xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 1b491eead580d7849a45a38f2c6a935a5d8d1160)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	if (is_feat_csv2_2_supported()) {
175 		/* Enable access to the SCXTNUM_ELx registers. */
176 		scr_el3 |= SCR_EnSCXT_BIT;
177 	}
178 
179 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
180 }
181 #endif /* ENABLE_RME */
182 
183 /******************************************************************************
184  * This function performs initializations that are specific to NON-SECURE state
185  * and updates the cpu context specified by 'ctx'.
186  *****************************************************************************/
187 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
188 {
189 	u_register_t scr_el3;
190 	el3_state_t *state;
191 
192 	state = get_el3state_ctx(ctx);
193 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
194 
195 	/* SCR_NS: Set the NS bit */
196 	scr_el3 |= SCR_NS_BIT;
197 
198 #if !CTX_INCLUDE_PAUTH_REGS
199 	/*
200 	 * If the pointer authentication registers aren't saved during world
201 	 * switches the value of the registers can be leaked from the Secure to
202 	 * the Non-secure world. To prevent this, rather than enabling pointer
203 	 * authentication everywhere, we only enable it in the Non-secure world.
204 	 *
205 	 * If the Secure world wants to use pointer authentication,
206 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
207 	 */
208 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
209 #endif /* !CTX_INCLUDE_PAUTH_REGS */
210 
211 	/* Allow access to Allocation Tags when MTE is implemented. */
212 	scr_el3 |= SCR_ATA_BIT;
213 
214 #if HANDLE_EA_EL3_FIRST_NS
215 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
216 	scr_el3 |= SCR_EA_BIT;
217 #endif
218 
219 #if RAS_TRAP_NS_ERR_REC_ACCESS
220 	/*
221 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
222 	 * and RAS ERX registers from EL1 and EL2(from any security state)
223 	 * are trapped to EL3.
224 	 * Set here to trap only for NS EL1/EL2
225 	 *
226 	 */
227 	scr_el3 |= SCR_TERR_BIT;
228 #endif
229 
230 	if (is_feat_csv2_2_supported()) {
231 		/* Enable access to the SCXTNUM_ELx registers. */
232 		scr_el3 |= SCR_EnSCXT_BIT;
233 	}
234 
235 #ifdef IMAGE_BL31
236 	/*
237 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
238 	 *  indicated by the interrupt routing model for BL31.
239 	 */
240 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
241 #endif
242 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
243 
244 	/* Initialize EL1 context registers */
245 	setup_el1_context(ctx, ep);
246 
247 	/* Initialize EL2 context registers */
248 #if CTX_INCLUDE_EL2_REGS
249 
250 	/*
251 	 * Initialize SCTLR_EL2 context register using Endianness value
252 	 * taken from the entrypoint attribute.
253 	 */
254 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
255 	sctlr_el2 |= SCTLR_EL2_RES1;
256 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
257 			sctlr_el2);
258 
259 	/*
260 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
261 	 * when restoring NS context.
262 	 */
263 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
264 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
265 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
266 			icc_sre_el2);
267 
268 	/*
269 	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
270 	 * throw anyone off who expects this to be sensible.
271 	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
272 	 * unified with the proper PMU implementation
273 	 */
274 	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
275 			PMCR_EL0_N_MASK);
276 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
277 
278 	if (is_feat_hcx_supported()) {
279 		/*
280 		 * Initialize register HCRX_EL2 with its init value.
281 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
282 		 * chance that this can lead to unexpected behavior in lower
283 		 * ELs that have not been updated since the introduction of
284 		 * this feature if not properly initialized, especially when
285 		 * it comes to those bits that enable/disable traps.
286 		 */
287 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
288 			HCRX_EL2_INIT_VAL);
289 	}
290 #endif /* CTX_INCLUDE_EL2_REGS */
291 }
292 
293 /*******************************************************************************
294  * The following function performs initialization of the cpu_context 'ctx'
295  * for first use that is common to all security states, and sets the
296  * initial entrypoint state as specified by the entry_point_info structure.
297  *
298  * The EE and ST attributes are used to configure the endianness and secure
299  * timer availability for the new execution context.
300  ******************************************************************************/
301 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
302 {
303 	u_register_t scr_el3;
304 	el3_state_t *state;
305 	gp_regs_t *gp_regs;
306 
307 	/* Clear any residual register values from the context */
308 	zeromem(ctx, sizeof(*ctx));
309 
310 	/*
311 	 * SCR_EL3 was initialised during reset sequence in macro
312 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
313 	 * affect the next EL.
314 	 *
315 	 * The following fields are initially set to zero and then updated to
316 	 * the required value depending on the state of the SPSR_EL3 and the
317 	 * Security state and entrypoint attributes of the next EL.
318 	 */
319 	scr_el3 = read_scr();
320 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
321 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
322 
323 	/*
324 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
325 	 *  Exception level as specified by SPSR.
326 	 */
327 	if (GET_RW(ep->spsr) == MODE_RW_64) {
328 		scr_el3 |= SCR_RW_BIT;
329 	}
330 
331 	/*
332 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
333 	 * Secure timer registers to EL3, from AArch64 state only, if specified
334 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
335 	 * bit always behaves as 1 (i.e. secure physical timer register access
336 	 * is not trapped)
337 	 */
338 	if (EP_GET_ST(ep->h.attr) != 0U) {
339 		scr_el3 |= SCR_ST_BIT;
340 	}
341 
342 	/*
343 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
344 	 * SCR_EL3.HXEn.
345 	 */
346 	if (is_feat_hcx_supported()) {
347 		scr_el3 |= SCR_HXEn_BIT;
348 	}
349 
350 	/*
351 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
352 	 * registers are trapped to EL3.
353 	 */
354 #if ENABLE_FEAT_RNG_TRAP
355 	scr_el3 |= SCR_TRNDR_BIT;
356 #endif
357 
358 #if FAULT_INJECTION_SUPPORT
359 	/* Enable fault injection from lower ELs */
360 	scr_el3 |= SCR_FIEN_BIT;
361 #endif
362 
363 	/*
364 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
365 	 */
366 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
367 		scr_el3 |= SCR_TCR2EN_BIT;
368 	}
369 
370 	/*
371 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
372 	 * registers for AArch64 if present.
373 	 */
374 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
375 		scr_el3 |= SCR_PIEN_BIT;
376 	}
377 
378 	/*
379 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
380 	 */
381 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
382 		scr_el3 |= SCR_GCSEn_BIT;
383 	}
384 
385 	/*
386 	 * CPTR_EL3 was initialized out of reset, copy that value to the
387 	 * context register.
388 	 */
389 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
390 
391 	/*
392 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
393 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
394 	 * next mode is Hyp.
395 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
396 	 * same conditions as HVC instructions and when the processor supports
397 	 * ARMv8.6-FGT.
398 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
399 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
400 	 * and when the processor supports ECV.
401 	 */
402 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
403 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
404 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
405 		scr_el3 |= SCR_HCE_BIT;
406 
407 		if (is_feat_fgt_supported()) {
408 			scr_el3 |= SCR_FGTEN_BIT;
409 		}
410 
411 		if (is_feat_ecv_supported()) {
412 			scr_el3 |= SCR_ECVEN_BIT;
413 		}
414 	}
415 
416 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
417 	if (is_feat_twed_supported()) {
418 		/* Set delay in SCR_EL3 */
419 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
420 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
421 				<< SCR_TWEDEL_SHIFT);
422 
423 		/* Enable WFE delay */
424 		scr_el3 |= SCR_TWEDEn_BIT;
425 	}
426 
427 	/*
428 	 * Populate EL3 state so that we've the right context
429 	 * before doing ERET
430 	 */
431 	state = get_el3state_ctx(ctx);
432 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
433 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
434 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
435 
436 	/*
437 	 * Store the X0-X7 value from the entrypoint into the context
438 	 * Use memcpy as we are in control of the layout of the structures
439 	 */
440 	gp_regs = get_gpregs_ctx(ctx);
441 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
442 }
443 
444 /*******************************************************************************
445  * Context management library initialization routine. This library is used by
446  * runtime services to share pointers to 'cpu_context' structures for secure
447  * non-secure and realm states. Management of the structures and their associated
448  * memory is not done by the context management library e.g. the PSCI service
449  * manages the cpu context used for entry from and exit to the non-secure state.
450  * The Secure payload dispatcher service manages the context(s) corresponding to
451  * the secure state. It also uses this library to get access to the non-secure
452  * state cpu context pointers.
453  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
454  * which will be used for programming an entry into a lower EL. The same context
455  * will be used to save state upon exception entry from that EL.
456  ******************************************************************************/
457 void __init cm_init(void)
458 {
459 	/*
460 	 * The context management library has only global data to initialize, but
461 	 * that will be done when the BSS is zeroed out.
462 	 */
463 }
464 
465 /*******************************************************************************
466  * This is the high-level function used to initialize the cpu_context 'ctx' for
467  * first use. It performs initializations that are common to all security states
468  * and initializations specific to the security state specified in 'ep'
469  ******************************************************************************/
470 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
471 {
472 	unsigned int security_state;
473 
474 	assert(ctx != NULL);
475 
476 	/*
477 	 * Perform initializations that are common
478 	 * to all security states
479 	 */
480 	setup_context_common(ctx, ep);
481 
482 	security_state = GET_SECURITY_STATE(ep->h.attr);
483 
484 	/* Perform security state specific initializations */
485 	switch (security_state) {
486 	case SECURE:
487 		setup_secure_context(ctx, ep);
488 		break;
489 #if ENABLE_RME
490 	case REALM:
491 		setup_realm_context(ctx, ep);
492 		break;
493 #endif
494 	case NON_SECURE:
495 		setup_ns_context(ctx, ep);
496 		break;
497 	default:
498 		ERROR("Invalid security state\n");
499 		panic();
500 		break;
501 	}
502 }
503 
504 /*******************************************************************************
505  * Enable architecture extensions on first entry to Non-secure world.
506  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
507  * it is zero.
508  ******************************************************************************/
509 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
510 {
511 #if IMAGE_BL31
512 	if (is_feat_spe_supported()) {
513 		spe_enable(el2_unused);
514 	}
515 
516 	if (is_feat_amu_supported()) {
517 		amu_enable(el2_unused, ctx);
518 	}
519 
520 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
521 	if (is_feat_sme_supported()) {
522 		sme_enable(ctx);
523 	} else if (is_feat_sve_supported()) {
524 		/* Enable SVE and FPU/SIMD for non-secure world. */
525 		sve_enable(ctx);
526 	}
527 
528 	if (is_feat_mpam_supported()) {
529 		mpam_enable(el2_unused);
530 	}
531 
532 	if (is_feat_trbe_supported()) {
533 		trbe_enable();
534 	}
535 
536 	if (is_feat_brbe_supported()) {
537 		brbe_enable();
538 	}
539 
540 	if (is_feat_sys_reg_trace_supported()) {
541 		sys_reg_trace_enable(ctx);
542 	}
543 
544 	if (is_feat_trf_supported()) {
545 		trf_enable();
546 	}
547 #endif
548 }
549 
550 /*******************************************************************************
551  * Enable architecture extensions on first entry to Secure world.
552  ******************************************************************************/
553 static void manage_extensions_secure(cpu_context_t *ctx)
554 {
555 #if IMAGE_BL31
556 
557 	if (is_feat_sme_supported()) {
558 		if (ENABLE_SME_FOR_SWD) {
559 		/*
560 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
561 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
562 		 */
563 			sme_enable(ctx);
564 		} else {
565 		/*
566 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
567 		 * world can safely use the associated registers.
568 		 */
569 			sme_disable(ctx);
570 		}
571 	} else if (is_feat_sve_supported()) {
572 		if (ENABLE_SVE_FOR_SWD) {
573 		/*
574 		 * Enable SVE and FPU in secure context, secure manager must
575 		 * ensure that the SVE and FPU register contexts are properly
576 		 * managed.
577 		 */
578 			sve_enable(ctx);
579 		} else {
580 		/*
581 		 * Disable SVE and FPU in secure context so non-secure world
582 		 * can safely use them.
583 		 */
584 			sve_disable(ctx);
585 		}
586 	}
587 
588 #endif /* IMAGE_BL31 */
589 }
590 
591 /*******************************************************************************
592  * The following function initializes the cpu_context for a CPU specified by
593  * its `cpu_idx` for first use, and sets the initial entrypoint state as
594  * specified by the entry_point_info structure.
595  ******************************************************************************/
596 void cm_init_context_by_index(unsigned int cpu_idx,
597 			      const entry_point_info_t *ep)
598 {
599 	cpu_context_t *ctx;
600 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
601 	cm_setup_context(ctx, ep);
602 }
603 
604 /*******************************************************************************
605  * The following function initializes the cpu_context for the current CPU
606  * for first use, and sets the initial entrypoint state as specified by the
607  * entry_point_info structure.
608  ******************************************************************************/
609 void cm_init_my_context(const entry_point_info_t *ep)
610 {
611 	cpu_context_t *ctx;
612 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
613 	cm_setup_context(ctx, ep);
614 }
615 
616 /*******************************************************************************
617  * Prepare the CPU system registers for first entry into realm, secure, or
618  * normal world.
619  *
620  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
621  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
622  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
623  * For all entries, the EL1 registers are initialized from the cpu_context
624  ******************************************************************************/
625 void cm_prepare_el3_exit(uint32_t security_state)
626 {
627 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
628 	cpu_context_t *ctx = cm_get_context(security_state);
629 	bool el2_unused = false;
630 	uint64_t hcr_el2 = 0U;
631 
632 	assert(ctx != NULL);
633 
634 	if (security_state == NON_SECURE) {
635 		uint64_t el2_implemented = el_implemented(2);
636 
637 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
638 						 CTX_SCR_EL3);
639 
640 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
641 			|| (el2_implemented != EL_IMPL_NONE)) {
642 			/*
643 			 * If context is not being used for EL2, initialize
644 			 * HCRX_EL2 with its init value here.
645 			 */
646 			if (is_feat_hcx_supported()) {
647 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
648 			}
649 		}
650 
651 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
652 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
653 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
654 							   CTX_SCTLR_EL1);
655 			sctlr_elx &= SCTLR_EE_BIT;
656 			sctlr_elx |= SCTLR_EL2_RES1;
657 #if ERRATA_A75_764081
658 			/*
659 			 * If workaround of errata 764081 for Cortex-A75 is used
660 			 * then set SCTLR_EL2.IESB to enable Implicit Error
661 			 * Synchronization Barrier.
662 			 */
663 			sctlr_elx |= SCTLR_IESB_BIT;
664 #endif
665 			write_sctlr_el2(sctlr_elx);
666 		} else if (el2_implemented != EL_IMPL_NONE) {
667 			el2_unused = true;
668 
669 			/*
670 			 * EL2 present but unused, need to disable safely.
671 			 * SCTLR_EL2 can be ignored in this case.
672 			 *
673 			 * Set EL2 register width appropriately: Set HCR_EL2
674 			 * field to match SCR_EL3.RW.
675 			 */
676 			if ((scr_el3 & SCR_RW_BIT) != 0U)
677 				hcr_el2 |= HCR_RW_BIT;
678 
679 			/*
680 			 * For Armv8.3 pointer authentication feature, disable
681 			 * traps to EL2 when accessing key registers or using
682 			 * pointer authentication instructions from lower ELs.
683 			 */
684 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
685 
686 			write_hcr_el2(hcr_el2);
687 
688 			/*
689 			 * Initialise CPTR_EL2 setting all fields rather than
690 			 * relying on the hw. All fields have architecturally
691 			 * UNKNOWN reset values.
692 			 *
693 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
694 			 *  accesses to the CPACR_EL1 or CPACR from both
695 			 *  Execution states do not trap to EL2.
696 			 *
697 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
698 			 *  register accesses to the trace registers from both
699 			 *  Execution states do not trap to EL2.
700 			 *  If PE trace unit System registers are not implemented
701 			 *  then this bit is reserved, and must be set to zero.
702 			 *
703 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
704 			 *  to SIMD and floating-point functionality from both
705 			 *  Execution states do not trap to EL2.
706 			 */
707 			write_cptr_el2(CPTR_EL2_RESET_VAL &
708 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
709 					| CPTR_EL2_TFP_BIT));
710 
711 			/*
712 			 * Initialise CNTHCTL_EL2. All fields are
713 			 * architecturally UNKNOWN on reset and are set to zero
714 			 * except for field(s) listed below.
715 			 *
716 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
717 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
718 			 *  physical timer registers.
719 			 *
720 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
721 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
722 			 *  physical counter registers.
723 			 */
724 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
725 						EL1PCEN_BIT | EL1PCTEN_BIT);
726 
727 			/*
728 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
729 			 * architecturally UNKNOWN value.
730 			 */
731 			write_cntvoff_el2(0);
732 
733 			/*
734 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
735 			 * MPIDR_EL1 respectively.
736 			 */
737 			write_vpidr_el2(read_midr_el1());
738 			write_vmpidr_el2(read_mpidr_el1());
739 
740 			/*
741 			 * Initialise VTTBR_EL2. All fields are architecturally
742 			 * UNKNOWN on reset.
743 			 *
744 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
745 			 *  2 address translation is disabled, cache maintenance
746 			 *  operations depend on the VMID.
747 			 *
748 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
749 			 *  translation is disabled.
750 			 */
751 			write_vttbr_el2(VTTBR_RESET_VAL &
752 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
753 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
754 
755 			/*
756 			 * Initialise MDCR_EL2, setting all fields rather than
757 			 * relying on hw. Some fields are architecturally
758 			 * UNKNOWN on reset.
759 			 *
760 			 * MDCR_EL2.HLP: Set to one so that event counter
761 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
762 			 *  occurs on the increment that changes
763 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
764 			 *  implemented. This bit is RES0 in versions of the
765 			 *  architecture earlier than ARMv8.5, setting it to 1
766 			 *  doesn't have any effect on them.
767 			 *
768 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
769 			 *  Filter Control register TRFCR_EL1 at EL1 is not
770 			 *  trapped to EL2. This bit is RES0 in versions of
771 			 *  the architecture earlier than ARMv8.4.
772 			 *
773 			 * MDCR_EL2.HPMD: Set to one so that event counting is
774 			 *  prohibited at EL2. This bit is RES0 in versions of
775 			 *  the architecture earlier than ARMv8.1, setting it
776 			 *  to 1 doesn't have any effect on them.
777 			 *
778 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
779 			 *  Statistical Profiling control registers from EL1
780 			 *  do not trap to EL2. This bit is RES0 when SPE is
781 			 *  not implemented.
782 			 *
783 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
784 			 *  EL1 System register accesses to the Debug ROM
785 			 *  registers are not trapped to EL2.
786 			 *
787 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
788 			 *  System register accesses to the powerdown debug
789 			 *  registers are not trapped to EL2.
790 			 *
791 			 * MDCR_EL2.TDA: Set to zero so that System register
792 			 *  accesses to the debug registers do not trap to EL2.
793 			 *
794 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
795 			 *  are not routed to EL2.
796 			 *
797 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
798 			 *  Monitors.
799 			 *
800 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
801 			 *  EL1 accesses to all Performance Monitors registers
802 			 *  are not trapped to EL2.
803 			 *
804 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
805 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
806 			 *  trapped to EL2.
807 			 *
808 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
809 			 *  architecturally-defined reset value.
810 			 *
811 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
812 			 *  owning exception level is NS-EL1 and, tracing is
813 			 *  prohibited at NS-EL2. These bits are RES0 when
814 			 *  FEAT_TRBE is not implemented.
815 			 */
816 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
817 				     MDCR_EL2_HPMD) |
818 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
819 				   >> PMCR_EL0_N_SHIFT)) &
820 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
821 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
822 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
823 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
824 				     MDCR_EL2_TPMCR_BIT |
825 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
826 
827 			write_mdcr_el2(mdcr_el2);
828 
829 			/*
830 			 * Initialise HSTR_EL2. All fields are architecturally
831 			 * UNKNOWN on reset.
832 			 *
833 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
834 			 *  Non-secure EL0 or EL1 accesses to System registers
835 			 *  do not trap to EL2.
836 			 */
837 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
838 			/*
839 			 * Initialise CNTHP_CTL_EL2. All fields are
840 			 * architecturally UNKNOWN on reset.
841 			 *
842 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
843 			 *  physical timer and prevent timer interrupts.
844 			 */
845 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
846 						~(CNTHP_CTL_ENABLE_BIT));
847 		}
848 		manage_extensions_nonsecure(el2_unused, ctx);
849 	}
850 
851 	cm_el1_sysregs_context_restore(security_state);
852 	cm_set_next_eret_context(security_state);
853 }
854 
855 #if CTX_INCLUDE_EL2_REGS
856 
857 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
858 {
859 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
860 	if (is_feat_amu_supported()) {
861 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
862 	}
863 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
864 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
865 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
866 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
867 }
868 
869 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
870 {
871 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
872 	if (is_feat_amu_supported()) {
873 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
874 	}
875 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
876 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
877 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
878 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
879 }
880 
881 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
882 {
883 	u_register_t mpam_idr = read_mpamidr_el1();
884 
885 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
886 
887 	/*
888 	 * The context registers that we intend to save would be part of the
889 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
890 	 */
891 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
892 		return;
893 	}
894 
895 	/*
896 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
897 	 * MPAMIDR_HAS_HCR_BIT == 1.
898 	 */
899 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
900 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
901 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
902 
903 	/*
904 	 * The number of MPAMVPM registers is implementation defined, their
905 	 * number is stored in the MPAMIDR_EL1 register.
906 	 */
907 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
908 	case 7:
909 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
910 		__fallthrough;
911 	case 6:
912 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
913 		__fallthrough;
914 	case 5:
915 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
916 		__fallthrough;
917 	case 4:
918 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
919 		__fallthrough;
920 	case 3:
921 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
922 		__fallthrough;
923 	case 2:
924 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
925 		__fallthrough;
926 	case 1:
927 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
928 		break;
929 	}
930 }
931 
932 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
933 {
934 	u_register_t mpam_idr = read_mpamidr_el1();
935 
936 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
937 
938 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
939 		return;
940 	}
941 
942 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
943 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
944 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
945 
946 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
947 	case 7:
948 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
949 		__fallthrough;
950 	case 6:
951 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
952 		__fallthrough;
953 	case 5:
954 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
955 		__fallthrough;
956 	case 4:
957 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
958 		__fallthrough;
959 	case 3:
960 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
961 		__fallthrough;
962 	case 2:
963 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
964 		__fallthrough;
965 	case 1:
966 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
967 		break;
968 	}
969 }
970 
971 /*******************************************************************************
972  * Save EL2 sysreg context
973  ******************************************************************************/
974 void cm_el2_sysregs_context_save(uint32_t security_state)
975 {
976 	u_register_t scr_el3 = read_scr();
977 
978 	/*
979 	 * Always save the non-secure and realm EL2 context, only save the
980 	 * S-EL2 context if S-EL2 is enabled.
981 	 */
982 	if ((security_state != SECURE) ||
983 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
984 		cpu_context_t *ctx;
985 		el2_sysregs_t *el2_sysregs_ctx;
986 
987 		ctx = cm_get_context(security_state);
988 		assert(ctx != NULL);
989 
990 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
991 
992 		el2_sysregs_context_save_common(el2_sysregs_ctx);
993 #if CTX_INCLUDE_MTE_REGS
994 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
995 #endif
996 		if (is_feat_mpam_supported()) {
997 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
998 		}
999 
1000 		if (is_feat_fgt_supported()) {
1001 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1002 		}
1003 
1004 		if (is_feat_ecv_v2_supported()) {
1005 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
1006 				      read_cntpoff_el2());
1007 		}
1008 
1009 		if (is_feat_vhe_supported()) {
1010 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
1011 				      read_contextidr_el2());
1012 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
1013 				      read_ttbr1_el2());
1014 		}
1015 #if RAS_EXTENSION
1016 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
1017 #endif
1018 
1019 		if (is_feat_nv2_supported()) {
1020 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
1021 				      read_vncr_el2());
1022 		}
1023 
1024 		if (is_feat_trf_supported()) {
1025 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1026 		}
1027 
1028 		if (is_feat_csv2_2_supported()) {
1029 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
1030 				      read_scxtnum_el2());
1031 		}
1032 
1033 		if (is_feat_hcx_supported()) {
1034 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1035 		}
1036 		if (is_feat_tcr2_supported()) {
1037 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1038 		}
1039 		if (is_feat_sxpie_supported()) {
1040 			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1041 			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1042 		}
1043 		if (is_feat_s2pie_supported()) {
1044 			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1045 		}
1046 		if (is_feat_sxpoe_supported()) {
1047 			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1048 		}
1049 		if (is_feat_gcs_supported()) {
1050 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1051 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1052 		}
1053 	}
1054 }
1055 
1056 /*******************************************************************************
1057  * Restore EL2 sysreg context
1058  ******************************************************************************/
1059 void cm_el2_sysregs_context_restore(uint32_t security_state)
1060 {
1061 	u_register_t scr_el3 = read_scr();
1062 
1063 	/*
1064 	 * Always restore the non-secure and realm EL2 context, only restore the
1065 	 * S-EL2 context if S-EL2 is enabled.
1066 	 */
1067 	if ((security_state != SECURE) ||
1068 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1069 		cpu_context_t *ctx;
1070 		el2_sysregs_t *el2_sysregs_ctx;
1071 
1072 		ctx = cm_get_context(security_state);
1073 		assert(ctx != NULL);
1074 
1075 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1076 
1077 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1078 #if CTX_INCLUDE_MTE_REGS
1079 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
1080 #endif
1081 		if (is_feat_mpam_supported()) {
1082 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1083 		}
1084 
1085 		if (is_feat_fgt_supported()) {
1086 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1087 		}
1088 
1089 		if (is_feat_ecv_v2_supported()) {
1090 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1091 						       CTX_CNTPOFF_EL2));
1092 		}
1093 
1094 		if (is_feat_vhe_supported()) {
1095 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1096 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1097 		}
1098 #if RAS_EXTENSION
1099 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
1100 #endif
1101 
1102 		if (is_feat_nv2_supported()) {
1103 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1104 		}
1105 		if (is_feat_trf_supported()) {
1106 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1107 		}
1108 
1109 		if (is_feat_csv2_2_supported()) {
1110 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1111 						       CTX_SCXTNUM_EL2));
1112 		}
1113 
1114 		if (is_feat_hcx_supported()) {
1115 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1116 		}
1117 		if (is_feat_tcr2_supported()) {
1118 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1119 		}
1120 		if (is_feat_sxpie_supported()) {
1121 			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1122 			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1123 		}
1124 		if (is_feat_s2pie_supported()) {
1125 			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1126 		}
1127 		if (is_feat_sxpoe_supported()) {
1128 			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1129 		}
1130 		if (is_feat_gcs_supported()) {
1131 			write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1132 			write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1133 		}
1134 	}
1135 }
1136 #endif /* CTX_INCLUDE_EL2_REGS */
1137 
1138 /*******************************************************************************
1139  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1140  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1141  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1142  * cm_prepare_el3_exit function.
1143  ******************************************************************************/
1144 void cm_prepare_el3_exit_ns(void)
1145 {
1146 #if CTX_INCLUDE_EL2_REGS
1147 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1148 	assert(ctx != NULL);
1149 
1150 	/* Assert that EL2 is used. */
1151 #if ENABLE_ASSERTIONS
1152 	el3_state_t *state = get_el3state_ctx(ctx);
1153 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1154 #endif
1155 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1156 			(el_implemented(2U) != EL_IMPL_NONE));
1157 
1158 	/*
1159 	 * Currently some extensions are configured using
1160 	 * direct register updates. Therefore, do this here
1161 	 * instead of when setting up context.
1162 	 */
1163 	manage_extensions_nonsecure(0, ctx);
1164 
1165 	/*
1166 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1167 	 * register when restoring context.
1168 	 */
1169 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1170 
1171 	/*
1172 	 * Ensure the NS bit change is committed before the EL2/EL1
1173 	 * state restoration.
1174 	 */
1175 	isb();
1176 
1177 	/* Restore EL2 and EL1 sysreg contexts */
1178 	cm_el2_sysregs_context_restore(NON_SECURE);
1179 	cm_el1_sysregs_context_restore(NON_SECURE);
1180 	cm_set_next_eret_context(NON_SECURE);
1181 #else
1182 	cm_prepare_el3_exit(NON_SECURE);
1183 #endif /* CTX_INCLUDE_EL2_REGS */
1184 }
1185 
1186 /*******************************************************************************
1187  * The next four functions are used by runtime services to save and restore
1188  * EL1 context on the 'cpu_context' structure for the specified security
1189  * state.
1190  ******************************************************************************/
1191 void cm_el1_sysregs_context_save(uint32_t security_state)
1192 {
1193 	cpu_context_t *ctx;
1194 
1195 	ctx = cm_get_context(security_state);
1196 	assert(ctx != NULL);
1197 
1198 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1199 
1200 #if IMAGE_BL31
1201 	if (security_state == SECURE)
1202 		PUBLISH_EVENT(cm_exited_secure_world);
1203 	else
1204 		PUBLISH_EVENT(cm_exited_normal_world);
1205 #endif
1206 }
1207 
1208 void cm_el1_sysregs_context_restore(uint32_t security_state)
1209 {
1210 	cpu_context_t *ctx;
1211 
1212 	ctx = cm_get_context(security_state);
1213 	assert(ctx != NULL);
1214 
1215 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1216 
1217 #if IMAGE_BL31
1218 	if (security_state == SECURE)
1219 		PUBLISH_EVENT(cm_entering_secure_world);
1220 	else
1221 		PUBLISH_EVENT(cm_entering_normal_world);
1222 #endif
1223 }
1224 
1225 /*******************************************************************************
1226  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1227  * given security state with the given entrypoint
1228  ******************************************************************************/
1229 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1230 {
1231 	cpu_context_t *ctx;
1232 	el3_state_t *state;
1233 
1234 	ctx = cm_get_context(security_state);
1235 	assert(ctx != NULL);
1236 
1237 	/* Populate EL3 state so that ERET jumps to the correct entry */
1238 	state = get_el3state_ctx(ctx);
1239 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1240 }
1241 
1242 /*******************************************************************************
1243  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1244  * pertaining to the given security state
1245  ******************************************************************************/
1246 void cm_set_elr_spsr_el3(uint32_t security_state,
1247 			uintptr_t entrypoint, uint32_t spsr)
1248 {
1249 	cpu_context_t *ctx;
1250 	el3_state_t *state;
1251 
1252 	ctx = cm_get_context(security_state);
1253 	assert(ctx != NULL);
1254 
1255 	/* Populate EL3 state so that ERET jumps to the correct entry */
1256 	state = get_el3state_ctx(ctx);
1257 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1258 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1259 }
1260 
1261 /*******************************************************************************
1262  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1263  * pertaining to the given security state using the value and bit position
1264  * specified in the parameters. It preserves all other bits.
1265  ******************************************************************************/
1266 void cm_write_scr_el3_bit(uint32_t security_state,
1267 			  uint32_t bit_pos,
1268 			  uint32_t value)
1269 {
1270 	cpu_context_t *ctx;
1271 	el3_state_t *state;
1272 	u_register_t scr_el3;
1273 
1274 	ctx = cm_get_context(security_state);
1275 	assert(ctx != NULL);
1276 
1277 	/* Ensure that the bit position is a valid one */
1278 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1279 
1280 	/* Ensure that the 'value' is only a bit wide */
1281 	assert(value <= 1U);
1282 
1283 	/*
1284 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1285 	 * and set it to its new value.
1286 	 */
1287 	state = get_el3state_ctx(ctx);
1288 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1289 	scr_el3 &= ~(1UL << bit_pos);
1290 	scr_el3 |= (u_register_t)value << bit_pos;
1291 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1292 }
1293 
1294 /*******************************************************************************
1295  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1296  * given security state.
1297  ******************************************************************************/
1298 u_register_t cm_get_scr_el3(uint32_t security_state)
1299 {
1300 	cpu_context_t *ctx;
1301 	el3_state_t *state;
1302 
1303 	ctx = cm_get_context(security_state);
1304 	assert(ctx != NULL);
1305 
1306 	/* Populate EL3 state so that ERET jumps to the correct entry */
1307 	state = get_el3state_ctx(ctx);
1308 	return read_ctx_reg(state, CTX_SCR_EL3);
1309 }
1310 
1311 /*******************************************************************************
1312  * This function is used to program the context that's used for exception
1313  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1314  * the required security state
1315  ******************************************************************************/
1316 void cm_set_next_eret_context(uint32_t security_state)
1317 {
1318 	cpu_context_t *ctx;
1319 
1320 	ctx = cm_get_context(security_state);
1321 	assert(ctx != NULL);
1322 
1323 	cm_set_next_context(ctx);
1324 }
1325