xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 18f2efd67d881fe0a9a535ce9e801e60d746e024)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <interrupt_mgmt.h>
14 #include <platform.h>
15 #include <platform_def.h>
16 #include <smcc_helpers.h>
17 #include <string.h>
18 #include <utils.h>
19 
20 
21 /*******************************************************************************
22  * Context management library initialisation routine. This library is used by
23  * runtime services to share pointers to 'cpu_context' structures for the secure
24  * and non-secure states. Management of the structures and their associated
25  * memory is not done by the context management library e.g. the PSCI service
26  * manages the cpu context used for entry from and exit to the non-secure state.
27  * The Secure payload dispatcher service manages the context(s) corresponding to
28  * the secure state. It also uses this library to get access to the non-secure
29  * state cpu context pointers.
30  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
31  * which will used for programming an entry into a lower EL. The same context
32  * will used to save state upon exception entry from that EL.
33  ******************************************************************************/
34 void cm_init(void)
35 {
36 	/*
37 	 * The context management library has only global data to intialize, but
38 	 * that will be done when the BSS is zeroed out
39 	 */
40 }
41 
42 /*******************************************************************************
43  * The following function initializes the cpu_context 'ctx' for
44  * first use, and sets the initial entrypoint state as specified by the
45  * entry_point_info structure.
46  *
47  * The security state to initialize is determined by the SECURE attribute
48  * of the entry_point_info. The function returns a pointer to the initialized
49  * context and sets this as the next context to return to.
50  *
51  * The EE and ST attributes are used to configure the endianess and secure
52  * timer availability for the new execution context.
53  *
54  * To prepare the register state for entry call cm_prepare_el3_exit() and
55  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56  * cm_e1_sysreg_context_restore().
57  ******************************************************************************/
58 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59 {
60 	unsigned int security_state;
61 	uint32_t scr_el3;
62 	el3_state_t *state;
63 	gp_regs_t *gp_regs;
64 	unsigned long sctlr_elx;
65 
66 	assert(ctx);
67 
68 	security_state = GET_SECURITY_STATE(ep->h.attr);
69 
70 	/* Clear any residual register values from the context */
71 	zeromem(ctx, sizeof(*ctx));
72 
73 	/*
74 	 * SCR_EL3 was initialised during reset sequence in macro
75 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
76 	 * affect the next EL.
77 	 *
78 	 * The following fields are initially set to zero and then updated to
79 	 * the required value depending on the state of the SPSR_EL3 and the
80 	 * Security state and entrypoint attributes of the next EL.
81 	 */
82 	scr_el3 = read_scr();
83 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
84 			SCR_ST_BIT | SCR_HCE_BIT);
85 	/*
86 	 * SCR_NS: Set the security state of the next EL.
87 	 */
88 	if (security_state != SECURE)
89 		scr_el3 |= SCR_NS_BIT;
90 	/*
91 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
92 	 *  Exception level as specified by SPSR.
93 	 */
94 	if (GET_RW(ep->spsr) == MODE_RW_64)
95 		scr_el3 |= SCR_RW_BIT;
96 	/*
97 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
98 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
99 	 *  by the entrypoint attributes.
100 	 */
101 	if (EP_GET_ST(ep->h.attr))
102 		scr_el3 |= SCR_ST_BIT;
103 
104 #ifndef HANDLE_EA_EL3_FIRST
105 	/*
106 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
107 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
108 	 *  Aborts are taken to EL3.
109 	 */
110 	scr_el3 &= ~SCR_EA_BIT;
111 #endif
112 
113 #ifdef IMAGE_BL31
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
116 	 *  indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
119 #endif
120 
121 	/*
122 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
123 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
124 	 * next mode is Hyp.
125 	 */
126 	if ((GET_RW(ep->spsr) == MODE_RW_64
127 	     && GET_EL(ep->spsr) == MODE_EL2)
128 	    || (GET_RW(ep->spsr) != MODE_RW_64
129 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
130 		scr_el3 |= SCR_HCE_BIT;
131 	}
132 
133 	/*
134 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
135 	 * execution state setting all fields rather than relying of the hw.
136 	 * Some fields have architecturally UNKNOWN reset values and these are
137 	 * set to zero.
138 	 *
139 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
140 	 *
141 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
142 	 *  required by PSCI specification)
143 	 */
144 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
145 	if (GET_RW(ep->spsr) == MODE_RW_64)
146 		sctlr_elx |= SCTLR_EL1_RES1;
147 	else {
148 		/*
149 		 * If the target execution state is AArch32 then the following
150 		 * fields need to be set.
151 		 *
152 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
153 		 *  instructions are not trapped to EL1.
154 		 *
155 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
156 		 *  instructions are not trapped to EL1.
157 		 *
158 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
159 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
160 		 */
161 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
162 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
163 	}
164 
165 	/*
166 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
167 	 * and other EL2 resgisters are set up by cm_preapre_ns_entry() as they
168 	 * are not part of the stored cpu_context.
169 	 */
170 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
171 
172 	/* Populate EL3 state so that we've the right context before doing ERET */
173 	state = get_el3state_ctx(ctx);
174 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
176 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
177 
178 	/*
179 	 * Store the X0-X7 value from the entrypoint into the context
180 	 * Use memcpy as we are in control of the layout of the structures
181 	 */
182 	gp_regs = get_gpregs_ctx(ctx);
183 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
184 }
185 
186 /*******************************************************************************
187  * The following function initializes the cpu_context for a CPU specified by
188  * its `cpu_idx` for first use, and sets the initial entrypoint state as
189  * specified by the entry_point_info structure.
190  ******************************************************************************/
191 void cm_init_context_by_index(unsigned int cpu_idx,
192 			      const entry_point_info_t *ep)
193 {
194 	cpu_context_t *ctx;
195 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
196 	cm_init_context_common(ctx, ep);
197 }
198 
199 /*******************************************************************************
200  * The following function initializes the cpu_context for the current CPU
201  * for first use, and sets the initial entrypoint state as specified by the
202  * entry_point_info structure.
203  ******************************************************************************/
204 void cm_init_my_context(const entry_point_info_t *ep)
205 {
206 	cpu_context_t *ctx;
207 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
208 	cm_init_context_common(ctx, ep);
209 }
210 
211 /*******************************************************************************
212  * Prepare the CPU system registers for first entry into secure or normal world
213  *
214  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
215  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
216  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
217  * For all entries, the EL1 registers are initialized from the cpu_context
218  ******************************************************************************/
219 void cm_prepare_el3_exit(uint32_t security_state)
220 {
221 	uint32_t sctlr_elx, scr_el3;
222 	cpu_context_t *ctx = cm_get_context(security_state);
223 
224 	assert(ctx);
225 
226 	if (security_state == NON_SECURE) {
227 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
228 		if (scr_el3 & SCR_HCE_BIT) {
229 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
230 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
231 						 CTX_SCTLR_EL1);
232 			sctlr_elx &= ~SCTLR_EE_BIT;
233 			sctlr_elx |= SCTLR_EL2_RES1;
234 			write_sctlr_el2(sctlr_elx);
235 		} else if (EL_IMPLEMENTED(2)) {
236 			/*
237 			 * EL2 present but unused, need to disable safely.
238 			 * SCTLR_EL2 can be ignored in this case.
239 			 *
240 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
241 			 * to zero so that Non-secure operations do not trap to
242 			 * EL2.
243 			 *
244 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
245 			 */
246 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
247 
248 			/*
249 			 * Initialise CPTR_EL2 setting all fields rather than
250 			 * relying on the hw. All fields have architecturally
251 			 * UNKNOWN reset values.
252 			 *
253 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
254 			 *  accesses to the CPACR_EL1 or CPACR from both
255 			 *  Execution states do not trap to EL2.
256 			 *
257 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
258 			 *  register accesses to the trace registers from both
259 			 *  Execution states do not trap to EL2.
260 			 *
261 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
262 			 *  to SIMD and floating-point functionality from both
263 			 *  Execution states do not trap to EL2.
264 			 */
265 			write_cptr_el2(CPTR_EL2_RESET_VAL &
266 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
267 					| CPTR_EL2_TFP_BIT));
268 
269 			/*
270 			 * Initiliase CNTHCTL_EL2. All fields are
271 			 * architecturally UNKNOWN on reset and are set to zero
272 			 * except for field(s) listed below.
273 			 *
274 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
275 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
276 			 *  physical timer registers.
277 			 *
278 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
279 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
280 			 *  physical counter registers.
281 			 */
282 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
283 						EL1PCEN_BIT | EL1PCTEN_BIT);
284 
285 			/*
286 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
287 			 * architecturally UNKNOWN value.
288 			 */
289 			write_cntvoff_el2(0);
290 
291 			/*
292 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
293 			 * MPIDR_EL1 respectively.
294 			 */
295 			write_vpidr_el2(read_midr_el1());
296 			write_vmpidr_el2(read_mpidr_el1());
297 
298 			/*
299 			 * Initialise VTTBR_EL2. All fields are architecturally
300 			 * UNKNOWN on reset.
301 			 *
302 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
303 			 *  2 address translation is disabled, cache maintenance
304 			 *  operations depend on the VMID.
305 			 *
306 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
307 			 *  translation is disabled.
308 			 */
309 			write_vttbr_el2(VTTBR_RESET_VAL &
310 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
311 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
312 
313 			/*
314 			 * Initialise MDCR_EL2, setting all fields rather than
315 			 * relying on hw. Some fields are architecturally
316 			 * UNKNOWN on reset.
317 			 *
318 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
319 			 *  EL1 System register accesses to the Debug ROM
320 			 *  registers are not trapped to EL2.
321 			 *
322 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
323 			 *  System register accesses to the powerdown debug
324 			 *  registers are not trapped to EL2.
325 			 *
326 			 * MDCR_EL2.TDA: Set to zero so that System register
327 			 *  accesses to the debug registers do not trap to EL2.
328 			 *
329 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
330 			 *  are not routed to EL2.
331 			 *
332 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
333 			 *  Monitors.
334 			 *
335 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
336 			 *  EL1 accesses to all Performance Monitors registers
337 			 *  are not trapped to EL2.
338 			 *
339 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
340 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
341 			 *  trapped to EL2.
342 			 *
343 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
344 			 *  architecturally-defined reset value.
345 			 */
346 			write_mdcr_el2((MDCR_EL2_RESET_VAL |
347 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
348 					>> PMCR_EL0_N_SHIFT)) &
349 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
350 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
351 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
352 					| MDCR_EL2_TPMCR_BIT));
353 			/*
354 			 * Initialise HSTR_EL2. All fields are architecturally
355 			 * UNKNOWN on reset.
356 			 *
357 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
358 			 *  Non-secure EL0 or EL1 accesses to System registers
359 			 *  do not trap to EL2.
360 			 */
361 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
362 			/*
363 			 * Initialise CNTHP_CTL_EL2. All fields are
364 			 * architecturally UNKNOWN on reset.
365 			 *
366 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
367 			 *  physical timer and prevent timer interrupts.
368 			 */
369 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
370 						~(CNTHP_CTL_ENABLE_BIT));
371 		}
372 	}
373 
374 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
375 
376 	cm_set_next_context(ctx);
377 }
378 
379 /*******************************************************************************
380  * The next four functions are used by runtime services to save and restore
381  * EL1 context on the 'cpu_context' structure for the specified security
382  * state.
383  ******************************************************************************/
384 void cm_el1_sysregs_context_save(uint32_t security_state)
385 {
386 	cpu_context_t *ctx;
387 
388 	ctx = cm_get_context(security_state);
389 	assert(ctx);
390 
391 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
392 }
393 
394 void cm_el1_sysregs_context_restore(uint32_t security_state)
395 {
396 	cpu_context_t *ctx;
397 
398 	ctx = cm_get_context(security_state);
399 	assert(ctx);
400 
401 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
402 }
403 
404 /*******************************************************************************
405  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
406  * given security state with the given entrypoint
407  ******************************************************************************/
408 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
409 {
410 	cpu_context_t *ctx;
411 	el3_state_t *state;
412 
413 	ctx = cm_get_context(security_state);
414 	assert(ctx);
415 
416 	/* Populate EL3 state so that ERET jumps to the correct entry */
417 	state = get_el3state_ctx(ctx);
418 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
419 }
420 
421 /*******************************************************************************
422  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
423  * pertaining to the given security state
424  ******************************************************************************/
425 void cm_set_elr_spsr_el3(uint32_t security_state,
426 			uintptr_t entrypoint, uint32_t spsr)
427 {
428 	cpu_context_t *ctx;
429 	el3_state_t *state;
430 
431 	ctx = cm_get_context(security_state);
432 	assert(ctx);
433 
434 	/* Populate EL3 state so that ERET jumps to the correct entry */
435 	state = get_el3state_ctx(ctx);
436 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
437 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
438 }
439 
440 /*******************************************************************************
441  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
442  * pertaining to the given security state using the value and bit position
443  * specified in the parameters. It preserves all other bits.
444  ******************************************************************************/
445 void cm_write_scr_el3_bit(uint32_t security_state,
446 			  uint32_t bit_pos,
447 			  uint32_t value)
448 {
449 	cpu_context_t *ctx;
450 	el3_state_t *state;
451 	uint32_t scr_el3;
452 
453 	ctx = cm_get_context(security_state);
454 	assert(ctx);
455 
456 	/* Ensure that the bit position is a valid one */
457 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
458 
459 	/* Ensure that the 'value' is only a bit wide */
460 	assert(value <= 1);
461 
462 	/*
463 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
464 	 * and set it to its new value.
465 	 */
466 	state = get_el3state_ctx(ctx);
467 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
468 	scr_el3 &= ~(1 << bit_pos);
469 	scr_el3 |= value << bit_pos;
470 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
471 }
472 
473 /*******************************************************************************
474  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
475  * given security state.
476  ******************************************************************************/
477 uint32_t cm_get_scr_el3(uint32_t security_state)
478 {
479 	cpu_context_t *ctx;
480 	el3_state_t *state;
481 
482 	ctx = cm_get_context(security_state);
483 	assert(ctx);
484 
485 	/* Populate EL3 state so that ERET jumps to the correct entry */
486 	state = get_el3state_ctx(ctx);
487 	return read_ctx_reg(state, CTX_SCR_EL3);
488 }
489 
490 /*******************************************************************************
491  * This function is used to program the context that's used for exception
492  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
493  * the required security state
494  ******************************************************************************/
495 void cm_set_next_eret_context(uint32_t security_state)
496 {
497 	cpu_context_t *ctx;
498 
499 	ctx = cm_get_context(security_state);
500 	assert(ctx);
501 
502 	cm_set_next_context(ctx);
503 }
504