xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 2031d6166a58623ae59034bc2353fcd2fabe9c30)
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/trbe.h>
26 #include <lib/extensions/twed.h>
27 #include <lib/utils.h>
28 
29 static void enable_extensions_secure(cpu_context_t *ctx);
30 
31 /*******************************************************************************
32  * Context management library initialisation routine. This library is used by
33  * runtime services to share pointers to 'cpu_context' structures for the secure
34  * and non-secure states. Management of the structures and their associated
35  * memory is not done by the context management library e.g. the PSCI service
36  * manages the cpu context used for entry from and exit to the non-secure state.
37  * The Secure payload dispatcher service manages the context(s) corresponding to
38  * the secure state. It also uses this library to get access to the non-secure
39  * state cpu context pointers.
40  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
41  * which will used for programming an entry into a lower EL. The same context
42  * will used to save state upon exception entry from that EL.
43  ******************************************************************************/
44 void __init cm_init(void)
45 {
46 	/*
47 	 * The context management library has only global data to intialize, but
48 	 * that will be done when the BSS is zeroed out
49 	 */
50 }
51 
52 /*******************************************************************************
53  * The following function initializes the cpu_context 'ctx' for
54  * first use, and sets the initial entrypoint state as specified by the
55  * entry_point_info structure.
56  *
57  * The security state to initialize is determined by the SECURE attribute
58  * of the entry_point_info.
59  *
60  * The EE and ST attributes are used to configure the endianness and secure
61  * timer availability for the new execution context.
62  *
63  * To prepare the register state for entry call cm_prepare_el3_exit() and
64  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
65  * cm_el1_sysregs_context_restore().
66  ******************************************************************************/
67 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
68 {
69 	unsigned int security_state;
70 	u_register_t scr_el3;
71 	el3_state_t *state;
72 	gp_regs_t *gp_regs;
73 	u_register_t sctlr_elx, actlr_elx;
74 
75 	assert(ctx != NULL);
76 
77 	security_state = GET_SECURITY_STATE(ep->h.attr);
78 
79 	/* Clear any residual register values from the context */
80 	zeromem(ctx, sizeof(*ctx));
81 
82 	/*
83 	 * SCR_EL3 was initialised during reset sequence in macro
84 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
85 	 * affect the next EL.
86 	 *
87 	 * The following fields are initially set to zero and then updated to
88 	 * the required value depending on the state of the SPSR_EL3 and the
89 	 * Security state and entrypoint attributes of the next EL.
90 	 */
91 	scr_el3 = read_scr();
92 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
93 			SCR_ST_BIT | SCR_HCE_BIT);
94 	/*
95 	 * SCR_NS: Set the security state of the next EL.
96 	 */
97 	if (security_state != SECURE)
98 		scr_el3 |= SCR_NS_BIT;
99 	/*
100 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
101 	 *  Exception level as specified by SPSR.
102 	 */
103 	if (GET_RW(ep->spsr) == MODE_RW_64)
104 		scr_el3 |= SCR_RW_BIT;
105 	/*
106 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
107 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
108 	 *  by the entrypoint attributes.
109 	 */
110 	if (EP_GET_ST(ep->h.attr) != 0U)
111 		scr_el3 |= SCR_ST_BIT;
112 
113 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
114 	/*
115 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
116 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
117 	 */
118 	scr_el3 |= SCR_TERR_BIT;
119 #endif
120 
121 #if !HANDLE_EA_EL3_FIRST
122 	/*
123 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
124 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
125 	 *  Aborts are taken to EL3.
126 	 */
127 	scr_el3 &= ~SCR_EA_BIT;
128 #endif
129 
130 #if FAULT_INJECTION_SUPPORT
131 	/* Enable fault injection from lower ELs */
132 	scr_el3 |= SCR_FIEN_BIT;
133 #endif
134 
135 #if !CTX_INCLUDE_PAUTH_REGS
136 	/*
137 	 * If the pointer authentication registers aren't saved during world
138 	 * switches the value of the registers can be leaked from the Secure to
139 	 * the Non-secure world. To prevent this, rather than enabling pointer
140 	 * authentication everywhere, we only enable it in the Non-secure world.
141 	 *
142 	 * If the Secure world wants to use pointer authentication,
143 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
144 	 */
145 	if (security_state == NON_SECURE)
146 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
147 #endif /* !CTX_INCLUDE_PAUTH_REGS */
148 
149 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
150 	/* Get Memory Tagging Extension support level */
151 	unsigned int mte = get_armv8_5_mte_support();
152 #endif
153 	/*
154 	 * Enable MTE support. Support is enabled unilaterally for the normal
155 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
156 	 * set.
157 	 */
158 #if CTX_INCLUDE_MTE_REGS
159 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
160 	scr_el3 |= SCR_ATA_BIT;
161 #else
162 	/*
163 	 * When MTE is only implemented at EL0, it can be enabled
164 	 * across both worlds as no MTE registers are used.
165 	 */
166 	if ((mte == MTE_IMPLEMENTED_EL0) ||
167 	/*
168 	 * When MTE is implemented at all ELs, it can be only enabled
169 	 * in Non-Secure world without register saving.
170 	 */
171 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
172 	    (security_state == NON_SECURE))) {
173 		scr_el3 |= SCR_ATA_BIT;
174 	}
175 #endif	/* CTX_INCLUDE_MTE_REGS */
176 
177 #ifdef IMAGE_BL31
178 	/*
179 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
180 	 *  indicated by the interrupt routing model for BL31.
181 	 */
182 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
183 #endif
184 
185 	/* Save the initialized value of CPTR_EL3 register */
186 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
187 	if (security_state == SECURE) {
188 		enable_extensions_secure(ctx);
189 	}
190 
191 	/*
192 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
193 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
194 	 * next mode is Hyp.
195 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
196 	 * same conditions as HVC instructions and when the processor supports
197 	 * ARMv8.6-FGT.
198 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
199 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
200 	 * and when the processor supports ECV.
201 	 */
202 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
203 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
204 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
205 		scr_el3 |= SCR_HCE_BIT;
206 
207 		if (is_armv8_6_fgt_present()) {
208 			scr_el3 |= SCR_FGTEN_BIT;
209 		}
210 
211 		if (get_armv8_6_ecv_support()
212 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
213 			scr_el3 |= SCR_ECVEN_BIT;
214 		}
215 	}
216 
217 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
218 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
219 		if (GET_RW(ep->spsr) != MODE_RW_64) {
220 			ERROR("S-EL2 can not be used in AArch32.");
221 			panic();
222 		}
223 
224 		scr_el3 |= SCR_EEL2_BIT;
225 	}
226 
227 	/*
228 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
229 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
230 	 * to 1 when EL2 is present.
231 	 */
232 	if (is_armv8_6_feat_amuv1p1_present() &&
233 		(el_implemented(2) != EL_IMPL_NONE)) {
234 		scr_el3 |= SCR_AMVOFFEN_BIT;
235 	}
236 
237 	/*
238 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
239 	 * execution state setting all fields rather than relying of the hw.
240 	 * Some fields have architecturally UNKNOWN reset values and these are
241 	 * set to zero.
242 	 *
243 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
244 	 *
245 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
246 	 *  required by PSCI specification)
247 	 */
248 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
249 	if (GET_RW(ep->spsr) == MODE_RW_64)
250 		sctlr_elx |= SCTLR_EL1_RES1;
251 	else {
252 		/*
253 		 * If the target execution state is AArch32 then the following
254 		 * fields need to be set.
255 		 *
256 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
257 		 *  instructions are not trapped to EL1.
258 		 *
259 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
260 		 *  instructions are not trapped to EL1.
261 		 *
262 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
263 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
264 		 */
265 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
266 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
267 	}
268 
269 #if ERRATA_A75_764081
270 	/*
271 	 * If workaround of errata 764081 for Cortex-A75 is used then set
272 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
273 	 */
274 	sctlr_elx |= SCTLR_IESB_BIT;
275 #endif
276 
277 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
278 	if (is_armv8_6_twed_present()) {
279 		uint32_t delay = plat_arm_set_twedel_scr_el3();
280 
281 		if (delay != TWED_DISABLED) {
282 			/* Make sure delay value fits */
283 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
284 
285 			/* Set delay in SCR_EL3 */
286 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
287 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
288 					<< SCR_TWEDEL_SHIFT);
289 
290 			/* Enable WFE delay */
291 			scr_el3 |= SCR_TWEDEn_BIT;
292 		}
293 	}
294 
295 	/*
296 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
297 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
298 	 * are not part of the stored cpu_context.
299 	 */
300 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
301 
302 	/*
303 	 * Base the context ACTLR_EL1 on the current value, as it is
304 	 * implementation defined. The context restore process will write
305 	 * the value from the context to the actual register and can cause
306 	 * problems for processor cores that don't expect certain bits to
307 	 * be zero.
308 	 */
309 	actlr_elx = read_actlr_el1();
310 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
311 
312 	/*
313 	 * Populate EL3 state so that we've the right context
314 	 * before doing ERET
315 	 */
316 	state = get_el3state_ctx(ctx);
317 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
318 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
319 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
320 
321 	/*
322 	 * Store the X0-X7 value from the entrypoint into the context
323 	 * Use memcpy as we are in control of the layout of the structures
324 	 */
325 	gp_regs = get_gpregs_ctx(ctx);
326 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
327 }
328 
329 /*******************************************************************************
330  * Enable architecture extensions on first entry to Non-secure world.
331  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
332  * it is zero.
333  ******************************************************************************/
334 static void enable_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
335 {
336 #if IMAGE_BL31
337 #if ENABLE_SPE_FOR_LOWER_ELS
338 	spe_enable(el2_unused);
339 #endif
340 
341 #if ENABLE_AMU
342 	amu_enable(el2_unused, ctx);
343 #endif
344 
345 #if ENABLE_SVE_FOR_NS
346 	sve_enable(ctx);
347 #endif
348 
349 #if ENABLE_MPAM_FOR_LOWER_ELS
350 	mpam_enable(el2_unused);
351 #endif
352 
353 #if ENABLE_TRBE_FOR_NS
354 	trbe_enable();
355 #endif /* ENABLE_TRBE_FOR_NS */
356 
357 #endif
358 }
359 
360 /*******************************************************************************
361  * Enable architecture extensions on first entry to Secure world.
362  ******************************************************************************/
363 static void enable_extensions_secure(cpu_context_t *ctx)
364 {
365 #if IMAGE_BL31
366 #if ENABLE_SVE_FOR_SWD
367 	sve_enable(ctx);
368 #endif
369 #endif
370 }
371 
372 /*******************************************************************************
373  * The following function initializes the cpu_context for a CPU specified by
374  * its `cpu_idx` for first use, and sets the initial entrypoint state as
375  * specified by the entry_point_info structure.
376  ******************************************************************************/
377 void cm_init_context_by_index(unsigned int cpu_idx,
378 			      const entry_point_info_t *ep)
379 {
380 	cpu_context_t *ctx;
381 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
382 	cm_setup_context(ctx, ep);
383 }
384 
385 /*******************************************************************************
386  * The following function initializes the cpu_context for the current CPU
387  * for first use, and sets the initial entrypoint state as specified by the
388  * entry_point_info structure.
389  ******************************************************************************/
390 void cm_init_my_context(const entry_point_info_t *ep)
391 {
392 	cpu_context_t *ctx;
393 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
394 	cm_setup_context(ctx, ep);
395 }
396 
397 /*******************************************************************************
398  * Prepare the CPU system registers for first entry into secure or normal world
399  *
400  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
401  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
402  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
403  * For all entries, the EL1 registers are initialized from the cpu_context
404  ******************************************************************************/
405 void cm_prepare_el3_exit(uint32_t security_state)
406 {
407 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
408 	cpu_context_t *ctx = cm_get_context(security_state);
409 	bool el2_unused = false;
410 	uint64_t hcr_el2 = 0U;
411 
412 	assert(ctx != NULL);
413 
414 	if (security_state == NON_SECURE) {
415 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
416 						 CTX_SCR_EL3);
417 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
418 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
419 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
420 							   CTX_SCTLR_EL1);
421 			sctlr_elx &= SCTLR_EE_BIT;
422 			sctlr_elx |= SCTLR_EL2_RES1;
423 #if ERRATA_A75_764081
424 			/*
425 			 * If workaround of errata 764081 for Cortex-A75 is used
426 			 * then set SCTLR_EL2.IESB to enable Implicit Error
427 			 * Synchronization Barrier.
428 			 */
429 			sctlr_elx |= SCTLR_IESB_BIT;
430 #endif
431 			write_sctlr_el2(sctlr_elx);
432 		} else if (el_implemented(2) != EL_IMPL_NONE) {
433 			el2_unused = true;
434 
435 			/*
436 			 * EL2 present but unused, need to disable safely.
437 			 * SCTLR_EL2 can be ignored in this case.
438 			 *
439 			 * Set EL2 register width appropriately: Set HCR_EL2
440 			 * field to match SCR_EL3.RW.
441 			 */
442 			if ((scr_el3 & SCR_RW_BIT) != 0U)
443 				hcr_el2 |= HCR_RW_BIT;
444 
445 			/*
446 			 * For Armv8.3 pointer authentication feature, disable
447 			 * traps to EL2 when accessing key registers or using
448 			 * pointer authentication instructions from lower ELs.
449 			 */
450 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
451 
452 			write_hcr_el2(hcr_el2);
453 
454 			/*
455 			 * Initialise CPTR_EL2 setting all fields rather than
456 			 * relying on the hw. All fields have architecturally
457 			 * UNKNOWN reset values.
458 			 *
459 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
460 			 *  accesses to the CPACR_EL1 or CPACR from both
461 			 *  Execution states do not trap to EL2.
462 			 *
463 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
464 			 *  register accesses to the trace registers from both
465 			 *  Execution states do not trap to EL2.
466 			 *
467 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
468 			 *  to SIMD and floating-point functionality from both
469 			 *  Execution states do not trap to EL2.
470 			 */
471 			write_cptr_el2(CPTR_EL2_RESET_VAL &
472 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
473 					| CPTR_EL2_TFP_BIT));
474 
475 			/*
476 			 * Initialise CNTHCTL_EL2. All fields are
477 			 * architecturally UNKNOWN on reset and are set to zero
478 			 * except for field(s) listed below.
479 			 *
480 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
481 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
482 			 *  physical timer registers.
483 			 *
484 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
485 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
486 			 *  physical counter registers.
487 			 */
488 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
489 						EL1PCEN_BIT | EL1PCTEN_BIT);
490 
491 			/*
492 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
493 			 * architecturally UNKNOWN value.
494 			 */
495 			write_cntvoff_el2(0);
496 
497 			/*
498 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
499 			 * MPIDR_EL1 respectively.
500 			 */
501 			write_vpidr_el2(read_midr_el1());
502 			write_vmpidr_el2(read_mpidr_el1());
503 
504 			/*
505 			 * Initialise VTTBR_EL2. All fields are architecturally
506 			 * UNKNOWN on reset.
507 			 *
508 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
509 			 *  2 address translation is disabled, cache maintenance
510 			 *  operations depend on the VMID.
511 			 *
512 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
513 			 *  translation is disabled.
514 			 */
515 			write_vttbr_el2(VTTBR_RESET_VAL &
516 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
517 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
518 
519 			/*
520 			 * Initialise MDCR_EL2, setting all fields rather than
521 			 * relying on hw. Some fields are architecturally
522 			 * UNKNOWN on reset.
523 			 *
524 			 * MDCR_EL2.HLP: Set to one so that event counter
525 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
526 			 *  occurs on the increment that changes
527 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
528 			 *  implemented. This bit is RES0 in versions of the
529 			 *  architecture earlier than ARMv8.5, setting it to 1
530 			 *  doesn't have any effect on them.
531 			 *
532 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
533 			 *  Filter Control register TRFCR_EL1 at EL1 is not
534 			 *  trapped to EL2. This bit is RES0 in versions of
535 			 *  the architecture earlier than ARMv8.4.
536 			 *
537 			 * MDCR_EL2.HPMD: Set to one so that event counting is
538 			 *  prohibited at EL2. This bit is RES0 in versions of
539 			 *  the architecture earlier than ARMv8.1, setting it
540 			 *  to 1 doesn't have any effect on them.
541 			 *
542 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
543 			 *  Statistical Profiling control registers from EL1
544 			 *  do not trap to EL2. This bit is RES0 when SPE is
545 			 *  not implemented.
546 			 *
547 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
548 			 *  EL1 System register accesses to the Debug ROM
549 			 *  registers are not trapped to EL2.
550 			 *
551 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
552 			 *  System register accesses to the powerdown debug
553 			 *  registers are not trapped to EL2.
554 			 *
555 			 * MDCR_EL2.TDA: Set to zero so that System register
556 			 *  accesses to the debug registers do not trap to EL2.
557 			 *
558 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
559 			 *  are not routed to EL2.
560 			 *
561 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
562 			 *  Monitors.
563 			 *
564 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
565 			 *  EL1 accesses to all Performance Monitors registers
566 			 *  are not trapped to EL2.
567 			 *
568 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
569 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
570 			 *  trapped to EL2.
571 			 *
572 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
573 			 *  architecturally-defined reset value.
574 			 *
575 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
576 			 *  owning exception level is NS-EL1 and, tracing is
577 			 *  prohibited at NS-EL2. These bits are RES0 when
578 			 *  FEAT_TRBE is not implemented.
579 			 */
580 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
581 				     MDCR_EL2_HPMD) |
582 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
583 				   >> PMCR_EL0_N_SHIFT)) &
584 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
585 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
586 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
587 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
588 				     MDCR_EL2_TPMCR_BIT |
589 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
590 
591 			write_mdcr_el2(mdcr_el2);
592 
593 			/*
594 			 * Initialise HSTR_EL2. All fields are architecturally
595 			 * UNKNOWN on reset.
596 			 *
597 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
598 			 *  Non-secure EL0 or EL1 accesses to System registers
599 			 *  do not trap to EL2.
600 			 */
601 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
602 			/*
603 			 * Initialise CNTHP_CTL_EL2. All fields are
604 			 * architecturally UNKNOWN on reset.
605 			 *
606 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
607 			 *  physical timer and prevent timer interrupts.
608 			 */
609 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
610 						~(CNTHP_CTL_ENABLE_BIT));
611 		}
612 		enable_extensions_nonsecure(el2_unused, ctx);
613 	}
614 
615 	cm_el1_sysregs_context_restore(security_state);
616 	cm_set_next_eret_context(security_state);
617 }
618 
619 #if CTX_INCLUDE_EL2_REGS
620 /*******************************************************************************
621  * Save EL2 sysreg context
622  ******************************************************************************/
623 void cm_el2_sysregs_context_save(uint32_t security_state)
624 {
625 	u_register_t scr_el3 = read_scr();
626 
627 	/*
628 	 * Always save the non-secure EL2 context, only save the
629 	 * S-EL2 context if S-EL2 is enabled.
630 	 */
631 	if ((security_state == NON_SECURE) ||
632 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
633 		cpu_context_t *ctx;
634 
635 		ctx = cm_get_context(security_state);
636 		assert(ctx != NULL);
637 
638 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
639 	}
640 }
641 
642 /*******************************************************************************
643  * Restore EL2 sysreg context
644  ******************************************************************************/
645 void cm_el2_sysregs_context_restore(uint32_t security_state)
646 {
647 	u_register_t scr_el3 = read_scr();
648 
649 	/*
650 	 * Always restore the non-secure EL2 context, only restore the
651 	 * S-EL2 context if S-EL2 is enabled.
652 	 */
653 	if ((security_state == NON_SECURE) ||
654 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
655 		cpu_context_t *ctx;
656 
657 		ctx = cm_get_context(security_state);
658 		assert(ctx != NULL);
659 
660 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
661 	}
662 }
663 #endif /* CTX_INCLUDE_EL2_REGS */
664 
665 /*******************************************************************************
666  * The next four functions are used by runtime services to save and restore
667  * EL1 context on the 'cpu_context' structure for the specified security
668  * state.
669  ******************************************************************************/
670 void cm_el1_sysregs_context_save(uint32_t security_state)
671 {
672 	cpu_context_t *ctx;
673 
674 	ctx = cm_get_context(security_state);
675 	assert(ctx != NULL);
676 
677 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
678 
679 #if IMAGE_BL31
680 	if (security_state == SECURE)
681 		PUBLISH_EVENT(cm_exited_secure_world);
682 	else
683 		PUBLISH_EVENT(cm_exited_normal_world);
684 #endif
685 }
686 
687 void cm_el1_sysregs_context_restore(uint32_t security_state)
688 {
689 	cpu_context_t *ctx;
690 
691 	ctx = cm_get_context(security_state);
692 	assert(ctx != NULL);
693 
694 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
695 
696 #if IMAGE_BL31
697 	if (security_state == SECURE)
698 		PUBLISH_EVENT(cm_entering_secure_world);
699 	else
700 		PUBLISH_EVENT(cm_entering_normal_world);
701 #endif
702 }
703 
704 /*******************************************************************************
705  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
706  * given security state with the given entrypoint
707  ******************************************************************************/
708 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
709 {
710 	cpu_context_t *ctx;
711 	el3_state_t *state;
712 
713 	ctx = cm_get_context(security_state);
714 	assert(ctx != NULL);
715 
716 	/* Populate EL3 state so that ERET jumps to the correct entry */
717 	state = get_el3state_ctx(ctx);
718 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
719 }
720 
721 /*******************************************************************************
722  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
723  * pertaining to the given security state
724  ******************************************************************************/
725 void cm_set_elr_spsr_el3(uint32_t security_state,
726 			uintptr_t entrypoint, uint32_t spsr)
727 {
728 	cpu_context_t *ctx;
729 	el3_state_t *state;
730 
731 	ctx = cm_get_context(security_state);
732 	assert(ctx != NULL);
733 
734 	/* Populate EL3 state so that ERET jumps to the correct entry */
735 	state = get_el3state_ctx(ctx);
736 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
737 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
738 }
739 
740 /*******************************************************************************
741  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
742  * pertaining to the given security state using the value and bit position
743  * specified in the parameters. It preserves all other bits.
744  ******************************************************************************/
745 void cm_write_scr_el3_bit(uint32_t security_state,
746 			  uint32_t bit_pos,
747 			  uint32_t value)
748 {
749 	cpu_context_t *ctx;
750 	el3_state_t *state;
751 	u_register_t scr_el3;
752 
753 	ctx = cm_get_context(security_state);
754 	assert(ctx != NULL);
755 
756 	/* Ensure that the bit position is a valid one */
757 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
758 
759 	/* Ensure that the 'value' is only a bit wide */
760 	assert(value <= 1U);
761 
762 	/*
763 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
764 	 * and set it to its new value.
765 	 */
766 	state = get_el3state_ctx(ctx);
767 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
768 	scr_el3 &= ~(1UL << bit_pos);
769 	scr_el3 |= (u_register_t)value << bit_pos;
770 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
771 }
772 
773 /*******************************************************************************
774  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
775  * given security state.
776  ******************************************************************************/
777 u_register_t cm_get_scr_el3(uint32_t security_state)
778 {
779 	cpu_context_t *ctx;
780 	el3_state_t *state;
781 
782 	ctx = cm_get_context(security_state);
783 	assert(ctx != NULL);
784 
785 	/* Populate EL3 state so that ERET jumps to the correct entry */
786 	state = get_el3state_ctx(ctx);
787 	return read_ctx_reg(state, CTX_SCR_EL3);
788 }
789 
790 /*******************************************************************************
791  * This function is used to program the context that's used for exception
792  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
793  * the required security state
794  ******************************************************************************/
795 void cm_set_next_eret_context(uint32_t security_state)
796 {
797 	cpu_context_t *ctx;
798 
799 	ctx = cm_get_context(security_state);
800 	assert(ctx != NULL);
801 
802 	cm_set_next_context(ctx);
803 }
804