSCXT_BIT;
295 	}
296 
297 #ifdef IMAGE_BL31
298 	/*
299 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
300 	 *  indicated by the interrupt routing model for BL31.
301 	 */
302 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
303 #endif
304 
305 	if (is_feat_the_supported()) {
306 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
307 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
308 		 */
309 		scr_el3 |= SCR_RCWMASKEn_BIT;
310 	}
311 
312 	if (is_feat_sctlr2_supported()) {
313 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
314 		 * SCTLR2_ELx registers.
315 		 */
316 		scr_el3 |= SCR_SCTLR2En_BIT;
317 	}
318 
319 	if (is_feat_d128_supported()) {
320 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
321 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
322 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
323 		 */
324 		scr_el3 |= SCR_D128En_BIT;
325 	}
326 
327 	if (is_feat_fpmr_supported()) {
328 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
329 		 * register.
330 		 */
331 		scr_el3 |= SCR_EnFPM_BIT;
332 	}
333 
334 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
335 
336 	/* Initialize EL2 context registers */
337 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
338 	if (is_feat_hcx_supported()) {
339 		/*
340 		 * Initialize register HCRX_EL2 with its init value.
341 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
342 		 * chance that this can lead to unexpected behavior in lower
343 		 * ELs that have not been updated since the introduction of
344 		 * this feature if not properly initialized, especially when
345 		 * it comes to those bits that enable/disable traps.
346 		 */
347 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
348 			HCRX_EL2_INIT_VAL);
349 	}
350 
351 	if (is_feat_fgt_supported()) {
352 		/*
353 		 * Initialize HFG*_EL2 registers with a default value so legacy
354 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
355 		 * of initialization for this feature.
356 		 */
357 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
358 			HFGITR_EL2_INIT_VAL);
359 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
360 			HFGRTR_EL2_INIT_VAL);
361 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
362 			HFGWTR_EL2_INIT_VAL);
363 	}
364 #else
365 	/* Initialize EL1 context registers */
366 	setup_el1_context(ctx, ep);
367 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
368 
369 	manage_extensions_nonsecure(ctx);
370 }
371 
372 /*******************************************************************************
373  * The following function performs initialization of the cpu_context 'ctx'
374  * for first use that is common to all security states, and sets the
375  * initial entrypoint state as specified by the entry_point_info structure.
376  *
377  * The EE and ST attributes are used to configure the endianness and secure
378  * timer availability for the new execution context.
379  ******************************************************************************/
380 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
381 {
382 	u_register_t scr_el3;
383 	u_register_t mdcr_el3;
384 	el3_state_t *state;
385 	gp_regs_t *gp_regs;
386 
387 	state = get_el3state_ctx(ctx);
388 
389 	/* Clear any residual register values from the context */
390 	zeromem(ctx, sizeof(*ctx));
391 
392 	/*
393 	 * The lower-EL context is zeroed so that no stale values leak to a world.
394 	 * It is assumed that an all-zero lower-EL context is good enough for it
395 	 * to boot correctly. However, there are very few registers where this
396 	 * is not true and some values need to be recreated.
397 	 */
398 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
399 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
400 
401 	/*
402 	 * These bits are set in the gicv3 driver. Losing them (especially the
403 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
404 	 */
405 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
406 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
407 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
408 
409 	/*
410 	 * The actlr_el2 register can be initialized in platform's reset handler
411 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
412 	 */
413 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
414 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
415 
416 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
417 	scr_el3 = SCR_RESET_VAL;
418 
419 	/*
420 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
421 	 *  EL2, EL1 and EL0 are not trapped to EL3.
422 	 *
423 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
424 	 *  EL2, EL1 and EL0 are not trapped to EL3.
425 	 *
426 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
427 	 *  both Security states and both Execution states.
428 	 *
429 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
430 	 *  Non-secure memory.
431 	 */
432 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
433 
434 	scr_el3 |= SCR_SIF_BIT;
435 
436 	/*
437 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
438 	 *  Exception level as specified by SPSR.
439 	 */
440 	if (GET_RW(ep->spsr) == MODE_RW_64) {
441 		scr_el3 |= SCR_RW_BIT;
442 	}
443 
444 	/*
445 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
446 	 * Secure timer registers to EL3, from AArch64 state only, if specified
447 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
448 	 * bit always behaves as 1 (i.e. secure physical timer register access
449 	 * is not trapped)
450 	 */
451 	if (EP_GET_ST(ep->h.attr) != 0U) {
452 		scr_el3 |= SCR_ST_BIT;
453 	}
454 
455 	/*
456 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
457 	 * SCR_EL3.HXEn.
458 	 */
459 	if (is_feat_hcx_supported()) {
460 		scr_el3 |= SCR_HXEn_BIT;
461 	}
462 
463 	/*
464 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
465 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
466 	 * SCR_EL3.EnAS0.
467 	 */
468 	if (is_feat_ls64_accdata_supported()) {
469 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
470 	}
471 
472 	/*
473 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
474 	 * registers are trapped to EL3.
475 	 */
476 	if (is_feat_rng_trap_supported()) {
477 		scr_el3 |= SCR_TRNDR_BIT;
478 	}
479 
480 #if FAULT_INJECTION_SUPPORT
481 	/* Enable fault injection from lower ELs */
482 	scr_el3 |= SCR_FIEN_BIT;
483 #endif
484 
485 	/*
486 	 * Enable Pointer Authentication globally for all the worlds.
487 	 *
488 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
489 	 *  other than EL3
490 	 *
491 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
492 	 *  than EL3
493 	 */
494 	if (is_ctx_pauth_supported()) {
495 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
496 	}
497 
498 	/*
499 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
500 	 * registers for AArch64 if present.
501 	 */
502 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
503 		scr_el3 |= SCR_PIEN_BIT;
504 	}
505 
506 	/*
507 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
508 	 */
509 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
510 		scr_el3 |= SCR_GCSEn_BIT;
511 	}
512 
513 	/*
514 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
515 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
516 	 * next mode is Hyp.
517 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
518 	 * same conditions as HVC instructions and when the processor supports
519 	 * ARMv8.6-FGT.
520 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
521 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
522 	 * and when the processor supports ECV.
523 	 */
524 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
525 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
526 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
527 		scr_el3 |= SCR_HCE_BIT;
528 
529 		if (is_feat_fgt_supported()) {
530 			scr_el3 |= SCR_FGTEN_BIT;
531 		}
532 
533 		if (is_feat_ecv_supported()) {
534 			scr_el3 |= SCR_ECVEN_BIT;
535 		}
536 	}
537 
538 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
539 	if (is_feat_twed_supported()) {
540 		/* Set delay in SCR_EL3 */
541 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
542 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
543 				<< SCR_TWEDEL_SHIFT);
544 
545 		/* Enable WFE delay */
546 		scr_el3 |= SCR_TWEDEn_BIT;
547 	}
548 
549 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
550 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
551 	if (is_feat_sel2_supported()) {
552 		scr_el3 |= SCR_EEL2_BIT;
553 	}
554 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
555 
556 	if (is_feat_mec_supported()) {
557 		scr_el3 |= SCR_MECEn_BIT;
558 	}
559 
560 	/*
561 	 * Populate EL3 state so that we've the right context
562 	 * before doing ERET
563 	 */
564 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
565 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
566 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
567 
568 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
569 	mdcr_el3 = MDCR_EL3_RESET_VAL;
570 
571 	/* ---------------------------------------------------------------------
572 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
573 	 * Some fields are architecturally UNKNOWN on reset.
574 	 *
575 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
576 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
577 	 *  disabled from all ELs in Secure state.
578 	 *
579 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
580 	 *  privileged debug from S-EL1.
581 	 *
582 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
583 	 *  access to the powerdown debug registers do not trap to EL3.
584 	 *
585 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
586 	 *  debug registers, other than those registers that are controlled by
587 	 *  MDCR_EL3.TDOSA.
588 	 */
589 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
590 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
591 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
592 
593 #if IMAGE_BL31
594 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
595 	if (is_feat_trf_supported()) {
596 		trf_enable(ctx);
597 	}
598 
599 	if (is_feat_tcr2_supported()) {
600 		tcr2_enable(ctx);
601 	}
602 
603 	pmuv3_enable(ctx);
604 
605 #if CTX_INCLUDE_EL2_REGS
606 	/*
607 	 * Initialize SCTLR_EL2 context register with reset value.
608 	 */
609 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
610 #endif /* CTX_INCLUDE_EL2_REGS */
611 #endif /* IMAGE_BL31 */
612 
613 	/*
614 	 * Store the X0-X7 value from the entrypoint into the context
615 	 * Use memcpy as we are in control of the layout of the structures
616 	 */
617 	gp_regs = get_gpregs_ctx(ctx);
618 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
619 }
620 
621 /*******************************************************************************
622  * Context management library initialization routine. This library is used by
623  * runtime services to share pointers to 'cpu_context' structures for secure
624  * non-secure and realm states. Management of the structures and their associated
625  * memory is not done by the context management library e.g. the PSCI service
626  * manages the cpu context used for entry from and exit to the non-secure state.
627  * The Secure payload dispatcher service manages the context(s) corresponding to
628  * the secure state. It also uses this library to get access to the non-secure
629  * state cpu context pointers.
630  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
631  * which will be used for programming an entry into a lower EL. The same context
632  * will be used to save state upon exception entry from that EL.
633  ******************************************************************************/
634 void __init cm_init(void)
635 {
636 	/*
637 	 * The context management library has only global data to initialize, but
638 	 * that will be done when the BSS is zeroed out.
639 	 */
640 }
641 
642 /*******************************************************************************
643  * This is the high-level function used to initialize the cpu_context 'ctx' for
644  * first use. It performs initializations that are common to all security states
645  * and initializations specific to the security state specified in 'ep'
646  ******************************************************************************/
647 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
648 {
649 	size_t security_state;
650 
651 	assert(ctx != NULL);
652 
653 	/*
654 	 * Perform initializations that are common
655 	 * to all security states
656 	 */
657 	setup_context_common(ctx, ep);
658 
659 	security_state = GET_SECURITY_STATE(ep->h.attr);
660 
661 	/* Perform security state specific initializations */
662 	switch (security_state) {
663 	case SECURE:
664 		setup_secure_context(ctx, ep);
665 		break;
666 #if ENABLE_RME && IMAGE_BL31
667 	case REALM:
668 		setup_realm_context(ctx, ep);
669 		break;
670 #endif
671 	case NON_SECURE:
672 		setup_ns_context(ctx, ep);
673 		break;
674 	default:
675 		ERROR("Invalid security state\n");
676 		panic();
677 		break;
678 	}
679 }
680 
681 /*******************************************************************************
682  * Enable architecture extensions for EL3 execution. This function only updates
683  * registers in-place which are expected to either never change or be
684  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
685  ******************************************************************************/
686 #if IMAGE_BL31
687 void cm_manage_extensions_el3(unsigned int my_idx)
688 {
689 	if (is_feat_sve_supported()) {
690 		sve_init_el3();
691 	}
692 
693 	if (is_feat_amu_supported()) {
694 		amu_init_el3(my_idx);
695 	}
696 
697 	if (is_feat_sme_supported()) {
698 		sme_init_el3();
699 	}
700 
701 	if (is_feat_fgwte3_supported()) {
702 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
703 	}
704 	pmuv3_init_el3();
705 }
706 
707 /******************************************************************************
708  * Function to initialise the registers with the RESET values in the context
709  * memory, which are maintained per world.
710  ******************************************************************************/
711 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
712 {
713 	/*
714 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
715 	 *
716 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
717 	 *  by Advanced SIMD, floating-point or SVE instructions (if
718 	 *  implemented) do not trap to EL3.
719 	 *
720 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
721 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
722 	 */
723 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
724 
725 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
726 
727 	/*
728 	 * Initialize MPAM3_EL3 to its default reset value
729 	 *
730 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
731 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
732 	 */
733 
734 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
735 }
736 
737 /*******************************************************************************
738  * Initialise per_world_context for Non-Secure world.
739  * This function enables the architecture extensions, which have same value
740  * across the cores for the non-secure world.
741  ******************************************************************************/
742 static void manage_extensions_nonsecure_per_world(void)
743 {
744 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
745 
746 	if (is_feat_sme_supported()) {
747 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
748 	}
749 
750 	if (is_feat_sve_supported()) {
751 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
752 	}
753 
754 	if (is_feat_amu_supported()) {
755 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
756 	}
757 
758 	if (is_feat_sys_reg_trace_supported()) {
759 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
760 	}
761 
762 	if (is_feat_mpam_supported()) {
763 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
764 	}
765 
766 	if (is_feat_fpmr_supported()) {
767 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
768 	}
769 }
770 
771 /*******************************************************************************
772  * Initialise per_world_context for Secure world.
773  * This function enables the architecture extensions, which have same value
774  * across the cores for the secure world.
775  ******************************************************************************/
776 static void manage_extensions_secure_per_world(void)
777 {
778 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
779 
780 	if (is_feat_sme_supported()) {
781 
782 		if (ENABLE_SME_FOR_SWD) {
783 		/*
784 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
785 		 * SME, SVE, and FPU/SIMD context properly managed.
786 		 */
787 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
788 		} else {
789 		/*
790 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
791 		 * world can safely use the associated registers.
792 		 */
793 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
794 		}
795 	}
796 	if (is_feat_sve_supported()) {
797 		if (ENABLE_SVE_FOR_SWD) {
798 		/*
799 		 * Enable SVE and FPU in secure context, SPM must ensure
800 		 * that the SVE and FPU register contexts are properly managed.
801 		 */
802 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
803 		} else {
804 		/*
805 		 * Disable SVE and FPU in secure context so non-secure world
806 		 * can safely use them.
807 		 */
808 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
809 		}
810 	}
811 
812 	/* NS can access this but Secure shouldn't */
813 	if (is_feat_sys_reg_trace_supported()) {
814 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
815 	}
816 }
817 
818 static void manage_extensions_realm_per_world(void)
819 {
820 #if ENABLE_RME
821 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
822 
823 	if (is_feat_sve_supported()) {
824 	/*
825 	 * Enable SVE and FPU in realm context when it is enabled for NS.
826 	 * Realm manager must ensure that the SVE and FPU register
827 	 * contexts are properly managed.
828 	 */
829 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
830 	}
831 
832 	/* NS can access this but Realm shouldn't */
833 	if (is_feat_sys_reg_trace_supported()) {
834 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
835 	}
836 
837 	/*
838 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
839 	 * of SME instructions for Realm world. RMM will save/restore required
840 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
841 	 */
842 	if (is_feat_sme_supported()) {
843 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
844 	}
845 
846 	/*
847 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
848 	 * to the MPAM registers for Realm world. Instead, RMM will configure
849 	 * the access to be trapped by itself so it can inject undefined aborts
850 	 * back to the Realm.
851 	 */
852 	if (is_feat_mpam_supported()) {
853 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
854 	}
855 #endif /* ENABLE_RME */
856 }
857 
858 void cm_manage_extensions_per_world(void)
859 {
860 	manage_extensions_nonsecure_per_world();
861 	manage_extensions_secure_per_world();
862 	manage_extensions_realm_per_world();
863 }
864 #endif /* IMAGE_BL31 */
865 
866 /*******************************************************************************
867  * Enable architecture extensions on first entry to Non-secure world.
868  ******************************************************************************/
869 static void manage_extensions_nonsecure(cpu_context_t *ctx)
870 {
871 #if IMAGE_BL31
872 	/* NOTE: registers are not context switched */
873 	if (is_feat_amu_supported()) {
874 		amu_enable(ctx);
875 	}
876 
877 	if (is_feat_sme_supported()) {
878 		sme_enable(ctx);
879 	}
880 
881 	if (is_feat_fgt2_supported()) {
882 		fgt2_enable(ctx);
883 	}
884 
885 	if (is_feat_debugv8p9_supported()) {
886 		debugv8p9_extended_bp_wp_enable(ctx);
887 	}
888 
889 	/*
890 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
891 	 * they apply to. Despite this, it is useful to ignore these for
892 	 * simplicity in determining the feature's per world enablement status.
893 	 * This is only possible when context is written per-world. Relied on
894 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
895 	 */
896 	if (is_feat_spe_supported()) {
897 		spe_enable(ctx);
898 	}
899 
900 	if (!check_if_trbe_disable_affected_core()) {
901 		if (is_feat_trbe_supported()) {
902 			trbe_enable(ctx);
903 		}
904 	}
905 
906 	if (is_feat_brbe_supported()) {
907 		brbe_enable(ctx);
908 	}
909 #endif /* IMAGE_BL31 */
910 }
911 
912 #if INIT_UNUSED_NS_EL2
913 /*******************************************************************************
914  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
915  * world when EL2 is empty and unused.
916  ******************************************************************************/
917 static void manage_extensions_nonsecure_el2_unused(void)
918 {
919 #if IMAGE_BL31
920 	if (is_feat_spe_supported()) {
921 		spe_init_el2_unused();
922 	}
923 
924 	if (is_feat_amu_supported()) {
925 		amu_init_el2_unused();
926 	}
927 
928 	if (is_feat_mpam_supported()) {
929 		mpam_init_el2_unused();
930 	}
931 
932 	if (is_feat_trbe_supported()) {
933 		trbe_init_el2_unused();
934 	}
935 
936 	if (is_feat_sys_reg_trace_supported()) {
937 		sys_reg_trace_init_el2_unused();
938 	}
939 
940 	if (is_feat_trf_supported()) {
941 		trf_init_el2_unused();
942 	}
943 
944 	pmuv3_init_el2_unused();
945 
946 	if (is_feat_sve_supported()) {
947 		sve_init_el2_unused();
948 	}
949 
950 	if (is_feat_sme_supported()) {
951 		sme_init_el2_unused();
952 	}
953 
954 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
955 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
956 	}
957 
958 	if (is_feat_pauth_supported()) {
959 		pauth_enable_el2();
960 	}
961 #endif /* IMAGE_BL31 */
962 }
963 #endif /* INIT_UNUSED_NS_EL2 */
964 
965 /*******************************************************************************
966  * Enable architecture extensions on first entry to Secure world.
967  ******************************************************************************/
968 static void manage_extensions_secure(cpu_context_t *ctx)
969 {
970 #if IMAGE_BL31
971 	if (is_feat_sme_supported()) {
972 		if (ENABLE_SME_FOR_SWD) {
973 		/*
974 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
975 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
976 		 */
977 			sme_init_el3();
978 			sme_enable(ctx);
979 		} else {
980 		/*
981 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
982 		 * world can safely use the associated registers.
983 		 */
984 			sme_disable(ctx);
985 		}
986 	}
987 
988 	/*
989 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
990 	 * sysreg access can. In case the EL1 controls leave them active on
991 	 * context switch, we want the owning security state to be NS so Secure
992 	 * can't be DOSed.
993 	 */
994 	if (is_feat_spe_supported()) {
995 		spe_disable(ctx);
996 	}
997 
998 	if (is_feat_trbe_supported()) {
999 		trbe_disable(ctx);
1000 	}
1001 #endif /* IMAGE_BL31 */
1002 }
1003 
1004 /*******************************************************************************
1005  * The following function initializes the cpu_context for the current CPU
1006  * for first use, and sets the initial entrypoint state as specified by the
1007  * entry_point_info structure.
1008  ******************************************************************************/
1009 void cm_init_my_context(const entry_point_info_t *ep)
1010 {
1011 	cpu_context_t *ctx;
1012 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1013 	cm_setup_context(ctx, ep);
1014 }
1015 
1016 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1017 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1018 {
1019 #if INIT_UNUSED_NS_EL2
1020 	u_register_t hcr_el2 = HCR_RESET_VAL;
1021 	u_register_t mdcr_el2;
1022 	u_register_t scr_el3;
1023 
1024 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1025 
1026 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1027 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1028 		hcr_el2 |= HCR_RW_BIT;
1029 	}
1030 
1031 	write_hcr_el2(hcr_el2);
1032 
1033 	/*
1034 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1035 	 * All fields have architecturally UNKNOWN reset values.
1036 	 */
1037 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1038 
1039 	/*
1040 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1041 	 * reset and are set to zero except for field(s) listed below.
1042 	 *
1043 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1044 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1045 	 *
1046 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1047 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1048 	 */
1049 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1050 
1051 	/*
1052 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1053 	 * UNKNOWN value.
1054 	 */
1055 	write_cntvoff_el2(0);
1056 
1057 	/*
1058 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1059 	 * respectively.
1060 	 */
1061 	write_vpidr_el2(read_midr_el1());
1062 	write_vmpidr_el2(read_mpidr_el1());
1063 
1064 	/*
1065 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1066 	 *
1067 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1068 	 * translation is disabled, cache maintenance operations depend on the
1069 	 * VMID.
1070 	 *
1071 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1072 	 * disabled.
1073 	 */
1074 	write_vttbr_el2(VTTBR_RESET_VAL &
1075 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1076 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1077 
1078 	/*
1079 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1080 	 * Some fields are architecturally UNKNOWN on reset.
1081 	 *
1082 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1083 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1084 	 *
1085 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1086 	 * accesses to the powerdown debug registers are not trapped to EL2.
1087 	 *
1088 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1089 	 * debug registers do not trap to EL2.
1090 	 *
1091 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1092 	 * EL2.
1093 	 */
1094 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1095 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1096 		   MDCR_EL2_TDE_BIT);
1097 
1098 	write_mdcr_el2(mdcr_el2);
1099 
1100 	/*
1101 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1102 	 *
1103 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1104 	 * EL1 accesses to System registers do not trap to EL2.
1105 	 */
1106 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1107 
1108 	/*
1109 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1110 	 * reset.
1111 	 *
1112 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1113 	 * and prevent timer interrupts.
1114 	 */
1115 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1116 
1117 	manage_extensions_nonsecure_el2_unused();
1118 #endif /* INIT_UNUSED_NS_EL2 */
1119 }
1120 
1121 /*******************************************************************************
1122  * Prepare the CPU system registers for first entry into realm, secure, or
1123  * normal world.
1124  *
1125  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1126  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1127  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1128  * For all entries, the EL1 registers are initialized from the cpu_context
1129  ******************************************************************************/
1130 void cm_prepare_el3_exit(size_t security_state)
1131 {
1132 	u_register_t sctlr_el2, scr_el3;
1133 	cpu_context_t *ctx = cm_get_context(security_state);
1134 
1135 	assert(ctx != NULL);
1136 
1137 	if (security_state == NON_SECURE) {
1138 		uint64_t el2_implemented = el_implemented(2);
1139 
1140 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1141 						 CTX_SCR_EL3);
1142 
1143 		if (el2_implemented != EL_IMPL_NONE) {
1144 
1145 			/*
1146 			 * If context is not being used for EL2, initialize
1147 			 * HCRX_EL2 with its init value here.
1148 			 */
1149 			if (is_feat_hcx_supported()) {
1150 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1151 			}
1152 
1153 			/*
1154 			 * Initialize Fine-grained trap registers introduced
1155 			 * by FEAT_FGT so all traps are initially disabled when
1156 			 * switching to EL2 or a lower EL, preventing undesired
1157 			 * behavior.
1158 			 */
1159 			if (is_feat_fgt_supported()) {
1160 				/*
1161 				 * Initialize HFG*_EL2 registers with a default
1162 				 * value so legacy systems unaware of FEAT_FGT
1163 				 * do not get trapped due to their lack of
1164 				 * initialization for this feature.
1165 				 */
1166 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1167 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1168 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1169 			}
1170 
1171 			/* Condition to ensure EL2 is being used. */
1172 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1173 				/* Initialize SCTLR_EL2 register with reset value. */
1174 				sctlr_el2 = SCTLR_EL2_RES1;
1175 
1176 				/*
1177 				 * If workaround of errata 764081 for Cortex-A75
1178 				 * is used then set SCTLR_EL2.IESB to enable
1179 				 * Implicit Error Synchronization Barrier.
1180 				 */
1181 				if (errata_a75_764081_applies()) {
1182 					sctlr_el2 |= SCTLR_IESB_BIT;
1183 				}
1184 
1185 				write_sctlr_el2(sctlr_el2);
1186 			} else {
1187 				/*
1188 				 * (scr_el3 & SCR_HCE_BIT==0)
1189 				 * EL2 implemented but unused.
1190 				 */
1191 				init_nonsecure_el2_unused(ctx);
1192 			}
1193 		}
1194 
1195 		if (is_feat_fgwte3_supported()) {
1196 			/*
1197 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1198 			 * by platforms and hence is locked a bit late.
1199 			 */
1200 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1201 		}
1202 	}
1203 #if (!CTX_INCLUDE_EL2_REGS)
1204 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1205 	cm_el1_sysregs_context_restore(security_state);
1206 #endif
1207 	cm_set_next_eret_context(security_state);
1208 }
1209 
1210 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1211 
1212 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1213 {
1214 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1215 	if (is_feat_amu_supported()) {
1216 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1217 	}
1218 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1219 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1220 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1221 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1222 }
1223 
1224 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1225 {
1226 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1227 	if (is_feat_amu_supported()) {
1228 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1229 	}
1230 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1231 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1232 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1233 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1234 }
1235 
1236 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1237 {
1238 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1239 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1240 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1241 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1242 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1243 }
1244 
1245 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1246 {
1247 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1248 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1249 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1250 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1251 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1252 }
1253 
1254 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1255 {
1256 	u_register_t mpam_idr = read_mpamidr_el1();
1257 
1258 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1259 
1260 	/*
1261 	 * The context registers that we intend to save would be part of the
1262 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1263 	 */
1264 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1270 	 * MPAMIDR_HAS_HCR_BIT == 1.
1271 	 */
1272 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1273 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1274 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1275 
1276 	/*
1277 	 * The number of MPAMVPM registers is implementation defined, their
1278 	 * number is stored in the MPAMIDR_EL1 register.
1279 	 */
1280 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1281 	case 7:
1282 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1283 		__fallthrough;
1284 	case 6:
1285 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1286 		__fallthrough;
1287 	case 5:
1288 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1289 		__fallthrough;
1290 	case 4:
1291 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1292 		__fallthrough;
1293 	case 3:
1294 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1295 		__fallthrough;
1296 	case 2:
1297 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1298 		__fallthrough;
1299 	case 1:
1300 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1301 		break;
1302 	}
1303 }
1304 
1305 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1306 {
1307 	u_register_t mpam_idr = read_mpamidr_el1();
1308 
1309 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1310 
1311 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1312 		return;
1313 	}
1314 
1315 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1316 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1317 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1318 
1319 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1320 	case 7:
1321 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1322 		__fallthrough;
1323 	case 6:
1324 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1325 		__fallthrough;
1326 	case 5:
1327 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1328 		__fallthrough;
1329 	case 4:
1330 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1331 		__fallthrough;
1332 	case 3:
1333 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1334 		__fallthrough;
1335 	case 2:
1336 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1337 		__fallthrough;
1338 	case 1:
1339 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1340 		break;
1341 	}
1342 }
1343 
1344 /* ---------------------------------------------------------------------------
1345  * The following registers are not added:
1346  * ICH_AP0R<n>_EL2
1347  * ICH_AP1R<n>_EL2
1348  * ICH_LR<n>_EL2
1349  *
1350  * NOTE: For a system with S-EL2 present but not enabled, accessing
1351  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1352  * SCR_EL3.NS = 1 before accessing this register.
1353  * ---------------------------------------------------------------------------
1354  */
1355 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1356 {
1357 	u_register_t scr_el3 = read_scr_el3();
1358 
1359 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1360 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1361 #else
1362 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1363 	isb();
1364 
1365 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1366 
1367 	write_scr_el3(scr_el3);
1368 	isb();
1369 #endif
1370 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1371 
1372 	if (errata_ich_vmcr_el2_applies()) {
1373 		if (security_state == SECURE) {
1374 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1375 		} else {
1376 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1377 		}
1378 		isb();
1379 	}
1380 
1381 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1382 
1383 	if (errata_ich_vmcr_el2_applies()) {
1384 		write_scr_el3(scr_el3);
1385 		isb();
1386 	}
1387 }
1388 
1389 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1390 {
1391 	u_register_t scr_el3 = read_scr_el3();
1392 
1393 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1394 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1395 #else
1396 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1397 	isb();
1398 
1399 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1400 
1401 	write_scr_el3(scr_el3);
1402 	isb();
1403 #endif
1404 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1405 
1406 	if (errata_ich_vmcr_el2_applies()) {
1407 		if (security_state == SECURE) {
1408 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1409 		} else {
1410 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1411 		}
1412 		isb();
1413 	}
1414 
1415 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1416 
1417 	if (errata_ich_vmcr_el2_applies()) {
1418 		write_scr_el3(scr_el3);
1419 		isb();
1420 	}
1421 }
1422 
1423 /* -----------------------------------------------------
1424  * The following registers are not added:
1425  * AMEVCNTVOFF0<n>_EL2
1426  * AMEVCNTVOFF1<n>_EL2
1427  * -----------------------------------------------------
1428  */
1429 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1430 {
1431 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1432 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1433 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1434 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1435 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1436 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1437 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1438 	if (CTX_INCLUDE_AARCH32_REGS) {
1439 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1440 	}
1441 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1442 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1443 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1444 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1445 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1446 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1447 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1448 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1449 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1450 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1451 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1452 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1453 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1454 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1455 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1456 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1457 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1458 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1459 
1460 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1461 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1462 }
1463 
1464 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1465 {
1466 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1467 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1468 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1469 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1470 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1471 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1472 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1473 	if (CTX_INCLUDE_AARCH32_REGS) {
1474 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1475 	}
1476 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1477 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1478 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1479 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1480 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1481 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1482 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1483 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1484 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1485 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1486 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1487 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1488 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1489 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1490 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1491 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1492 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1493 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1494 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1495 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1496 }
1497 
1498 /*******************************************************************************
1499  * Save EL2 sysreg context
1500  ******************************************************************************/
1501 void cm_el2_sysregs_context_save(uint32_t security_state)
1502 {
1503 	cpu_context_t *ctx;
1504 	el2_sysregs_t *el2_sysregs_ctx;
1505 
1506 	ctx = cm_get_context(security_state);
1507 	assert(ctx != NULL);
1508 
1509 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1510 
1511 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1512 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1513 
1514 	if (is_feat_mte2_supported()) {
1515 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1516 	}
1517 
1518 	if (is_feat_mpam_supported()) {
1519 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1520 	}
1521 
1522 	if (is_feat_fgt_supported()) {
1523 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1524 	}
1525 
1526 	if (is_feat_fgt2_supported()) {
1527 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1528 	}
1529 
1530 	if (is_feat_ecv_v2_supported()) {
1531 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1532 	}
1533 
1534 	if (is_feat_vhe_supported()) {
1535 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1536 					read_contextidr_el2());
1537 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1538 	}
1539 
1540 	if (is_feat_ras_supported()) {
1541 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1542 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1543 	}
1544 
1545 	if (is_feat_nv2_supported()) {
1546 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1547 	}
1548 
1549 	if (is_feat_trf_supported()) {
1550 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1551 	}
1552 
1553 	if (is_feat_csv2_2_supported()) {
1554 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1555 					read_scxtnum_el2());
1556 	}
1557 
1558 	if (is_feat_hcx_supported()) {
1559 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1560 	}
1561 
1562 	if (is_feat_tcr2_supported()) {
1563 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1564 	}
1565 
1566 	if (is_feat_sxpie_supported()) {
1567 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1568 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1569 	}
1570 
1571 	if (is_feat_sxpoe_supported()) {
1572 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1573 	}
1574 
1575 	if (is_feat_brbe_supported()) {
1576 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1577 	}
1578 
1579 	if (is_feat_s2pie_supported()) {
1580 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1581 	}
1582 
1583 	if (is_feat_gcs_supported()) {
1584 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1585 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1586 	}
1587 
1588 	if (is_feat_sctlr2_supported()) {
1589 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1590 	}
1591 }
1592 
1593 /*******************************************************************************
1594  * Restore EL2 sysreg context
1595  ******************************************************************************/
1596 void cm_el2_sysregs_context_restore(uint32_t security_state)
1597 {
1598 	cpu_context_t *ctx;
1599 	el2_sysregs_t *el2_sysregs_ctx;
1600 
1601 	ctx = cm_get_context(security_state);
1602 	assert(ctx != NULL);
1603 
1604 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1605 
1606 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1607 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1608 
1609 	if (is_feat_mte2_supported()) {
1610 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1611 	}
1612 
1613 	if (is_feat_mpam_supported()) {
1614 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1615 	}
1616 
1617 	if (is_feat_fgt_supported()) {
1618 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1619 	}
1620 
1621 	if (is_feat_fgt2_supported()) {
1622 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1623 	}
1624 
1625 	if (is_feat_ecv_v2_supported()) {
1626 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1627 	}
1628 
1629 	if (is_feat_vhe_supported()) {
1630 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1631 					contextidr_el2));
1632 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1633 	}
1634 
1635 	if (is_feat_ras_supported()) {
1636 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1637 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1638 	}
1639 
1640 	if (is_feat_nv2_supported()) {
1641 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1642 	}
1643 
1644 	if (is_feat_trf_supported()) {
1645 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1646 	}
1647 
1648 	if (is_feat_csv2_2_supported()) {
1649 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1650 					scxtnum_el2));
1651 	}
1652 
1653 	if (is_feat_hcx_supported()) {
1654 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1655 	}
1656 
1657 	if (is_feat_tcr2_supported()) {
1658 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1659 	}
1660 
1661 	if (is_feat_sxpie_supported()) {
1662 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1663 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1664 	}
1665 
1666 	if (is_feat_sxpoe_supported()) {
1667 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1668 	}
1669 
1670 	if (is_feat_s2pie_supported()) {
1671 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1672 	}
1673 
1674 	if (is_feat_gcs_supported()) {
1675 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1676 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1677 	}
1678 
1679 	if (is_feat_sctlr2_supported()) {
1680 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1681 	}
1682 
1683 	if (is_feat_brbe_supported()) {
1684 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1685 	}
1686 }
1687 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1688 
1689 /*******************************************************************************
1690  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1691  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1692  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1693  * cm_prepare_el3_exit function.
1694  ******************************************************************************/
1695 void cm_prepare_el3_exit_ns(void)
1696 {
1697 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1698 #if ENABLE_ASSERTIONS
1699 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1700 	assert(ctx != NULL);
1701 
1702 	/* Assert that EL2 is used. */
1703 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1704 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1705 			(el_implemented(2U) != EL_IMPL_NONE));
1706 #endif /* ENABLE_ASSERTIONS */
1707 
1708 	/* Restore EL2 sysreg contexts */
1709 	cm_el2_sysregs_context_restore(NON_SECURE);
1710 	cm_set_next_eret_context(NON_SECURE);
1711 #else
1712 	cm_prepare_el3_exit(NON_SECURE);
1713 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1714 }
1715 
1716 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1717 /*******************************************************************************
1718  * The next set of six functions are used by runtime services to save and restore
1719  * EL1 context on the 'cpu_context' structure for the specified security state.
1720  ******************************************************************************/
1721 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1722 {
1723 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1724 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1725 
1726 #if (!ERRATA_SPECULATIVE_AT)
1727 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1728 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1729 #endif /* (!ERRATA_SPECULATIVE_AT) */
1730 
1731 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1732 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1733 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1734 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1735 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1736 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1737 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1738 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1739 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1740 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1741 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1742 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1743 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1744 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1745 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1746 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1747 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1748 
1749 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1750 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1751 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1752 
1753 	if (CTX_INCLUDE_AARCH32_REGS) {
1754 		/* Save Aarch32 registers */
1755 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1756 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1757 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1758 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1759 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1760 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1761 	}
1762 
1763 	if (NS_TIMER_SWITCH) {
1764 		/* Save NS Timer registers */
1765 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1766 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1767 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1768 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1769 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1770 	}
1771 
1772 	if (is_feat_mte2_supported()) {
1773 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1774 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1775 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1776 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1777 	}
1778 
1779 	if (is_feat_ras_supported()) {
1780 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1781 	}
1782 
1783 	if (is_feat_s1pie_supported()) {
1784 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1785 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1786 	}
1787 
1788 	if (is_feat_s1poe_supported()) {
1789 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1790 	}
1791 
1792 	if (is_feat_s2poe_supported()) {
1793 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1794 	}
1795 
1796 	if (is_feat_tcr2_supported()) {
1797 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1798 	}
1799 
1800 	if (is_feat_trf_supported()) {
1801 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1802 	}
1803 
1804 	if (is_feat_csv2_2_supported()) {
1805 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1806 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1807 	}
1808 
1809 	if (is_feat_gcs_supported()) {
1810 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1811 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1812 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1813 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1814 	}
1815 
1816 	if (is_feat_the_supported()) {
1817 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1818 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1819 	}
1820 
1821 	if (is_feat_sctlr2_supported()) {
1822 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1823 	}
1824 
1825 	if (is_feat_ls64_accdata_supported()) {
1826 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1827 	}
1828 }
1829 
1830 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1831 {
1832 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1833 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1834 
1835 #if (!ERRATA_SPECULATIVE_AT)
1836 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1837 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1838 #endif /* (!ERRATA_SPECULATIVE_AT) */
1839 
1840 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1841 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1842 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1843 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1844 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1845 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1846 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1847 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1848 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1849 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1850 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1851 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1852 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1853 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1854 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1855 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1856 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1857 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1858 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1859 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1860 
1861 	if (CTX_INCLUDE_AARCH32_REGS) {
1862 		/* Restore Aarch32 registers */
1863 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1864 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1865 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1866 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1867 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1868 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1869 	}
1870 
1871 	if (NS_TIMER_SWITCH) {
1872 		/* Restore NS Timer registers */
1873 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1874 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1875 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1876 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1877 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1878 	}
1879 
1880 	if (is_feat_mte2_supported()) {
1881 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1882 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1883 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1884 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1885 	}
1886 
1887 	if (is_feat_ras_supported()) {
1888 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1889 	}
1890 
1891 	if (is_feat_s1pie_supported()) {
1892 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1893 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1894 	}
1895 
1896 	if (is_feat_s1poe_supported()) {
1897 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1898 	}
1899 
1900 	if (is_feat_s2poe_supported()) {
1901 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1902 	}
1903 
1904 	if (is_feat_tcr2_supported()) {
1905 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1906 	}
1907 
1908 	if (is_feat_trf_supported()) {
1909 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1910 	}
1911 
1912 	if (is_feat_csv2_2_supported()) {
1913 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1914 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1915 	}
1916 
1917 	if (is_feat_gcs_supported()) {
1918 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1919 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1920 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1921 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1922 	}
1923 
1924 	if (is_feat_the_supported()) {
1925 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1926 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1927 	}
1928 
1929 	if (is_feat_sctlr2_supported()) {
1930 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1931 	}
1932 
1933 	if (is_feat_ls64_accdata_supported()) {
1934 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1935 	}
1936 }
1937 
1938 /*******************************************************************************
1939  * The next couple of functions are used by runtime services to save and restore
1940  * EL1 context on the 'cpu_context' structure for the specified security state.
1941  ******************************************************************************/
1942 void cm_el1_sysregs_context_save(uint32_t security_state)
1943 {
1944 	cpu_context_t *ctx;
1945 
1946 	ctx = cm_get_context(security_state);
1947 	assert(ctx != NULL);
1948 
1949 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1950 
1951 #if IMAGE_BL31
1952 	if (security_state == SECURE) {
1953 		PUBLISH_EVENT(cm_exited_secure_world);
1954 	} else {
1955 		PUBLISH_EVENT(cm_exited_normal_world);
1956 	}
1957 #endif
1958 }
1959 
1960 void cm_el1_sysregs_context_restore(uint32_t security_state)
1961 {
1962 	cpu_context_t *ctx;
1963 
1964 	ctx = cm_get_context(security_state);
1965 	assert(ctx != NULL);
1966 
1967 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1968 
1969 #if IMAGE_BL31
1970 	if (security_state == SECURE) {
1971 		PUBLISH_EVENT(cm_entering_secure_world);
1972 	} else {
1973 		PUBLISH_EVENT(cm_entering_normal_world);
1974 	}
1975 #endif
1976 }
1977 
1978 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1979 
1980 /*******************************************************************************
1981  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1982  * given security state with the given entrypoint
1983  ******************************************************************************/
1984 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1985 {
1986 	cpu_context_t *ctx;
1987 	el3_state_t *state;
1988 
1989 	ctx = cm_get_context(security_state);
1990 	assert(ctx != NULL);
1991 
1992 	/* Populate EL3 state so that ERET jumps to the correct entry */
1993 	state = get_el3state_ctx(ctx);
1994 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1995 }
1996 
1997 /*******************************************************************************
1998  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1999  * pertaining to the given security state
2000  ******************************************************************************/
2001 void cm_set_elr_spsr_el3(uint32_t security_state,
2002 			uintptr_t entrypoint, uint32_t spsr)
2003 {
2004 	cpu_context_t *ctx;
2005 	el3_state_t *state;
2006 
2007 	ctx = cm_get_context(security_state);
2008 	assert(ctx != NULL);
2009 
2010 	/* Populate EL3 state so that ERET jumps to the correct entry */
2011 	state = get_el3state_ctx(ctx);
2012 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2013 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2014 }
2015 
2016 /*******************************************************************************
2017  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2018  * pertaining to the given security state using the value and bit position
2019  * specified in the parameters. It preserves all other bits.
2020  ******************************************************************************/
2021 void cm_write_scr_el3_bit(uint32_t security_state,
2022 			  uint32_t bit_pos,
2023 			  uint32_t value)
2024 {
2025 	cpu_context_t *ctx;
2026 	el3_state_t *state;
2027 	u_register_t scr_el3;
2028 
2029 	ctx = cm_get_context(security_state);
2030 	assert(ctx != NULL);
2031 
2032 	/* Ensure that the bit position is a valid one */
2033 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2034 
2035 	/* Ensure that the 'value' is only a bit wide */
2036 	assert(value <= 1U);
2037 
2038 	/*
2039 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2040 	 * and set it to its new value.
2041 	 */
2042 	state = get_el3state_ctx(ctx);
2043 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2044 	scr_el3 &= ~(1UL << bit_pos);
2045 	scr_el3 |= (u_register_t)value << bit_pos;
2046 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2047 }
2048 
2049 /*******************************************************************************
2050  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2051  * given security state.
2052  ******************************************************************************/
2053 u_register_t cm_get_scr_el3(uint32_t security_state)
2054 {
2055 	const cpu_context_t *ctx;
2056 	const el3_state_t *state;
2057 
2058 	ctx = cm_get_context(security_state);
2059 	assert(ctx != NULL);
2060 
2061 	/* Populate EL3 state so that ERET jumps to the correct entry */
2062 	state = get_el3state_ctx(ctx);
2063 	return read_ctx_reg(state, CTX_SCR_EL3);
2064 }
2065 
2066 /*******************************************************************************
2067  * This function is used to program the context that's used for exception
2068  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2069  * the required security state
2070  ******************************************************************************/
2071 void cm_set_next_eret_context(uint32_t security_state)
2072 {
2073 	cpu_context_t *ctx;
2074 
2075 	ctx = cm_get_context(security_state);
2076 	assert(ctx != NULL);
2077 
2078 	cm_set_next_context(ctx);
2079 }
2080