xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 216e58a31288bd25802d280c81a0e8d01b3b11d1)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <interrupt_mgmt.h>
14 #include <platform.h>
15 #include <platform_def.h>
16 #include <smcc_helpers.h>
17 #include <string.h>
18 #include <utils.h>
19 
20 
21 /*******************************************************************************
22  * Context management library initialisation routine. This library is used by
23  * runtime services to share pointers to 'cpu_context' structures for the secure
24  * and non-secure states. Management of the structures and their associated
25  * memory is not done by the context management library e.g. the PSCI service
26  * manages the cpu context used for entry from and exit to the non-secure state.
27  * The Secure payload dispatcher service manages the context(s) corresponding to
28  * the secure state. It also uses this library to get access to the non-secure
29  * state cpu context pointers.
30  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
31  * which will used for programming an entry into a lower EL. The same context
32  * will used to save state upon exception entry from that EL.
33  ******************************************************************************/
34 void cm_init(void)
35 {
36 	/*
37 	 * The context management library has only global data to intialize, but
38 	 * that will be done when the BSS is zeroed out
39 	 */
40 }
41 
42 /*******************************************************************************
43  * The following function initializes the cpu_context 'ctx' for
44  * first use, and sets the initial entrypoint state as specified by the
45  * entry_point_info structure.
46  *
47  * The security state to initialize is determined by the SECURE attribute
48  * of the entry_point_info. The function returns a pointer to the initialized
49  * context and sets this as the next context to return to.
50  *
51  * The EE and ST attributes are used to configure the endianess and secure
52  * timer availability for the new execution context.
53  *
54  * To prepare the register state for entry call cm_prepare_el3_exit() and
55  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56  * cm_e1_sysreg_context_restore().
57  ******************************************************************************/
58 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59 {
60 	unsigned int security_state;
61 	uint32_t scr_el3;
62 	el3_state_t *state;
63 	gp_regs_t *gp_regs;
64 	unsigned long sctlr_elx;
65 
66 	assert(ctx);
67 
68 	security_state = GET_SECURITY_STATE(ep->h.attr);
69 
70 	/* Clear any residual register values from the context */
71 	zeromem(ctx, sizeof(*ctx));
72 
73 	/*
74 	 * SCR_EL3 was initialised during reset sequence in macro
75 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
76 	 * affect the next EL.
77 	 *
78 	 * The following fields are initially set to zero and then updated to
79 	 * the required value depending on the state of the SPSR_EL3 and the
80 	 * Security state and entrypoint attributes of the next EL.
81 	 */
82 	scr_el3 = read_scr();
83 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
84 			SCR_ST_BIT | SCR_HCE_BIT);
85 	/*
86 	 * SCR_NS: Set the security state of the next EL.
87 	 */
88 	if (security_state != SECURE)
89 		scr_el3 |= SCR_NS_BIT;
90 	/*
91 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
92 	 *  Exception level as specified by SPSR.
93 	 */
94 	if (GET_RW(ep->spsr) == MODE_RW_64)
95 		scr_el3 |= SCR_RW_BIT;
96 	/*
97 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
98 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
99 	 *  by the entrypoint attributes.
100 	 */
101 	if (EP_GET_ST(ep->h.attr))
102 		scr_el3 |= SCR_ST_BIT;
103 
104 #ifndef HANDLE_EA_EL3_FIRST
105 	/*
106 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
107 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
108 	 *  Aborts are taken to EL3.
109 	 */
110 	scr_el3 &= ~SCR_EA_BIT;
111 #endif
112 
113 #ifdef IMAGE_BL31
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
116 	 *  indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
119 #endif
120 
121 	/*
122 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
123 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
124 	 * next mode is Hyp.
125 	 */
126 	if ((GET_RW(ep->spsr) == MODE_RW_64
127 	     && GET_EL(ep->spsr) == MODE_EL2)
128 	    || (GET_RW(ep->spsr) != MODE_RW_64
129 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
130 		scr_el3 |= SCR_HCE_BIT;
131 	}
132 
133 	/*
134 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
135 	 * execution state setting all fields rather than relying of the hw.
136 	 * Some fields have architecturally UNKNOWN reset values and these are
137 	 * set to zero.
138 	 *
139 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
140 	 *
141 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
142 	 *  required by PSCI specification)
143 	 */
144 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
145 	if (GET_RW(ep->spsr) == MODE_RW_64)
146 		sctlr_elx |= SCTLR_EL1_RES1;
147 	else {
148 		/*
149 		 * If the target execution state is AArch32 then the following
150 		 * fields need to be set.
151 		 *
152 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
153 		 *  instructions are not trapped to EL1.
154 		 *
155 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
156 		 *  instructions are not trapped to EL1.
157 		 *
158 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
159 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
160 		 */
161 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
162 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
163 	}
164 
165 	/*
166 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
167 	 * and other EL2 resgisters are set up by cm_preapre_ns_entry() as they
168 	 * are not part of the stored cpu_context.
169 	 */
170 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
171 
172 	/* Populate EL3 state so that we've the right context before doing ERET */
173 	state = get_el3state_ctx(ctx);
174 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
176 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
177 
178 	/*
179 	 * Store the X0-X7 value from the entrypoint into the context
180 	 * Use memcpy as we are in control of the layout of the structures
181 	 */
182 	gp_regs = get_gpregs_ctx(ctx);
183 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
184 }
185 
186 /*******************************************************************************
187  * The following function initializes the cpu_context for a CPU specified by
188  * its `cpu_idx` for first use, and sets the initial entrypoint state as
189  * specified by the entry_point_info structure.
190  ******************************************************************************/
191 void cm_init_context_by_index(unsigned int cpu_idx,
192 			      const entry_point_info_t *ep)
193 {
194 	cpu_context_t *ctx;
195 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
196 	cm_init_context_common(ctx, ep);
197 }
198 
199 /*******************************************************************************
200  * The following function initializes the cpu_context for the current CPU
201  * for first use, and sets the initial entrypoint state as specified by the
202  * entry_point_info structure.
203  ******************************************************************************/
204 void cm_init_my_context(const entry_point_info_t *ep)
205 {
206 	cpu_context_t *ctx;
207 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
208 	cm_init_context_common(ctx, ep);
209 }
210 
211 /*******************************************************************************
212  * Prepare the CPU system registers for first entry into secure or normal world
213  *
214  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
215  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
216  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
217  * For all entries, the EL1 registers are initialized from the cpu_context
218  ******************************************************************************/
219 void cm_prepare_el3_exit(uint32_t security_state)
220 {
221 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
222 	cpu_context_t *ctx = cm_get_context(security_state);
223 
224 	assert(ctx);
225 
226 	if (security_state == NON_SECURE) {
227 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
228 		if (scr_el3 & SCR_HCE_BIT) {
229 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
230 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
231 						 CTX_SCTLR_EL1);
232 			sctlr_elx &= SCTLR_EE_BIT;
233 			sctlr_elx |= SCTLR_EL2_RES1;
234 			write_sctlr_el2(sctlr_elx);
235 		} else if (EL_IMPLEMENTED(2)) {
236 			/*
237 			 * EL2 present but unused, need to disable safely.
238 			 * SCTLR_EL2 can be ignored in this case.
239 			 *
240 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
241 			 * to zero so that Non-secure operations do not trap to
242 			 * EL2.
243 			 *
244 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
245 			 */
246 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
247 
248 			/*
249 			 * Initialise CPTR_EL2 setting all fields rather than
250 			 * relying on the hw. All fields have architecturally
251 			 * UNKNOWN reset values.
252 			 *
253 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
254 			 *  accesses to the CPACR_EL1 or CPACR from both
255 			 *  Execution states do not trap to EL2.
256 			 *
257 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
258 			 *  register accesses to the trace registers from both
259 			 *  Execution states do not trap to EL2.
260 			 *
261 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
262 			 *  to SIMD and floating-point functionality from both
263 			 *  Execution states do not trap to EL2.
264 			 */
265 			write_cptr_el2(CPTR_EL2_RESET_VAL &
266 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
267 					| CPTR_EL2_TFP_BIT));
268 
269 			/*
270 			 * Initiliase CNTHCTL_EL2. All fields are
271 			 * architecturally UNKNOWN on reset and are set to zero
272 			 * except for field(s) listed below.
273 			 *
274 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
275 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
276 			 *  physical timer registers.
277 			 *
278 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
279 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
280 			 *  physical counter registers.
281 			 */
282 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
283 						EL1PCEN_BIT | EL1PCTEN_BIT);
284 
285 			/*
286 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
287 			 * architecturally UNKNOWN value.
288 			 */
289 			write_cntvoff_el2(0);
290 
291 			/*
292 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
293 			 * MPIDR_EL1 respectively.
294 			 */
295 			write_vpidr_el2(read_midr_el1());
296 			write_vmpidr_el2(read_mpidr_el1());
297 
298 			/*
299 			 * Initialise VTTBR_EL2. All fields are architecturally
300 			 * UNKNOWN on reset.
301 			 *
302 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
303 			 *  2 address translation is disabled, cache maintenance
304 			 *  operations depend on the VMID.
305 			 *
306 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
307 			 *  translation is disabled.
308 			 */
309 			write_vttbr_el2(VTTBR_RESET_VAL &
310 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
311 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
312 
313 			/*
314 			 * Initialise MDCR_EL2, setting all fields rather than
315 			 * relying on hw. Some fields are architecturally
316 			 * UNKNOWN on reset.
317 			 *
318 			 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
319 			 * profiling controls to EL2.
320 			 *
321 			 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
322 			 * state. Accesses to profiling buffer controls at
323 			 * non-secure EL1 are not trapped to EL2.
324 			 *
325 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
326 			 *  EL1 System register accesses to the Debug ROM
327 			 *  registers are not trapped to EL2.
328 			 *
329 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
330 			 *  System register accesses to the powerdown debug
331 			 *  registers are not trapped to EL2.
332 			 *
333 			 * MDCR_EL2.TDA: Set to zero so that System register
334 			 *  accesses to the debug registers do not trap to EL2.
335 			 *
336 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
337 			 *  are not routed to EL2.
338 			 *
339 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
340 			 *  Monitors.
341 			 *
342 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
343 			 *  EL1 accesses to all Performance Monitors registers
344 			 *  are not trapped to EL2.
345 			 *
346 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
347 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
348 			 *  trapped to EL2.
349 			 *
350 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
351 			 *  architecturally-defined reset value.
352 			 */
353 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
354 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
355 					>> PMCR_EL0_N_SHIFT)) &
356 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
357 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
358 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
359 					| MDCR_EL2_TPMCR_BIT));
360 
361 #if ENABLE_SPE_FOR_LOWER_ELS
362 			uint64_t id_aa64dfr0_el1;
363 
364 			/* Detect if SPE is implemented */
365 			id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
366 				ID_AA64DFR0_PMS_SHIFT;
367 			if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
368 				/*
369 				 * Make sure traps to EL2 are not generated if
370 				 * EL2 is implemented but not used.
371 				 */
372 				mdcr_el2 &= ~MDCR_EL2_TPMS;
373 				mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
374 			}
375 #endif
376 
377 			write_mdcr_el2(mdcr_el2);
378 
379 			/*
380 			 * Initialise HSTR_EL2. All fields are architecturally
381 			 * UNKNOWN on reset.
382 			 *
383 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
384 			 *  Non-secure EL0 or EL1 accesses to System registers
385 			 *  do not trap to EL2.
386 			 */
387 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
388 			/*
389 			 * Initialise CNTHP_CTL_EL2. All fields are
390 			 * architecturally UNKNOWN on reset.
391 			 *
392 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
393 			 *  physical timer and prevent timer interrupts.
394 			 */
395 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
396 						~(CNTHP_CTL_ENABLE_BIT));
397 		}
398 	}
399 
400 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
401 
402 	cm_set_next_context(ctx);
403 }
404 
405 /*******************************************************************************
406  * The next four functions are used by runtime services to save and restore
407  * EL1 context on the 'cpu_context' structure for the specified security
408  * state.
409  ******************************************************************************/
410 void cm_el1_sysregs_context_save(uint32_t security_state)
411 {
412 	cpu_context_t *ctx;
413 
414 	ctx = cm_get_context(security_state);
415 	assert(ctx);
416 
417 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
418 	el1_sysregs_context_save_post_ops();
419 }
420 
421 void cm_el1_sysregs_context_restore(uint32_t security_state)
422 {
423 	cpu_context_t *ctx;
424 
425 	ctx = cm_get_context(security_state);
426 	assert(ctx);
427 
428 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
429 }
430 
431 /*******************************************************************************
432  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
433  * given security state with the given entrypoint
434  ******************************************************************************/
435 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
436 {
437 	cpu_context_t *ctx;
438 	el3_state_t *state;
439 
440 	ctx = cm_get_context(security_state);
441 	assert(ctx);
442 
443 	/* Populate EL3 state so that ERET jumps to the correct entry */
444 	state = get_el3state_ctx(ctx);
445 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
446 }
447 
448 /*******************************************************************************
449  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
450  * pertaining to the given security state
451  ******************************************************************************/
452 void cm_set_elr_spsr_el3(uint32_t security_state,
453 			uintptr_t entrypoint, uint32_t spsr)
454 {
455 	cpu_context_t *ctx;
456 	el3_state_t *state;
457 
458 	ctx = cm_get_context(security_state);
459 	assert(ctx);
460 
461 	/* Populate EL3 state so that ERET jumps to the correct entry */
462 	state = get_el3state_ctx(ctx);
463 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
464 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
465 }
466 
467 /*******************************************************************************
468  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
469  * pertaining to the given security state using the value and bit position
470  * specified in the parameters. It preserves all other bits.
471  ******************************************************************************/
472 void cm_write_scr_el3_bit(uint32_t security_state,
473 			  uint32_t bit_pos,
474 			  uint32_t value)
475 {
476 	cpu_context_t *ctx;
477 	el3_state_t *state;
478 	uint32_t scr_el3;
479 
480 	ctx = cm_get_context(security_state);
481 	assert(ctx);
482 
483 	/* Ensure that the bit position is a valid one */
484 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
485 
486 	/* Ensure that the 'value' is only a bit wide */
487 	assert(value <= 1);
488 
489 	/*
490 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
491 	 * and set it to its new value.
492 	 */
493 	state = get_el3state_ctx(ctx);
494 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
495 	scr_el3 &= ~(1 << bit_pos);
496 	scr_el3 |= value << bit_pos;
497 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
498 }
499 
500 /*******************************************************************************
501  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
502  * given security state.
503  ******************************************************************************/
504 uint32_t cm_get_scr_el3(uint32_t security_state)
505 {
506 	cpu_context_t *ctx;
507 	el3_state_t *state;
508 
509 	ctx = cm_get_context(security_state);
510 	assert(ctx);
511 
512 	/* Populate EL3 state so that ERET jumps to the correct entry */
513 	state = get_el3state_ctx(ctx);
514 	return read_ctx_reg(state, CTX_SCR_EL3);
515 }
516 
517 /*******************************************************************************
518  * This function is used to program the context that's used for exception
519  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
520  * the required security state
521  ******************************************************************************/
522 void cm_set_next_eret_context(uint32_t security_state)
523 {
524 	cpu_context_t *ctx;
525 
526 	ctx = cm_get_context(security_state);
527 	assert(ctx);
528 
529 	cm_set_next_context(ctx);
530 }
531