1 /* 2 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <amu.h> 8 #include <arch.h> 9 #include <arch_helpers.h> 10 #include <assert.h> 11 #include <bl_common.h> 12 #include <context.h> 13 #include <context_mgmt.h> 14 #include <interrupt_mgmt.h> 15 #include <platform.h> 16 #include <platform_def.h> 17 #include <pubsub_events.h> 18 #include <smccc_helpers.h> 19 #include <spe.h> 20 #include <string.h> 21 #include <sve.h> 22 #include <utils.h> 23 24 25 /******************************************************************************* 26 * Context management library initialisation routine. This library is used by 27 * runtime services to share pointers to 'cpu_context' structures for the secure 28 * and non-secure states. Management of the structures and their associated 29 * memory is not done by the context management library e.g. the PSCI service 30 * manages the cpu context used for entry from and exit to the non-secure state. 31 * The Secure payload dispatcher service manages the context(s) corresponding to 32 * the secure state. It also uses this library to get access to the non-secure 33 * state cpu context pointers. 34 * Lastly, this library provides the api to make SP_EL3 point to the cpu context 35 * which will used for programming an entry into a lower EL. The same context 36 * will used to save state upon exception entry from that EL. 37 ******************************************************************************/ 38 void cm_init(void) 39 { 40 /* 41 * The context management library has only global data to intialize, but 42 * that will be done when the BSS is zeroed out 43 */ 44 } 45 46 /******************************************************************************* 47 * The following function initializes the cpu_context 'ctx' for 48 * first use, and sets the initial entrypoint state as specified by the 49 * entry_point_info structure. 50 * 51 * The security state to initialize is determined by the SECURE attribute 52 * of the entry_point_info. The function returns a pointer to the initialized 53 * context and sets this as the next context to return to. 54 * 55 * The EE and ST attributes are used to configure the endianess and secure 56 * timer availability for the new execution context. 57 * 58 * To prepare the register state for entry call cm_prepare_el3_exit() and 59 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 60 * cm_e1_sysreg_context_restore(). 61 ******************************************************************************/ 62 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 63 { 64 unsigned int security_state; 65 uint32_t scr_el3, pmcr_el0; 66 el3_state_t *state; 67 gp_regs_t *gp_regs; 68 unsigned long sctlr_elx, actlr_elx; 69 70 assert(ctx); 71 72 security_state = GET_SECURITY_STATE(ep->h.attr); 73 74 /* Clear any residual register values from the context */ 75 zeromem(ctx, sizeof(*ctx)); 76 77 /* 78 * SCR_EL3 was initialised during reset sequence in macro 79 * el3_arch_init_common. This code modifies the SCR_EL3 fields that 80 * affect the next EL. 81 * 82 * The following fields are initially set to zero and then updated to 83 * the required value depending on the state of the SPSR_EL3 and the 84 * Security state and entrypoint attributes of the next EL. 85 */ 86 scr_el3 = read_scr(); 87 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 88 SCR_ST_BIT | SCR_HCE_BIT); 89 /* 90 * SCR_NS: Set the security state of the next EL. 91 */ 92 if (security_state != SECURE) 93 scr_el3 |= SCR_NS_BIT; 94 /* 95 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 96 * Exception level as specified by SPSR. 97 */ 98 if (GET_RW(ep->spsr) == MODE_RW_64) 99 scr_el3 |= SCR_RW_BIT; 100 /* 101 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 102 * Secure timer registers to EL3, from AArch64 state only, if specified 103 * by the entrypoint attributes. 104 */ 105 if (EP_GET_ST(ep->h.attr)) 106 scr_el3 |= SCR_ST_BIT; 107 108 #ifndef HANDLE_EA_EL3_FIRST 109 /* 110 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 111 * to EL3 when executing at a lower EL. When executing at EL3, External 112 * Aborts are taken to EL3. 113 */ 114 scr_el3 &= ~SCR_EA_BIT; 115 #endif 116 117 #if FAULT_INJECTION_SUPPORT 118 /* Enable fault injection from lower ELs */ 119 scr_el3 |= SCR_FIEN_BIT; 120 #endif 121 122 #ifdef IMAGE_BL31 123 /* 124 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 125 * indicated by the interrupt routing model for BL31. 126 */ 127 scr_el3 |= get_scr_el3_from_routing_model(security_state); 128 #endif 129 130 /* 131 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 132 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 133 * next mode is Hyp. 134 */ 135 if ((GET_RW(ep->spsr) == MODE_RW_64 136 && GET_EL(ep->spsr) == MODE_EL2) 137 || (GET_RW(ep->spsr) != MODE_RW_64 138 && GET_M32(ep->spsr) == MODE32_hyp)) { 139 scr_el3 |= SCR_HCE_BIT; 140 } 141 142 /* 143 * Initialise SCTLR_EL1 to the reset value corresponding to the target 144 * execution state setting all fields rather than relying of the hw. 145 * Some fields have architecturally UNKNOWN reset values and these are 146 * set to zero. 147 * 148 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 149 * 150 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 151 * required by PSCI specification) 152 */ 153 sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 154 if (GET_RW(ep->spsr) == MODE_RW_64) 155 sctlr_elx |= SCTLR_EL1_RES1; 156 else { 157 /* 158 * If the target execution state is AArch32 then the following 159 * fields need to be set. 160 * 161 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 162 * instructions are not trapped to EL1. 163 * 164 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 165 * instructions are not trapped to EL1. 166 * 167 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 168 * CP15DMB, CP15DSB, and CP15ISB instructions. 169 */ 170 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 171 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 172 } 173 174 /* 175 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 176 * and other EL2 registers are set up by cm_preapre_ns_entry() as they 177 * are not part of the stored cpu_context. 178 */ 179 write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 180 181 /* 182 * Base the context ACTLR_EL1 on the current value, as it is 183 * implementation defined. The context restore process will write 184 * the value from the context to the actual register and can cause 185 * problems for processor cores that don't expect certain bits to 186 * be zero. 187 */ 188 actlr_elx = read_actlr_el1(); 189 write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 190 191 if (security_state == SECURE) { 192 /* 193 * Initialise PMCR_EL0 for secure context only, setting all 194 * fields rather than relying on hw. Some fields are 195 * architecturally UNKNOWN on reset. 196 * 197 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 198 * is recorded in PMOVSCLR_EL0[31], occurs on the increment 199 * that changes PMCCNTR_EL0[63] from 1 to 0. 200 * 201 * PMCR_EL0.DP: Set to one so that the cycle counter, 202 * PMCCNTR_EL0 does not count when event counting is prohibited. 203 * 204 * PMCR_EL0.X: Set to zero to disable export of events. 205 * 206 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 207 * counts on every clock cycle. 208 */ 209 pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 210 | PMCR_EL0_DP_BIT) 211 & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 212 write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 213 } 214 215 /* Populate EL3 state so that we've the right context before doing ERET */ 216 state = get_el3state_ctx(ctx); 217 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 218 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 219 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 220 221 /* 222 * Store the X0-X7 value from the entrypoint into the context 223 * Use memcpy as we are in control of the layout of the structures 224 */ 225 gp_regs = get_gpregs_ctx(ctx); 226 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 227 } 228 229 /******************************************************************************* 230 * Enable architecture extensions on first entry to Non-secure world. 231 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 232 * it is zero. 233 ******************************************************************************/ 234 static void enable_extensions_nonsecure(int el2_unused) 235 { 236 #if IMAGE_BL31 237 #if ENABLE_SPE_FOR_LOWER_ELS 238 spe_enable(el2_unused); 239 #endif 240 241 #if ENABLE_AMU 242 amu_enable(el2_unused); 243 #endif 244 245 #if ENABLE_SVE_FOR_NS 246 sve_enable(el2_unused); 247 #endif 248 #endif 249 } 250 251 /******************************************************************************* 252 * The following function initializes the cpu_context for a CPU specified by 253 * its `cpu_idx` for first use, and sets the initial entrypoint state as 254 * specified by the entry_point_info structure. 255 ******************************************************************************/ 256 void cm_init_context_by_index(unsigned int cpu_idx, 257 const entry_point_info_t *ep) 258 { 259 cpu_context_t *ctx; 260 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 261 cm_init_context_common(ctx, ep); 262 } 263 264 /******************************************************************************* 265 * The following function initializes the cpu_context for the current CPU 266 * for first use, and sets the initial entrypoint state as specified by the 267 * entry_point_info structure. 268 ******************************************************************************/ 269 void cm_init_my_context(const entry_point_info_t *ep) 270 { 271 cpu_context_t *ctx; 272 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 273 cm_init_context_common(ctx, ep); 274 } 275 276 /******************************************************************************* 277 * Prepare the CPU system registers for first entry into secure or normal world 278 * 279 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 280 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 281 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 282 * For all entries, the EL1 registers are initialized from the cpu_context 283 ******************************************************************************/ 284 void cm_prepare_el3_exit(uint32_t security_state) 285 { 286 uint32_t sctlr_elx, scr_el3, mdcr_el2; 287 cpu_context_t *ctx = cm_get_context(security_state); 288 int el2_unused = 0; 289 290 assert(ctx); 291 292 if (security_state == NON_SECURE) { 293 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 294 if (scr_el3 & SCR_HCE_BIT) { 295 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 296 sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 297 CTX_SCTLR_EL1); 298 sctlr_elx &= SCTLR_EE_BIT; 299 sctlr_elx |= SCTLR_EL2_RES1; 300 write_sctlr_el2(sctlr_elx); 301 } else if (EL_IMPLEMENTED(2)) { 302 el2_unused = 1; 303 304 /* 305 * EL2 present but unused, need to disable safely. 306 * SCTLR_EL2 can be ignored in this case. 307 * 308 * Initialise all fields in HCR_EL2, except HCR_EL2.RW, 309 * to zero so that Non-secure operations do not trap to 310 * EL2. 311 * 312 * HCR_EL2.RW: Set this field to match SCR_EL3.RW 313 */ 314 write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 315 316 /* 317 * Initialise CPTR_EL2 setting all fields rather than 318 * relying on the hw. All fields have architecturally 319 * UNKNOWN reset values. 320 * 321 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 322 * accesses to the CPACR_EL1 or CPACR from both 323 * Execution states do not trap to EL2. 324 * 325 * CPTR_EL2.TTA: Set to zero so that Non-secure System 326 * register accesses to the trace registers from both 327 * Execution states do not trap to EL2. 328 * 329 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 330 * to SIMD and floating-point functionality from both 331 * Execution states do not trap to EL2. 332 */ 333 write_cptr_el2(CPTR_EL2_RESET_VAL & 334 ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 335 | CPTR_EL2_TFP_BIT)); 336 337 /* 338 * Initiliase CNTHCTL_EL2. All fields are 339 * architecturally UNKNOWN on reset and are set to zero 340 * except for field(s) listed below. 341 * 342 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 343 * Hyp mode of Non-secure EL0 and EL1 accesses to the 344 * physical timer registers. 345 * 346 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 347 * Hyp mode of Non-secure EL0 and EL1 accesses to the 348 * physical counter registers. 349 */ 350 write_cnthctl_el2(CNTHCTL_RESET_VAL | 351 EL1PCEN_BIT | EL1PCTEN_BIT); 352 353 /* 354 * Initialise CNTVOFF_EL2 to zero as it resets to an 355 * architecturally UNKNOWN value. 356 */ 357 write_cntvoff_el2(0); 358 359 /* 360 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 361 * MPIDR_EL1 respectively. 362 */ 363 write_vpidr_el2(read_midr_el1()); 364 write_vmpidr_el2(read_mpidr_el1()); 365 366 /* 367 * Initialise VTTBR_EL2. All fields are architecturally 368 * UNKNOWN on reset. 369 * 370 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 371 * 2 address translation is disabled, cache maintenance 372 * operations depend on the VMID. 373 * 374 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 375 * translation is disabled. 376 */ 377 write_vttbr_el2(VTTBR_RESET_VAL & 378 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 379 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 380 381 /* 382 * Initialise MDCR_EL2, setting all fields rather than 383 * relying on hw. Some fields are architecturally 384 * UNKNOWN on reset. 385 * 386 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 387 * EL1 System register accesses to the Debug ROM 388 * registers are not trapped to EL2. 389 * 390 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 391 * System register accesses to the powerdown debug 392 * registers are not trapped to EL2. 393 * 394 * MDCR_EL2.TDA: Set to zero so that System register 395 * accesses to the debug registers do not trap to EL2. 396 * 397 * MDCR_EL2.TDE: Set to zero so that debug exceptions 398 * are not routed to EL2. 399 * 400 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 401 * Monitors. 402 * 403 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 404 * EL1 accesses to all Performance Monitors registers 405 * are not trapped to EL2. 406 * 407 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 408 * and EL1 accesses to the PMCR_EL0 or PMCR are not 409 * trapped to EL2. 410 * 411 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 412 * architecturally-defined reset value. 413 */ 414 mdcr_el2 = ((MDCR_EL2_RESET_VAL | 415 ((read_pmcr_el0() & PMCR_EL0_N_BITS) 416 >> PMCR_EL0_N_SHIFT)) & 417 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 418 | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 419 | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 420 | MDCR_EL2_TPMCR_BIT)); 421 422 write_mdcr_el2(mdcr_el2); 423 424 /* 425 * Initialise HSTR_EL2. All fields are architecturally 426 * UNKNOWN on reset. 427 * 428 * HSTR_EL2.T<n>: Set all these fields to zero so that 429 * Non-secure EL0 or EL1 accesses to System registers 430 * do not trap to EL2. 431 */ 432 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 433 /* 434 * Initialise CNTHP_CTL_EL2. All fields are 435 * architecturally UNKNOWN on reset. 436 * 437 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 438 * physical timer and prevent timer interrupts. 439 */ 440 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 441 ~(CNTHP_CTL_ENABLE_BIT)); 442 } 443 enable_extensions_nonsecure(el2_unused); 444 } 445 446 cm_el1_sysregs_context_restore(security_state); 447 cm_set_next_eret_context(security_state); 448 } 449 450 /******************************************************************************* 451 * The next four functions are used by runtime services to save and restore 452 * EL1 context on the 'cpu_context' structure for the specified security 453 * state. 454 ******************************************************************************/ 455 void cm_el1_sysregs_context_save(uint32_t security_state) 456 { 457 cpu_context_t *ctx; 458 459 ctx = cm_get_context(security_state); 460 assert(ctx); 461 462 el1_sysregs_context_save(get_sysregs_ctx(ctx)); 463 464 #if IMAGE_BL31 465 if (security_state == SECURE) 466 PUBLISH_EVENT(cm_exited_secure_world); 467 else 468 PUBLISH_EVENT(cm_exited_normal_world); 469 #endif 470 } 471 472 void cm_el1_sysregs_context_restore(uint32_t security_state) 473 { 474 cpu_context_t *ctx; 475 476 ctx = cm_get_context(security_state); 477 assert(ctx); 478 479 el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 480 481 #if IMAGE_BL31 482 if (security_state == SECURE) 483 PUBLISH_EVENT(cm_entering_secure_world); 484 else 485 PUBLISH_EVENT(cm_entering_normal_world); 486 #endif 487 } 488 489 /******************************************************************************* 490 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 491 * given security state with the given entrypoint 492 ******************************************************************************/ 493 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 494 { 495 cpu_context_t *ctx; 496 el3_state_t *state; 497 498 ctx = cm_get_context(security_state); 499 assert(ctx); 500 501 /* Populate EL3 state so that ERET jumps to the correct entry */ 502 state = get_el3state_ctx(ctx); 503 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 504 } 505 506 /******************************************************************************* 507 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 508 * pertaining to the given security state 509 ******************************************************************************/ 510 void cm_set_elr_spsr_el3(uint32_t security_state, 511 uintptr_t entrypoint, uint32_t spsr) 512 { 513 cpu_context_t *ctx; 514 el3_state_t *state; 515 516 ctx = cm_get_context(security_state); 517 assert(ctx); 518 519 /* Populate EL3 state so that ERET jumps to the correct entry */ 520 state = get_el3state_ctx(ctx); 521 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 522 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 523 } 524 525 /******************************************************************************* 526 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 527 * pertaining to the given security state using the value and bit position 528 * specified in the parameters. It preserves all other bits. 529 ******************************************************************************/ 530 void cm_write_scr_el3_bit(uint32_t security_state, 531 uint32_t bit_pos, 532 uint32_t value) 533 { 534 cpu_context_t *ctx; 535 el3_state_t *state; 536 uint32_t scr_el3; 537 538 ctx = cm_get_context(security_state); 539 assert(ctx); 540 541 /* Ensure that the bit position is a valid one */ 542 assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 543 544 /* Ensure that the 'value' is only a bit wide */ 545 assert(value <= 1); 546 547 /* 548 * Get the SCR_EL3 value from the cpu context, clear the desired bit 549 * and set it to its new value. 550 */ 551 state = get_el3state_ctx(ctx); 552 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 553 scr_el3 &= ~(1 << bit_pos); 554 scr_el3 |= value << bit_pos; 555 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 556 } 557 558 /******************************************************************************* 559 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 560 * given security state. 561 ******************************************************************************/ 562 uint32_t cm_get_scr_el3(uint32_t security_state) 563 { 564 cpu_context_t *ctx; 565 el3_state_t *state; 566 567 ctx = cm_get_context(security_state); 568 assert(ctx); 569 570 /* Populate EL3 state so that ERET jumps to the correct entry */ 571 state = get_el3state_ctx(ctx); 572 return read_ctx_reg(state, CTX_SCR_EL3); 573 } 574 575 /******************************************************************************* 576 * This function is used to program the context that's used for exception 577 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 578 * the required security state 579 ******************************************************************************/ 580 void cm_set_next_eret_context(uint32_t security_state) 581 { 582 cpu_context_t *ctx; 583 584 ctx = cm_get_context(security_state); 585 assert(ctx); 586 587 cm_set_next_context(ctx); 588 } 589