xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 1d71ba141d32c9e8974d4e3e973a90fd0c6bf458)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <amu.h>
8 #include <arch.h>
9 #include <arch_helpers.h>
10 #include <assert.h>
11 #include <bl_common.h>
12 #include <context.h>
13 #include <context_mgmt.h>
14 #include <interrupt_mgmt.h>
15 #include <platform.h>
16 #include <platform_def.h>
17 #include <pubsub_events.h>
18 #include <smccc_helpers.h>
19 #include <spe.h>
20 #include <string.h>
21 #include <sve.h>
22 #include <utils.h>
23 
24 
25 /*******************************************************************************
26  * Context management library initialisation routine. This library is used by
27  * runtime services to share pointers to 'cpu_context' structures for the secure
28  * and non-secure states. Management of the structures and their associated
29  * memory is not done by the context management library e.g. the PSCI service
30  * manages the cpu context used for entry from and exit to the non-secure state.
31  * The Secure payload dispatcher service manages the context(s) corresponding to
32  * the secure state. It also uses this library to get access to the non-secure
33  * state cpu context pointers.
34  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
35  * which will used for programming an entry into a lower EL. The same context
36  * will used to save state upon exception entry from that EL.
37  ******************************************************************************/
38 void cm_init(void)
39 {
40 	/*
41 	 * The context management library has only global data to intialize, but
42 	 * that will be done when the BSS is zeroed out
43 	 */
44 }
45 
46 /*******************************************************************************
47  * The following function initializes the cpu_context 'ctx' for
48  * first use, and sets the initial entrypoint state as specified by the
49  * entry_point_info structure.
50  *
51  * The security state to initialize is determined by the SECURE attribute
52  * of the entry_point_info. The function returns a pointer to the initialized
53  * context and sets this as the next context to return to.
54  *
55  * The EE and ST attributes are used to configure the endianess and secure
56  * timer availability for the new execution context.
57  *
58  * To prepare the register state for entry call cm_prepare_el3_exit() and
59  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
60  * cm_e1_sysreg_context_restore().
61  ******************************************************************************/
62 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
63 {
64 	unsigned int security_state;
65 	uint32_t scr_el3, pmcr_el0;
66 	el3_state_t *state;
67 	gp_regs_t *gp_regs;
68 	unsigned long sctlr_elx, actlr_elx;
69 
70 	assert(ctx);
71 
72 	security_state = GET_SECURITY_STATE(ep->h.attr);
73 
74 	/* Clear any residual register values from the context */
75 	zeromem(ctx, sizeof(*ctx));
76 
77 	/*
78 	 * SCR_EL3 was initialised during reset sequence in macro
79 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
80 	 * affect the next EL.
81 	 *
82 	 * The following fields are initially set to zero and then updated to
83 	 * the required value depending on the state of the SPSR_EL3 and the
84 	 * Security state and entrypoint attributes of the next EL.
85 	 */
86 	scr_el3 = read_scr();
87 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
88 			SCR_ST_BIT | SCR_HCE_BIT);
89 	/*
90 	 * SCR_NS: Set the security state of the next EL.
91 	 */
92 	if (security_state != SECURE)
93 		scr_el3 |= SCR_NS_BIT;
94 	/*
95 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
96 	 *  Exception level as specified by SPSR.
97 	 */
98 	if (GET_RW(ep->spsr) == MODE_RW_64)
99 		scr_el3 |= SCR_RW_BIT;
100 	/*
101 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
102 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
103 	 *  by the entrypoint attributes.
104 	 */
105 	if (EP_GET_ST(ep->h.attr))
106 		scr_el3 |= SCR_ST_BIT;
107 
108 #ifndef HANDLE_EA_EL3_FIRST
109 	/*
110 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
111 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
112 	 *  Aborts are taken to EL3.
113 	 */
114 	scr_el3 &= ~SCR_EA_BIT;
115 #endif
116 
117 #if FAULT_INJECTION_SUPPORT
118 	/* Enable fault injection from lower ELs */
119 	scr_el3 |= SCR_FIEN_BIT;
120 #endif
121 
122 #ifdef IMAGE_BL31
123 	/*
124 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
125 	 *  indicated by the interrupt routing model for BL31.
126 	 */
127 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
128 #endif
129 
130 	/*
131 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
132 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
133 	 * next mode is Hyp.
134 	 */
135 	if ((GET_RW(ep->spsr) == MODE_RW_64
136 	     && GET_EL(ep->spsr) == MODE_EL2)
137 	    || (GET_RW(ep->spsr) != MODE_RW_64
138 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
139 		scr_el3 |= SCR_HCE_BIT;
140 	}
141 
142 	/*
143 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
144 	 * execution state setting all fields rather than relying of the hw.
145 	 * Some fields have architecturally UNKNOWN reset values and these are
146 	 * set to zero.
147 	 *
148 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
149 	 *
150 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
151 	 *  required by PSCI specification)
152 	 */
153 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
154 	if (GET_RW(ep->spsr) == MODE_RW_64)
155 		sctlr_elx |= SCTLR_EL1_RES1;
156 	else {
157 		/*
158 		 * If the target execution state is AArch32 then the following
159 		 * fields need to be set.
160 		 *
161 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
162 		 *  instructions are not trapped to EL1.
163 		 *
164 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
165 		 *  instructions are not trapped to EL1.
166 		 *
167 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
168 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
169 		 */
170 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
171 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
172 	}
173 
174 	/*
175 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
176 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
177 	 * are not part of the stored cpu_context.
178 	 */
179 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
180 
181 	/*
182 	 * Base the context ACTLR_EL1 on the current value, as it is
183 	 * implementation defined. The context restore process will write
184 	 * the value from the context to the actual register and can cause
185 	 * problems for processor cores that don't expect certain bits to
186 	 * be zero.
187 	 */
188 	actlr_elx = read_actlr_el1();
189 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
190 
191 	if (security_state == SECURE) {
192 		/*
193 		 * Initialise PMCR_EL0 for secure context only, setting all
194 		 * fields rather than relying on hw. Some fields are
195 		 * architecturally UNKNOWN on reset.
196 		 *
197 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
198 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
199 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
200 		 *
201 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
202 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
203 		 *
204 		 * PMCR_EL0.X: Set to zero to disable export of events.
205 		 *
206 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
207 		 *  counts on every clock cycle.
208 		 */
209 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
210 				| PMCR_EL0_DP_BIT)
211 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
212 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
213 	}
214 
215 	/* Populate EL3 state so that we've the right context before doing ERET */
216 	state = get_el3state_ctx(ctx);
217 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
218 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
219 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
220 
221 	/*
222 	 * Store the X0-X7 value from the entrypoint into the context
223 	 * Use memcpy as we are in control of the layout of the structures
224 	 */
225 	gp_regs = get_gpregs_ctx(ctx);
226 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
227 }
228 
229 /*******************************************************************************
230  * Enable architecture extensions on first entry to Non-secure world.
231  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
232  * it is zero.
233  ******************************************************************************/
234 static void enable_extensions_nonsecure(int el2_unused)
235 {
236 #if IMAGE_BL31
237 #if ENABLE_SPE_FOR_LOWER_ELS
238 	spe_enable(el2_unused);
239 #endif
240 
241 #if ENABLE_AMU
242 	amu_enable(el2_unused);
243 #endif
244 
245 #if ENABLE_SVE_FOR_NS
246 	sve_enable(el2_unused);
247 #endif
248 #endif
249 }
250 
251 /*******************************************************************************
252  * The following function initializes the cpu_context for a CPU specified by
253  * its `cpu_idx` for first use, and sets the initial entrypoint state as
254  * specified by the entry_point_info structure.
255  ******************************************************************************/
256 void cm_init_context_by_index(unsigned int cpu_idx,
257 			      const entry_point_info_t *ep)
258 {
259 	cpu_context_t *ctx;
260 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
261 	cm_init_context_common(ctx, ep);
262 }
263 
264 /*******************************************************************************
265  * The following function initializes the cpu_context for the current CPU
266  * for first use, and sets the initial entrypoint state as specified by the
267  * entry_point_info structure.
268  ******************************************************************************/
269 void cm_init_my_context(const entry_point_info_t *ep)
270 {
271 	cpu_context_t *ctx;
272 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
273 	cm_init_context_common(ctx, ep);
274 }
275 
276 /*******************************************************************************
277  * Prepare the CPU system registers for first entry into secure or normal world
278  *
279  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
280  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
281  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
282  * For all entries, the EL1 registers are initialized from the cpu_context
283  ******************************************************************************/
284 void cm_prepare_el3_exit(uint32_t security_state)
285 {
286 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
287 	cpu_context_t *ctx = cm_get_context(security_state);
288 	int el2_unused = 0;
289 
290 	assert(ctx);
291 
292 	if (security_state == NON_SECURE) {
293 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
294 		if (scr_el3 & SCR_HCE_BIT) {
295 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
296 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
297 						 CTX_SCTLR_EL1);
298 			sctlr_elx &= SCTLR_EE_BIT;
299 			sctlr_elx |= SCTLR_EL2_RES1;
300 			write_sctlr_el2(sctlr_elx);
301 		} else if (EL_IMPLEMENTED(2)) {
302 			el2_unused = 1;
303 
304 			/*
305 			 * EL2 present but unused, need to disable safely.
306 			 * SCTLR_EL2 can be ignored in this case.
307 			 *
308 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
309 			 * to zero so that Non-secure operations do not trap to
310 			 * EL2.
311 			 *
312 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
313 			 */
314 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
315 
316 			/*
317 			 * Initialise CPTR_EL2 setting all fields rather than
318 			 * relying on the hw. All fields have architecturally
319 			 * UNKNOWN reset values.
320 			 *
321 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
322 			 *  accesses to the CPACR_EL1 or CPACR from both
323 			 *  Execution states do not trap to EL2.
324 			 *
325 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
326 			 *  register accesses to the trace registers from both
327 			 *  Execution states do not trap to EL2.
328 			 *
329 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
330 			 *  to SIMD and floating-point functionality from both
331 			 *  Execution states do not trap to EL2.
332 			 */
333 			write_cptr_el2(CPTR_EL2_RESET_VAL &
334 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
335 					| CPTR_EL2_TFP_BIT));
336 
337 			/*
338 			 * Initiliase CNTHCTL_EL2. All fields are
339 			 * architecturally UNKNOWN on reset and are set to zero
340 			 * except for field(s) listed below.
341 			 *
342 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
343 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
344 			 *  physical timer registers.
345 			 *
346 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
347 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
348 			 *  physical counter registers.
349 			 */
350 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
351 						EL1PCEN_BIT | EL1PCTEN_BIT);
352 
353 			/*
354 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
355 			 * architecturally UNKNOWN value.
356 			 */
357 			write_cntvoff_el2(0);
358 
359 			/*
360 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
361 			 * MPIDR_EL1 respectively.
362 			 */
363 			write_vpidr_el2(read_midr_el1());
364 			write_vmpidr_el2(read_mpidr_el1());
365 
366 			/*
367 			 * Initialise VTTBR_EL2. All fields are architecturally
368 			 * UNKNOWN on reset.
369 			 *
370 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
371 			 *  2 address translation is disabled, cache maintenance
372 			 *  operations depend on the VMID.
373 			 *
374 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
375 			 *  translation is disabled.
376 			 */
377 			write_vttbr_el2(VTTBR_RESET_VAL &
378 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
379 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
380 
381 			/*
382 			 * Initialise MDCR_EL2, setting all fields rather than
383 			 * relying on hw. Some fields are architecturally
384 			 * UNKNOWN on reset.
385 			 *
386 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
387 			 *  EL1 System register accesses to the Debug ROM
388 			 *  registers are not trapped to EL2.
389 			 *
390 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
391 			 *  System register accesses to the powerdown debug
392 			 *  registers are not trapped to EL2.
393 			 *
394 			 * MDCR_EL2.TDA: Set to zero so that System register
395 			 *  accesses to the debug registers do not trap to EL2.
396 			 *
397 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
398 			 *  are not routed to EL2.
399 			 *
400 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
401 			 *  Monitors.
402 			 *
403 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
404 			 *  EL1 accesses to all Performance Monitors registers
405 			 *  are not trapped to EL2.
406 			 *
407 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
408 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
409 			 *  trapped to EL2.
410 			 *
411 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
412 			 *  architecturally-defined reset value.
413 			 */
414 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
415 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
416 					>> PMCR_EL0_N_SHIFT)) &
417 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
418 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
419 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
420 					| MDCR_EL2_TPMCR_BIT));
421 
422 			write_mdcr_el2(mdcr_el2);
423 
424 			/*
425 			 * Initialise HSTR_EL2. All fields are architecturally
426 			 * UNKNOWN on reset.
427 			 *
428 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
429 			 *  Non-secure EL0 or EL1 accesses to System registers
430 			 *  do not trap to EL2.
431 			 */
432 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
433 			/*
434 			 * Initialise CNTHP_CTL_EL2. All fields are
435 			 * architecturally UNKNOWN on reset.
436 			 *
437 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
438 			 *  physical timer and prevent timer interrupts.
439 			 */
440 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
441 						~(CNTHP_CTL_ENABLE_BIT));
442 		}
443 		enable_extensions_nonsecure(el2_unused);
444 	}
445 
446 	cm_el1_sysregs_context_restore(security_state);
447 	cm_set_next_eret_context(security_state);
448 }
449 
450 /*******************************************************************************
451  * The next four functions are used by runtime services to save and restore
452  * EL1 context on the 'cpu_context' structure for the specified security
453  * state.
454  ******************************************************************************/
455 void cm_el1_sysregs_context_save(uint32_t security_state)
456 {
457 	cpu_context_t *ctx;
458 
459 	ctx = cm_get_context(security_state);
460 	assert(ctx);
461 
462 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
463 
464 #if IMAGE_BL31
465 	if (security_state == SECURE)
466 		PUBLISH_EVENT(cm_exited_secure_world);
467 	else
468 		PUBLISH_EVENT(cm_exited_normal_world);
469 #endif
470 }
471 
472 void cm_el1_sysregs_context_restore(uint32_t security_state)
473 {
474 	cpu_context_t *ctx;
475 
476 	ctx = cm_get_context(security_state);
477 	assert(ctx);
478 
479 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
480 
481 #if IMAGE_BL31
482 	if (security_state == SECURE)
483 		PUBLISH_EVENT(cm_entering_secure_world);
484 	else
485 		PUBLISH_EVENT(cm_entering_normal_world);
486 #endif
487 }
488 
489 /*******************************************************************************
490  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
491  * given security state with the given entrypoint
492  ******************************************************************************/
493 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
494 {
495 	cpu_context_t *ctx;
496 	el3_state_t *state;
497 
498 	ctx = cm_get_context(security_state);
499 	assert(ctx);
500 
501 	/* Populate EL3 state so that ERET jumps to the correct entry */
502 	state = get_el3state_ctx(ctx);
503 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
504 }
505 
506 /*******************************************************************************
507  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
508  * pertaining to the given security state
509  ******************************************************************************/
510 void cm_set_elr_spsr_el3(uint32_t security_state,
511 			uintptr_t entrypoint, uint32_t spsr)
512 {
513 	cpu_context_t *ctx;
514 	el3_state_t *state;
515 
516 	ctx = cm_get_context(security_state);
517 	assert(ctx);
518 
519 	/* Populate EL3 state so that ERET jumps to the correct entry */
520 	state = get_el3state_ctx(ctx);
521 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
522 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
523 }
524 
525 /*******************************************************************************
526  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
527  * pertaining to the given security state using the value and bit position
528  * specified in the parameters. It preserves all other bits.
529  ******************************************************************************/
530 void cm_write_scr_el3_bit(uint32_t security_state,
531 			  uint32_t bit_pos,
532 			  uint32_t value)
533 {
534 	cpu_context_t *ctx;
535 	el3_state_t *state;
536 	uint32_t scr_el3;
537 
538 	ctx = cm_get_context(security_state);
539 	assert(ctx);
540 
541 	/* Ensure that the bit position is a valid one */
542 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
543 
544 	/* Ensure that the 'value' is only a bit wide */
545 	assert(value <= 1);
546 
547 	/*
548 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
549 	 * and set it to its new value.
550 	 */
551 	state = get_el3state_ctx(ctx);
552 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
553 	scr_el3 &= ~(1 << bit_pos);
554 	scr_el3 |= value << bit_pos;
555 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
556 }
557 
558 /*******************************************************************************
559  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
560  * given security state.
561  ******************************************************************************/
562 uint32_t cm_get_scr_el3(uint32_t security_state)
563 {
564 	cpu_context_t *ctx;
565 	el3_state_t *state;
566 
567 	ctx = cm_get_context(security_state);
568 	assert(ctx);
569 
570 	/* Populate EL3 state so that ERET jumps to the correct entry */
571 	state = get_el3state_ctx(ctx);
572 	return read_ctx_reg(state, CTX_SCR_EL3);
573 }
574 
575 /*******************************************************************************
576  * This function is used to program the context that's used for exception
577  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
578  * the required security state
579  ******************************************************************************/
580 void cm_set_next_eret_context(uint32_t security_state)
581 {
582 	cpu_context_t *ctx;
583 
584 	ctx = cm_get_context(security_state);
585 	assert(ctx);
586 
587 	cm_set_next_context(ctx);
588 }
589