xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 27cd1a4762c50eb461f74c7c43eee17b7bdde024)
1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	u_register_t scr_el3;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	u_register_t sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if !HANDLE_EA_EL3_FIRST
112 	/*
113 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
114 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
115 	 *  Aborts are taken to EL3.
116 	 */
117 	scr_el3 &= ~SCR_EA_BIT;
118 #endif
119 
120 #if FAULT_INJECTION_SUPPORT
121 	/* Enable fault injection from lower ELs */
122 	scr_el3 |= SCR_FIEN_BIT;
123 #endif
124 
125 #if !CTX_INCLUDE_PAUTH_REGS
126 	/*
127 	 * If the pointer authentication registers aren't saved during world
128 	 * switches the value of the registers can be leaked from the Secure to
129 	 * the Non-secure world. To prevent this, rather than enabling pointer
130 	 * authentication everywhere, we only enable it in the Non-secure world.
131 	 *
132 	 * If the Secure world wants to use pointer authentication,
133 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
134 	 */
135 	if (security_state == NON_SECURE)
136 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
137 #endif /* !CTX_INCLUDE_PAUTH_REGS */
138 
139 	/*
140 	 * Enable MTE support. Support is enabled unilaterally for the normal
141 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
142 	 * set.
143 	 */
144 #if CTX_INCLUDE_MTE_REGS
145 	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
146 	scr_el3 |= SCR_ATA_BIT;
147 #else
148 	unsigned int mte = get_armv8_5_mte_support();
149 	if (mte == MTE_IMPLEMENTED_EL0) {
150 		/*
151 		 * Can enable MTE across both worlds as no MTE registers are
152 		 * used
153 		 */
154 		scr_el3 |= SCR_ATA_BIT;
155 	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
156 		/*
157 		 * Can only enable MTE in Non-Secure world without register
158 		 * saving
159 		 */
160 		scr_el3 |= SCR_ATA_BIT;
161 	}
162 #endif
163 
164 #ifdef IMAGE_BL31
165 	/*
166 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
167 	 *  indicated by the interrupt routing model for BL31.
168 	 */
169 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
170 #endif
171 
172 	/*
173 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
174 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
175 	 * next mode is Hyp.
176 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
177 	 * same conditions as HVC instructions and when the processor supports
178 	 * ARMv8.6-FGT.
179 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
180 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
181 	 * and when the processor supports ECV.
182 	 */
183 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
184 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
185 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
186 		scr_el3 |= SCR_HCE_BIT;
187 
188 		if (is_armv8_6_fgt_present()) {
189 			scr_el3 |= SCR_FGTEN_BIT;
190 		}
191 
192 		if (get_armv8_6_ecv_support()
193 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
194 			scr_el3 |= SCR_ECVEN_BIT;
195 		}
196 	}
197 
198 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
199 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
200 		if (GET_RW(ep->spsr) != MODE_RW_64) {
201 			ERROR("S-EL2 can not be used in AArch32.");
202 			panic();
203 		}
204 
205 		scr_el3 |= SCR_EEL2_BIT;
206 	}
207 
208 	/*
209 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
210 	 * execution state setting all fields rather than relying of the hw.
211 	 * Some fields have architecturally UNKNOWN reset values and these are
212 	 * set to zero.
213 	 *
214 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
215 	 *
216 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
217 	 *  required by PSCI specification)
218 	 */
219 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
220 	if (GET_RW(ep->spsr) == MODE_RW_64)
221 		sctlr_elx |= SCTLR_EL1_RES1;
222 	else {
223 		/*
224 		 * If the target execution state is AArch32 then the following
225 		 * fields need to be set.
226 		 *
227 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
228 		 *  instructions are not trapped to EL1.
229 		 *
230 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
231 		 *  instructions are not trapped to EL1.
232 		 *
233 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
234 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
235 		 */
236 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
237 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
238 	}
239 
240 #if ERRATA_A75_764081
241 	/*
242 	 * If workaround of errata 764081 for Cortex-A75 is used then set
243 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
244 	 */
245 	sctlr_elx |= SCTLR_IESB_BIT;
246 #endif
247 
248 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
249 	if (is_armv8_6_twed_present()) {
250 		uint32_t delay = plat_arm_set_twedel_scr_el3();
251 
252 		if (delay != TWED_DISABLED) {
253 			/* Make sure delay value fits */
254 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
255 
256 			/* Set delay in SCR_EL3 */
257 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
258 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
259 					<< SCR_TWEDEL_SHIFT);
260 
261 			/* Enable WFE delay */
262 			scr_el3 |= SCR_TWEDEn_BIT;
263 		}
264 	}
265 
266 	/*
267 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
268 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
269 	 * are not part of the stored cpu_context.
270 	 */
271 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
272 
273 	/*
274 	 * Base the context ACTLR_EL1 on the current value, as it is
275 	 * implementation defined. The context restore process will write
276 	 * the value from the context to the actual register and can cause
277 	 * problems for processor cores that don't expect certain bits to
278 	 * be zero.
279 	 */
280 	actlr_elx = read_actlr_el1();
281 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
282 
283 	/*
284 	 * Populate EL3 state so that we've the right context
285 	 * before doing ERET
286 	 */
287 	state = get_el3state_ctx(ctx);
288 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
289 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
290 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
291 
292 	/*
293 	 * Store the X0-X7 value from the entrypoint into the context
294 	 * Use memcpy as we are in control of the layout of the structures
295 	 */
296 	gp_regs = get_gpregs_ctx(ctx);
297 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
298 }
299 
300 /*******************************************************************************
301  * Enable architecture extensions on first entry to Non-secure world.
302  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
303  * it is zero.
304  ******************************************************************************/
305 static void enable_extensions_nonsecure(bool el2_unused)
306 {
307 #if IMAGE_BL31
308 #if ENABLE_SPE_FOR_LOWER_ELS
309 	spe_enable(el2_unused);
310 #endif
311 
312 #if ENABLE_AMU
313 	amu_enable(el2_unused);
314 #endif
315 
316 #if ENABLE_SVE_FOR_NS
317 	sve_enable(el2_unused);
318 #endif
319 
320 #if ENABLE_MPAM_FOR_LOWER_ELS
321 	mpam_enable(el2_unused);
322 #endif
323 #endif
324 }
325 
326 /*******************************************************************************
327  * The following function initializes the cpu_context for a CPU specified by
328  * its `cpu_idx` for first use, and sets the initial entrypoint state as
329  * specified by the entry_point_info structure.
330  ******************************************************************************/
331 void cm_init_context_by_index(unsigned int cpu_idx,
332 			      const entry_point_info_t *ep)
333 {
334 	cpu_context_t *ctx;
335 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
336 	cm_setup_context(ctx, ep);
337 }
338 
339 /*******************************************************************************
340  * The following function initializes the cpu_context for the current CPU
341  * for first use, and sets the initial entrypoint state as specified by the
342  * entry_point_info structure.
343  ******************************************************************************/
344 void cm_init_my_context(const entry_point_info_t *ep)
345 {
346 	cpu_context_t *ctx;
347 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
348 	cm_setup_context(ctx, ep);
349 }
350 
351 /*******************************************************************************
352  * Prepare the CPU system registers for first entry into secure or normal world
353  *
354  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
355  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
356  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
357  * For all entries, the EL1 registers are initialized from the cpu_context
358  ******************************************************************************/
359 void cm_prepare_el3_exit(uint32_t security_state)
360 {
361 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
362 	cpu_context_t *ctx = cm_get_context(security_state);
363 	bool el2_unused = false;
364 	uint64_t hcr_el2 = 0U;
365 
366 	assert(ctx != NULL);
367 
368 	if (security_state == NON_SECURE) {
369 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
370 						 CTX_SCR_EL3);
371 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
372 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
373 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
374 							   CTX_SCTLR_EL1);
375 			sctlr_elx &= SCTLR_EE_BIT;
376 			sctlr_elx |= SCTLR_EL2_RES1;
377 #if ERRATA_A75_764081
378 			/*
379 			 * If workaround of errata 764081 for Cortex-A75 is used
380 			 * then set SCTLR_EL2.IESB to enable Implicit Error
381 			 * Synchronization Barrier.
382 			 */
383 			sctlr_elx |= SCTLR_IESB_BIT;
384 #endif
385 			write_sctlr_el2(sctlr_elx);
386 		} else if (el_implemented(2) != EL_IMPL_NONE) {
387 			el2_unused = true;
388 
389 			/*
390 			 * EL2 present but unused, need to disable safely.
391 			 * SCTLR_EL2 can be ignored in this case.
392 			 *
393 			 * Set EL2 register width appropriately: Set HCR_EL2
394 			 * field to match SCR_EL3.RW.
395 			 */
396 			if ((scr_el3 & SCR_RW_BIT) != 0U)
397 				hcr_el2 |= HCR_RW_BIT;
398 
399 			/*
400 			 * For Armv8.3 pointer authentication feature, disable
401 			 * traps to EL2 when accessing key registers or using
402 			 * pointer authentication instructions from lower ELs.
403 			 */
404 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
405 
406 			write_hcr_el2(hcr_el2);
407 
408 			/*
409 			 * Initialise CPTR_EL2 setting all fields rather than
410 			 * relying on the hw. All fields have architecturally
411 			 * UNKNOWN reset values.
412 			 *
413 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
414 			 *  accesses to the CPACR_EL1 or CPACR from both
415 			 *  Execution states do not trap to EL2.
416 			 *
417 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
418 			 *  register accesses to the trace registers from both
419 			 *  Execution states do not trap to EL2.
420 			 *
421 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
422 			 *  to SIMD and floating-point functionality from both
423 			 *  Execution states do not trap to EL2.
424 			 */
425 			write_cptr_el2(CPTR_EL2_RESET_VAL &
426 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
427 					| CPTR_EL2_TFP_BIT));
428 
429 			/*
430 			 * Initialise CNTHCTL_EL2. All fields are
431 			 * architecturally UNKNOWN on reset and are set to zero
432 			 * except for field(s) listed below.
433 			 *
434 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
435 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
436 			 *  physical timer registers.
437 			 *
438 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
439 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
440 			 *  physical counter registers.
441 			 */
442 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
443 						EL1PCEN_BIT | EL1PCTEN_BIT);
444 
445 			/*
446 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
447 			 * architecturally UNKNOWN value.
448 			 */
449 			write_cntvoff_el2(0);
450 
451 			/*
452 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
453 			 * MPIDR_EL1 respectively.
454 			 */
455 			write_vpidr_el2(read_midr_el1());
456 			write_vmpidr_el2(read_mpidr_el1());
457 
458 			/*
459 			 * Initialise VTTBR_EL2. All fields are architecturally
460 			 * UNKNOWN on reset.
461 			 *
462 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
463 			 *  2 address translation is disabled, cache maintenance
464 			 *  operations depend on the VMID.
465 			 *
466 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
467 			 *  translation is disabled.
468 			 */
469 			write_vttbr_el2(VTTBR_RESET_VAL &
470 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
471 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
472 
473 			/*
474 			 * Initialise MDCR_EL2, setting all fields rather than
475 			 * relying on hw. Some fields are architecturally
476 			 * UNKNOWN on reset.
477 			 *
478 			 * MDCR_EL2.HLP: Set to one so that event counter
479 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
480 			 *  occurs on the increment that changes
481 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
482 			 *  implemented. This bit is RES0 in versions of the
483 			 *  architecture earlier than ARMv8.5, setting it to 1
484 			 *  doesn't have any effect on them.
485 			 *
486 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
487 			 *  Filter Control register TRFCR_EL1 at EL1 is not
488 			 *  trapped to EL2. This bit is RES0 in versions of
489 			 *  the architecture earlier than ARMv8.4.
490 			 *
491 			 * MDCR_EL2.HPMD: Set to one so that event counting is
492 			 *  prohibited at EL2. This bit is RES0 in versions of
493 			 *  the architecture earlier than ARMv8.1, setting it
494 			 *  to 1 doesn't have any effect on them.
495 			 *
496 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
497 			 *  Statistical Profiling control registers from EL1
498 			 *  do not trap to EL2. This bit is RES0 when SPE is
499 			 *  not implemented.
500 			 *
501 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
502 			 *  EL1 System register accesses to the Debug ROM
503 			 *  registers are not trapped to EL2.
504 			 *
505 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
506 			 *  System register accesses to the powerdown debug
507 			 *  registers are not trapped to EL2.
508 			 *
509 			 * MDCR_EL2.TDA: Set to zero so that System register
510 			 *  accesses to the debug registers do not trap to EL2.
511 			 *
512 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
513 			 *  are not routed to EL2.
514 			 *
515 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
516 			 *  Monitors.
517 			 *
518 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
519 			 *  EL1 accesses to all Performance Monitors registers
520 			 *  are not trapped to EL2.
521 			 *
522 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
523 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
524 			 *  trapped to EL2.
525 			 *
526 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
527 			 *  architecturally-defined reset value.
528 			 */
529 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
530 				     MDCR_EL2_HPMD) |
531 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
532 				   >> PMCR_EL0_N_SHIFT)) &
533 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
534 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
535 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
536 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
537 				     MDCR_EL2_TPMCR_BIT);
538 
539 			write_mdcr_el2(mdcr_el2);
540 
541 			/*
542 			 * Initialise HSTR_EL2. All fields are architecturally
543 			 * UNKNOWN on reset.
544 			 *
545 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
546 			 *  Non-secure EL0 or EL1 accesses to System registers
547 			 *  do not trap to EL2.
548 			 */
549 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
550 			/*
551 			 * Initialise CNTHP_CTL_EL2. All fields are
552 			 * architecturally UNKNOWN on reset.
553 			 *
554 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
555 			 *  physical timer and prevent timer interrupts.
556 			 */
557 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
558 						~(CNTHP_CTL_ENABLE_BIT));
559 		}
560 		enable_extensions_nonsecure(el2_unused);
561 	}
562 
563 	cm_el1_sysregs_context_restore(security_state);
564 	cm_set_next_eret_context(security_state);
565 }
566 
567 #if CTX_INCLUDE_EL2_REGS
568 /*******************************************************************************
569  * Save EL2 sysreg context
570  ******************************************************************************/
571 void cm_el2_sysregs_context_save(uint32_t security_state)
572 {
573 	u_register_t scr_el3 = read_scr();
574 
575 	/*
576 	 * Always save the non-secure EL2 context, only save the
577 	 * S-EL2 context if S-EL2 is enabled.
578 	 */
579 	if ((security_state == NON_SECURE) ||
580 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
581 		cpu_context_t *ctx;
582 
583 		ctx = cm_get_context(security_state);
584 		assert(ctx != NULL);
585 
586 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
587 	}
588 }
589 
590 /*******************************************************************************
591  * Restore EL2 sysreg context
592  ******************************************************************************/
593 void cm_el2_sysregs_context_restore(uint32_t security_state)
594 {
595 	u_register_t scr_el3 = read_scr();
596 
597 	/*
598 	 * Always restore the non-secure EL2 context, only restore the
599 	 * S-EL2 context if S-EL2 is enabled.
600 	 */
601 	if ((security_state == NON_SECURE) ||
602 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
603 		cpu_context_t *ctx;
604 
605 		ctx = cm_get_context(security_state);
606 		assert(ctx != NULL);
607 
608 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
609 	}
610 }
611 #endif /* CTX_INCLUDE_EL2_REGS */
612 
613 /*******************************************************************************
614  * The next four functions are used by runtime services to save and restore
615  * EL1 context on the 'cpu_context' structure for the specified security
616  * state.
617  ******************************************************************************/
618 void cm_el1_sysregs_context_save(uint32_t security_state)
619 {
620 	cpu_context_t *ctx;
621 
622 	ctx = cm_get_context(security_state);
623 	assert(ctx != NULL);
624 
625 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
626 
627 #if IMAGE_BL31
628 	if (security_state == SECURE)
629 		PUBLISH_EVENT(cm_exited_secure_world);
630 	else
631 		PUBLISH_EVENT(cm_exited_normal_world);
632 #endif
633 }
634 
635 void cm_el1_sysregs_context_restore(uint32_t security_state)
636 {
637 	cpu_context_t *ctx;
638 
639 	ctx = cm_get_context(security_state);
640 	assert(ctx != NULL);
641 
642 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
643 
644 #if IMAGE_BL31
645 	if (security_state == SECURE)
646 		PUBLISH_EVENT(cm_entering_secure_world);
647 	else
648 		PUBLISH_EVENT(cm_entering_normal_world);
649 #endif
650 }
651 
652 /*******************************************************************************
653  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
654  * given security state with the given entrypoint
655  ******************************************************************************/
656 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
657 {
658 	cpu_context_t *ctx;
659 	el3_state_t *state;
660 
661 	ctx = cm_get_context(security_state);
662 	assert(ctx != NULL);
663 
664 	/* Populate EL3 state so that ERET jumps to the correct entry */
665 	state = get_el3state_ctx(ctx);
666 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
667 }
668 
669 /*******************************************************************************
670  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
671  * pertaining to the given security state
672  ******************************************************************************/
673 void cm_set_elr_spsr_el3(uint32_t security_state,
674 			uintptr_t entrypoint, uint32_t spsr)
675 {
676 	cpu_context_t *ctx;
677 	el3_state_t *state;
678 
679 	ctx = cm_get_context(security_state);
680 	assert(ctx != NULL);
681 
682 	/* Populate EL3 state so that ERET jumps to the correct entry */
683 	state = get_el3state_ctx(ctx);
684 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
685 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
686 }
687 
688 /*******************************************************************************
689  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
690  * pertaining to the given security state using the value and bit position
691  * specified in the parameters. It preserves all other bits.
692  ******************************************************************************/
693 void cm_write_scr_el3_bit(uint32_t security_state,
694 			  uint32_t bit_pos,
695 			  uint32_t value)
696 {
697 	cpu_context_t *ctx;
698 	el3_state_t *state;
699 	u_register_t scr_el3;
700 
701 	ctx = cm_get_context(security_state);
702 	assert(ctx != NULL);
703 
704 	/* Ensure that the bit position is a valid one */
705 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
706 
707 	/* Ensure that the 'value' is only a bit wide */
708 	assert(value <= 1U);
709 
710 	/*
711 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
712 	 * and set it to its new value.
713 	 */
714 	state = get_el3state_ctx(ctx);
715 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
716 	scr_el3 &= ~(1U << bit_pos);
717 	scr_el3 |= (u_register_t)value << bit_pos;
718 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
719 }
720 
721 /*******************************************************************************
722  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
723  * given security state.
724  ******************************************************************************/
725 u_register_t cm_get_scr_el3(uint32_t security_state)
726 {
727 	cpu_context_t *ctx;
728 	el3_state_t *state;
729 
730 	ctx = cm_get_context(security_state);
731 	assert(ctx != NULL);
732 
733 	/* Populate EL3 state so that ERET jumps to the correct entry */
734 	state = get_el3state_ctx(ctx);
735 	return read_ctx_reg(state, CTX_SCR_EL3);
736 }
737 
738 /*******************************************************************************
739  * This function is used to program the context that's used for exception
740  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
741  * the required security state
742  ******************************************************************************/
743 void cm_set_next_eret_context(uint32_t security_state)
744 {
745 	cpu_context_t *ctx;
746 
747 	ctx = cm_get_context(security_state);
748 	assert(ctx != NULL);
749 
750 	cm_set_next_context(ctx);
751 }
752