xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 123002f9171384d976d95935b7f566740d69cc68)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_common(cpu_context_t *ctx);
46 static void manage_extensions_nonsecure(cpu_context_t *ctx);
47 static void manage_extensions_secure(cpu_context_t *ctx);
48 static void manage_extensions_secure_per_world(void);
49 
50 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
51 {
52 	u_register_t sctlr_elx, actlr_elx;
53 
54 	/*
55 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
56 	 * execution state setting all fields rather than relying on the hw.
57 	 * Some fields have architecturally UNKNOWN reset values and these are
58 	 * set to zero.
59 	 *
60 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
61 	 *
62 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
63 	 * required by PSCI specification)
64 	 */
65 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
66 	if (GET_RW(ep->spsr) == MODE_RW_64) {
67 		sctlr_elx |= SCTLR_EL1_RES1;
68 	} else {
69 		/*
70 		 * If the target execution state is AArch32 then the following
71 		 * fields need to be set.
72 		 *
73 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
74 		 *  instructions are not trapped to EL1.
75 		 *
76 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
77 		 *  instructions are not trapped to EL1.
78 		 *
79 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
80 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
81 		 */
82 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
83 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
84 	}
85 
86 #if ERRATA_A75_764081
87 	/*
88 	 * If workaround of errata 764081 for Cortex-A75 is used then set
89 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
90 	 */
91 	sctlr_elx |= SCTLR_IESB_BIT;
92 #endif
93 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
94 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
95 
96 	/*
97 	 * Base the context ACTLR_EL1 on the current value, as it is
98 	 * implementation defined. The context restore process will write
99 	 * the value from the context to the actual register and can cause
100 	 * problems for processor cores that don't expect certain bits to
101 	 * be zero.
102 	 */
103 	actlr_elx = read_actlr_el1();
104 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
105 }
106 
107 /******************************************************************************
108  * This function performs initializations that are specific to SECURE state
109  * and updates the cpu context specified by 'ctx'.
110  *****************************************************************************/
111 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
112 {
113 	u_register_t scr_el3;
114 	el3_state_t *state;
115 
116 	state = get_el3state_ctx(ctx);
117 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
118 
119 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
120 	/*
121 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
122 	 * indicated by the interrupt routing model for BL31.
123 	 */
124 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
125 #endif
126 
127 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
128 	if (is_feat_mte2_supported()) {
129 		scr_el3 |= SCR_ATA_BIT;
130 	}
131 
132 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
133 
134 	/*
135 	 * Initialize EL1 context registers unless SPMC is running
136 	 * at S-EL2.
137 	 */
138 #if !SPMD_SPM_AT_SEL2
139 	setup_el1_context(ctx, ep);
140 #endif
141 
142 	manage_extensions_secure(ctx);
143 
144 	/**
145 	 * manage_extensions_secure_per_world api has to be executed once,
146 	 * as the registers getting initialised, maintain constant value across
147 	 * all the cpus for the secure world.
148 	 * Henceforth, this check ensures that the registers are initialised once
149 	 * and avoids re-initialization from multiple cores.
150 	 */
151 	if (!has_secure_perworld_init) {
152 		manage_extensions_secure_per_world();
153 	}
154 
155 }
156 
157 #if ENABLE_RME
158 /******************************************************************************
159  * This function performs initializations that are specific to REALM state
160  * and updates the cpu context specified by 'ctx'.
161  *****************************************************************************/
162 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
163 {
164 	u_register_t scr_el3;
165 	el3_state_t *state;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 
170 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
171 
172 	/* CSV2 version 2 and above */
173 	if (is_feat_csv2_2_supported()) {
174 		/* Enable access to the SCXTNUM_ELx registers. */
175 		scr_el3 |= SCR_EnSCXT_BIT;
176 	}
177 
178 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
179 }
180 #endif /* ENABLE_RME */
181 
182 /******************************************************************************
183  * This function performs initializations that are specific to NON-SECURE state
184  * and updates the cpu context specified by 'ctx'.
185  *****************************************************************************/
186 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
187 {
188 	u_register_t scr_el3;
189 	el3_state_t *state;
190 
191 	state = get_el3state_ctx(ctx);
192 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
193 
194 	/* SCR_NS: Set the NS bit */
195 	scr_el3 |= SCR_NS_BIT;
196 
197 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
198 	if (is_feat_mte2_supported()) {
199 		scr_el3 |= SCR_ATA_BIT;
200 	}
201 
202 #if !CTX_INCLUDE_PAUTH_REGS
203 	/*
204 	 * Pointer Authentication feature, if present, is always enabled by default
205 	 * for Non secure lower exception levels. We do not have an explicit
206 	 * flag to set it.
207 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
208 	 * exception levels of secure and realm worlds.
209 	 *
210 	 * To prevent the leakage between the worlds during world switch,
211 	 * we enable it only for the non-secure world.
212 	 *
213 	 * If the Secure/realm world wants to use pointer authentication,
214 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
215 	 * it will be enabled globally for all the contexts.
216 	 *
217 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
218 	 *  other than EL3
219 	 *
220 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
221 	 *  than EL3
222 	 */
223 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
224 
225 #endif /* CTX_INCLUDE_PAUTH_REGS */
226 
227 #if HANDLE_EA_EL3_FIRST_NS
228 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
229 	scr_el3 |= SCR_EA_BIT;
230 #endif
231 
232 #if RAS_TRAP_NS_ERR_REC_ACCESS
233 	/*
234 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
235 	 * and RAS ERX registers from EL1 and EL2(from any security state)
236 	 * are trapped to EL3.
237 	 * Set here to trap only for NS EL1/EL2
238 	 *
239 	 */
240 	scr_el3 |= SCR_TERR_BIT;
241 #endif
242 
243 	/* CSV2 version 2 and above */
244 	if (is_feat_csv2_2_supported()) {
245 		/* Enable access to the SCXTNUM_ELx registers. */
246 		scr_el3 |= SCR_EnSCXT_BIT;
247 	}
248 
249 #ifdef IMAGE_BL31
250 	/*
251 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
252 	 *  indicated by the interrupt routing model for BL31.
253 	 */
254 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
255 #endif
256 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
257 
258 	/* Initialize EL1 context registers */
259 	setup_el1_context(ctx, ep);
260 
261 	/* Initialize EL2 context registers */
262 #if CTX_INCLUDE_EL2_REGS
263 
264 	/*
265 	 * Initialize SCTLR_EL2 context register using Endianness value
266 	 * taken from the entrypoint attribute.
267 	 */
268 	u_register_t sctlr_el2_val = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
269 	sctlr_el2_val |= SCTLR_EL2_RES1;
270 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, sctlr_el2_val);
271 
272 
273 	if (is_feat_hcx_supported()) {
274 		/*
275 		 * Initialize register HCRX_EL2 with its init value.
276 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
277 		 * chance that this can lead to unexpected behavior in lower
278 		 * ELs that have not been updated since the introduction of
279 		 * this feature if not properly initialized, especially when
280 		 * it comes to those bits that enable/disable traps.
281 		 */
282 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
283 			HCRX_EL2_INIT_VAL);
284 	}
285 
286 	if (is_feat_fgt_supported()) {
287 		/*
288 		 * Initialize HFG*_EL2 registers with a default value so legacy
289 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
290 		 * of initialization for this feature.
291 		 */
292 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
293 			HFGITR_EL2_INIT_VAL);
294 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
295 			HFGRTR_EL2_INIT_VAL);
296 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
297 			HFGWTR_EL2_INIT_VAL);
298 	}
299 
300 #endif /* CTX_INCLUDE_EL2_REGS */
301 
302 	manage_extensions_nonsecure(ctx);
303 }
304 
305 /*******************************************************************************
306  * The following function performs initialization of the cpu_context 'ctx'
307  * for first use that is common to all security states, and sets the
308  * initial entrypoint state as specified by the entry_point_info structure.
309  *
310  * The EE and ST attributes are used to configure the endianness and secure
311  * timer availability for the new execution context.
312  ******************************************************************************/
313 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
314 {
315 	u_register_t scr_el3;
316 	u_register_t mdcr_el3;
317 	el3_state_t *state;
318 	gp_regs_t *gp_regs;
319 
320 	state = get_el3state_ctx(ctx);
321 
322 	/* Clear any residual register values from the context */
323 	zeromem(ctx, sizeof(*ctx));
324 
325 	/*
326 	 * The lower-EL context is zeroed so that no stale values leak to a world.
327 	 * It is assumed that an all-zero lower-EL context is good enough for it
328 	 * to boot correctly. However, there are very few registers where this
329 	 * is not true and some values need to be recreated.
330 	 */
331 #if CTX_INCLUDE_EL2_REGS
332 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
333 
334 	/*
335 	 * These bits are set in the gicv3 driver. Losing them (especially the
336 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
337 	 */
338 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
339 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
340 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
341 #endif /* CTX_INCLUDE_EL2_REGS */
342 
343 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
344 	scr_el3 = SCR_RESET_VAL;
345 
346 	/*
347 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
348 	 *  EL2, EL1 and EL0 are not trapped to EL3.
349 	 *
350 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
351 	 *  EL2, EL1 and EL0 are not trapped to EL3.
352 	 *
353 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
354 	 *  both Security states and both Execution states.
355 	 *
356 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
357 	 *  Non-secure memory.
358 	 */
359 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
360 
361 	scr_el3 |= SCR_SIF_BIT;
362 
363 	/*
364 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
365 	 *  Exception level as specified by SPSR.
366 	 */
367 	if (GET_RW(ep->spsr) == MODE_RW_64) {
368 		scr_el3 |= SCR_RW_BIT;
369 	}
370 
371 	/*
372 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
373 	 * Secure timer registers to EL3, from AArch64 state only, if specified
374 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
375 	 * bit always behaves as 1 (i.e. secure physical timer register access
376 	 * is not trapped)
377 	 */
378 	if (EP_GET_ST(ep->h.attr) != 0U) {
379 		scr_el3 |= SCR_ST_BIT;
380 	}
381 
382 	/*
383 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
384 	 * SCR_EL3.HXEn.
385 	 */
386 	if (is_feat_hcx_supported()) {
387 		scr_el3 |= SCR_HXEn_BIT;
388 	}
389 
390 	/*
391 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
392 	 * registers are trapped to EL3.
393 	 */
394 #if ENABLE_FEAT_RNG_TRAP
395 	scr_el3 |= SCR_TRNDR_BIT;
396 #endif
397 
398 #if FAULT_INJECTION_SUPPORT
399 	/* Enable fault injection from lower ELs */
400 	scr_el3 |= SCR_FIEN_BIT;
401 #endif
402 
403 #if CTX_INCLUDE_PAUTH_REGS
404 	/*
405 	 * Enable Pointer Authentication globally for all the worlds.
406 	 *
407 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
408 	 *  other than EL3
409 	 *
410 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
411 	 *  than EL3
412 	 */
413 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
414 #endif /* CTX_INCLUDE_PAUTH_REGS */
415 
416 	/*
417 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
418 	 */
419 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
420 		scr_el3 |= SCR_TCR2EN_BIT;
421 	}
422 
423 	/*
424 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
425 	 * registers for AArch64 if present.
426 	 */
427 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
428 		scr_el3 |= SCR_PIEN_BIT;
429 	}
430 
431 	/*
432 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
433 	 */
434 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
435 		scr_el3 |= SCR_GCSEn_BIT;
436 	}
437 
438 	/*
439 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
440 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
441 	 * next mode is Hyp.
442 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
443 	 * same conditions as HVC instructions and when the processor supports
444 	 * ARMv8.6-FGT.
445 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
446 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
447 	 * and when the processor supports ECV.
448 	 */
449 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
450 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
451 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
452 		scr_el3 |= SCR_HCE_BIT;
453 
454 		if (is_feat_fgt_supported()) {
455 			scr_el3 |= SCR_FGTEN_BIT;
456 		}
457 
458 		if (is_feat_ecv_supported()) {
459 			scr_el3 |= SCR_ECVEN_BIT;
460 		}
461 	}
462 
463 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
464 	if (is_feat_twed_supported()) {
465 		/* Set delay in SCR_EL3 */
466 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
467 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
468 				<< SCR_TWEDEL_SHIFT);
469 
470 		/* Enable WFE delay */
471 		scr_el3 |= SCR_TWEDEn_BIT;
472 	}
473 
474 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
475 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
476 	if (is_feat_sel2_supported()) {
477 		scr_el3 |= SCR_EEL2_BIT;
478 	}
479 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
480 
481 	/*
482 	 * Populate EL3 state so that we've the right context
483 	 * before doing ERET
484 	 */
485 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
486 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
487 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
488 
489 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
490 	mdcr_el3 = MDCR_EL3_RESET_VAL;
491 
492 	/* ---------------------------------------------------------------------
493 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
494 	 * Some fields are architecturally UNKNOWN on reset.
495 	 *
496 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
497 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
498 	 *  disabled from all ELs in Secure state.
499 	 *
500 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
501 	 *  privileged debug from S-EL1.
502 	 *
503 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
504 	 *  access to the powerdown debug registers do not trap to EL3.
505 	 *
506 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
507 	 *  debug registers, other than those registers that are controlled by
508 	 *  MDCR_EL3.TDOSA.
509 	 */
510 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
511 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
512 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
513 
514 	/*
515 	 * Configure MDCR_EL3 register as applicable for each world
516 	 * (NS/Secure/Realm) context.
517 	 */
518 	manage_extensions_common(ctx);
519 
520 	/*
521 	 * Store the X0-X7 value from the entrypoint into the context
522 	 * Use memcpy as we are in control of the layout of the structures
523 	 */
524 	gp_regs = get_gpregs_ctx(ctx);
525 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
526 }
527 
528 /*******************************************************************************
529  * Context management library initialization routine. This library is used by
530  * runtime services to share pointers to 'cpu_context' structures for secure
531  * non-secure and realm states. Management of the structures and their associated
532  * memory is not done by the context management library e.g. the PSCI service
533  * manages the cpu context used for entry from and exit to the non-secure state.
534  * The Secure payload dispatcher service manages the context(s) corresponding to
535  * the secure state. It also uses this library to get access to the non-secure
536  * state cpu context pointers.
537  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
538  * which will be used for programming an entry into a lower EL. The same context
539  * will be used to save state upon exception entry from that EL.
540  ******************************************************************************/
541 void __init cm_init(void)
542 {
543 	/*
544 	 * The context management library has only global data to initialize, but
545 	 * that will be done when the BSS is zeroed out.
546 	 */
547 }
548 
549 /*******************************************************************************
550  * This is the high-level function used to initialize the cpu_context 'ctx' for
551  * first use. It performs initializations that are common to all security states
552  * and initializations specific to the security state specified in 'ep'
553  ******************************************************************************/
554 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
555 {
556 	unsigned int security_state;
557 
558 	assert(ctx != NULL);
559 
560 	/*
561 	 * Perform initializations that are common
562 	 * to all security states
563 	 */
564 	setup_context_common(ctx, ep);
565 
566 	security_state = GET_SECURITY_STATE(ep->h.attr);
567 
568 	/* Perform security state specific initializations */
569 	switch (security_state) {
570 	case SECURE:
571 		setup_secure_context(ctx, ep);
572 		break;
573 #if ENABLE_RME
574 	case REALM:
575 		setup_realm_context(ctx, ep);
576 		break;
577 #endif
578 	case NON_SECURE:
579 		setup_ns_context(ctx, ep);
580 		break;
581 	default:
582 		ERROR("Invalid security state\n");
583 		panic();
584 		break;
585 	}
586 }
587 
588 /*******************************************************************************
589  * Enable architecture extensions for EL3 execution. This function only updates
590  * registers in-place which are expected to either never change or be
591  * overwritten by el3_exit.
592  ******************************************************************************/
593 #if IMAGE_BL31
594 void cm_manage_extensions_el3(void)
595 {
596 	if (is_feat_amu_supported()) {
597 		amu_init_el3();
598 	}
599 
600 	if (is_feat_sme_supported()) {
601 		sme_init_el3();
602 	}
603 
604 	pmuv3_init_el3();
605 }
606 #endif /* IMAGE_BL31 */
607 
608 /******************************************************************************
609  * Function to initialise the registers with the RESET values in the context
610  * memory, which are maintained per world.
611  ******************************************************************************/
612 #if IMAGE_BL31
613 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
614 {
615 	/*
616 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
617 	 *
618 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
619 	 *  by Advanced SIMD, floating-point or SVE instructions (if
620 	 *  implemented) do not trap to EL3.
621 	 *
622 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
623 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
624 	 */
625 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
626 
627 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
628 
629 	/*
630 	 * Initialize MPAM3_EL3 to its default reset value
631 	 *
632 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
633 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
634 	 */
635 
636 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
637 }
638 #endif /* IMAGE_BL31 */
639 
640 /*******************************************************************************
641  * Initialise per_world_context for Non-Secure world.
642  * This function enables the architecture extensions, which have same value
643  * across the cores for the non-secure world.
644  ******************************************************************************/
645 #if IMAGE_BL31
646 void manage_extensions_nonsecure_per_world(void)
647 {
648 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
649 
650 	if (is_feat_sme_supported()) {
651 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
652 	}
653 
654 	if (is_feat_sve_supported()) {
655 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
656 	}
657 
658 	if (is_feat_amu_supported()) {
659 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
660 	}
661 
662 	if (is_feat_sys_reg_trace_supported()) {
663 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
664 	}
665 
666 	if (is_feat_mpam_supported()) {
667 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
668 	}
669 }
670 #endif /* IMAGE_BL31 */
671 
672 /*******************************************************************************
673  * Initialise per_world_context for Secure world.
674  * This function enables the architecture extensions, which have same value
675  * across the cores for the secure world.
676  ******************************************************************************/
677 static void manage_extensions_secure_per_world(void)
678 {
679 #if IMAGE_BL31
680 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
681 
682 	if (is_feat_sme_supported()) {
683 
684 		if (ENABLE_SME_FOR_SWD) {
685 		/*
686 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
687 		 * SME, SVE, and FPU/SIMD context properly managed.
688 		 */
689 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
690 		} else {
691 		/*
692 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
693 		 * world can safely use the associated registers.
694 		 */
695 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
696 		}
697 	}
698 	if (is_feat_sve_supported()) {
699 		if (ENABLE_SVE_FOR_SWD) {
700 		/*
701 		 * Enable SVE and FPU in secure context, SPM must ensure
702 		 * that the SVE and FPU register contexts are properly managed.
703 		 */
704 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
705 		} else {
706 		/*
707 		 * Disable SVE and FPU in secure context so non-secure world
708 		 * can safely use them.
709 		 */
710 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
711 		}
712 	}
713 
714 	/* NS can access this but Secure shouldn't */
715 	if (is_feat_sys_reg_trace_supported()) {
716 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
717 	}
718 
719 	has_secure_perworld_init = true;
720 #endif /* IMAGE_BL31 */
721 }
722 
723 /*******************************************************************************
724  * Enable architecture extensions on first entry to Non-secure world only
725  * and disable for secure world.
726  *
727  * NOTE: Arch features which have been provided with the capability of getting
728  * enabled only for non-secure world and being disabled for secure world are
729  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
730  ******************************************************************************/
731 static void manage_extensions_common(cpu_context_t *ctx)
732 {
733 #if IMAGE_BL31
734 	if (is_feat_spe_supported()) {
735 		/*
736 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
737 		 */
738 		spe_enable(ctx);
739 	}
740 
741 	if (is_feat_trbe_supported()) {
742 		/*
743 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure and
744 		 * Realm state.
745 		 */
746 		trbe_enable(ctx);
747 	}
748 
749 	if (is_feat_trf_supported()) {
750 		/*
751 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
752 		 */
753 		trf_enable(ctx);
754 	}
755 
756 	if (is_feat_brbe_supported()) {
757 		/*
758 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
759 		 */
760 		brbe_enable(ctx);
761 	}
762 #endif /* IMAGE_BL31 */
763 }
764 
765 /*******************************************************************************
766  * Enable architecture extensions on first entry to Non-secure world.
767  ******************************************************************************/
768 static void manage_extensions_nonsecure(cpu_context_t *ctx)
769 {
770 #if IMAGE_BL31
771 	if (is_feat_amu_supported()) {
772 		amu_enable(ctx);
773 	}
774 
775 	if (is_feat_sme_supported()) {
776 		sme_enable(ctx);
777 	}
778 
779 	pmuv3_enable(ctx);
780 #endif /* IMAGE_BL31 */
781 }
782 
783 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
784 static __unused void enable_pauth_el2(void)
785 {
786 	u_register_t hcr_el2 = read_hcr_el2();
787 	/*
788 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
789 	 *  accessing key registers or using pointer authentication instructions
790 	 *  from lower ELs.
791 	 */
792 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
793 
794 	write_hcr_el2(hcr_el2);
795 }
796 
797 #if INIT_UNUSED_NS_EL2
798 /*******************************************************************************
799  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
800  * world when EL2 is empty and unused.
801  ******************************************************************************/
802 static void manage_extensions_nonsecure_el2_unused(void)
803 {
804 #if IMAGE_BL31
805 	if (is_feat_spe_supported()) {
806 		spe_init_el2_unused();
807 	}
808 
809 	if (is_feat_amu_supported()) {
810 		amu_init_el2_unused();
811 	}
812 
813 	if (is_feat_mpam_supported()) {
814 		mpam_init_el2_unused();
815 	}
816 
817 	if (is_feat_trbe_supported()) {
818 		trbe_init_el2_unused();
819 	}
820 
821 	if (is_feat_sys_reg_trace_supported()) {
822 		sys_reg_trace_init_el2_unused();
823 	}
824 
825 	if (is_feat_trf_supported()) {
826 		trf_init_el2_unused();
827 	}
828 
829 	pmuv3_init_el2_unused();
830 
831 	if (is_feat_sve_supported()) {
832 		sve_init_el2_unused();
833 	}
834 
835 	if (is_feat_sme_supported()) {
836 		sme_init_el2_unused();
837 	}
838 
839 #if ENABLE_PAUTH
840 	enable_pauth_el2();
841 #endif /* ENABLE_PAUTH */
842 #endif /* IMAGE_BL31 */
843 }
844 #endif /* INIT_UNUSED_NS_EL2 */
845 
846 /*******************************************************************************
847  * Enable architecture extensions on first entry to Secure world.
848  ******************************************************************************/
849 static void manage_extensions_secure(cpu_context_t *ctx)
850 {
851 #if IMAGE_BL31
852 	if (is_feat_sme_supported()) {
853 		if (ENABLE_SME_FOR_SWD) {
854 		/*
855 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
856 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
857 		 */
858 			sme_init_el3();
859 			sme_enable(ctx);
860 		} else {
861 		/*
862 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
863 		 * world can safely use the associated registers.
864 		 */
865 			sme_disable(ctx);
866 		}
867 	}
868 #endif /* IMAGE_BL31 */
869 }
870 
871 #if !IMAGE_BL1
872 /*******************************************************************************
873  * The following function initializes the cpu_context for a CPU specified by
874  * its `cpu_idx` for first use, and sets the initial entrypoint state as
875  * specified by the entry_point_info structure.
876  ******************************************************************************/
877 void cm_init_context_by_index(unsigned int cpu_idx,
878 			      const entry_point_info_t *ep)
879 {
880 	cpu_context_t *ctx;
881 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
882 	cm_setup_context(ctx, ep);
883 }
884 #endif /* !IMAGE_BL1 */
885 
886 /*******************************************************************************
887  * The following function initializes the cpu_context for the current CPU
888  * for first use, and sets the initial entrypoint state as specified by the
889  * entry_point_info structure.
890  ******************************************************************************/
891 void cm_init_my_context(const entry_point_info_t *ep)
892 {
893 	cpu_context_t *ctx;
894 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
895 	cm_setup_context(ctx, ep);
896 }
897 
898 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
899 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
900 {
901 #if INIT_UNUSED_NS_EL2
902 	u_register_t hcr_el2 = HCR_RESET_VAL;
903 	u_register_t mdcr_el2;
904 	u_register_t scr_el3;
905 
906 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
907 
908 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
909 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
910 		hcr_el2 |= HCR_RW_BIT;
911 	}
912 
913 	write_hcr_el2(hcr_el2);
914 
915 	/*
916 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
917 	 * All fields have architecturally UNKNOWN reset values.
918 	 */
919 	write_cptr_el2(CPTR_EL2_RESET_VAL);
920 
921 	/*
922 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
923 	 * reset and are set to zero except for field(s) listed below.
924 	 *
925 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
926 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
927 	 *
928 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
929 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
930 	 */
931 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
932 
933 	/*
934 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
935 	 * UNKNOWN value.
936 	 */
937 	write_cntvoff_el2(0);
938 
939 	/*
940 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
941 	 * respectively.
942 	 */
943 	write_vpidr_el2(read_midr_el1());
944 	write_vmpidr_el2(read_mpidr_el1());
945 
946 	/*
947 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
948 	 *
949 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
950 	 * translation is disabled, cache maintenance operations depend on the
951 	 * VMID.
952 	 *
953 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
954 	 * disabled.
955 	 */
956 	write_vttbr_el2(VTTBR_RESET_VAL &
957 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
958 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
959 
960 	/*
961 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
962 	 * Some fields are architecturally UNKNOWN on reset.
963 	 *
964 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
965 	 * register accesses to the Debug ROM registers are not trapped to EL2.
966 	 *
967 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
968 	 * accesses to the powerdown debug registers are not trapped to EL2.
969 	 *
970 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
971 	 * debug registers do not trap to EL2.
972 	 *
973 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
974 	 * EL2.
975 	 */
976 	mdcr_el2 = MDCR_EL2_RESET_VAL &
977 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
978 		   MDCR_EL2_TDE_BIT);
979 
980 	write_mdcr_el2(mdcr_el2);
981 
982 	/*
983 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
984 	 *
985 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
986 	 * EL1 accesses to System registers do not trap to EL2.
987 	 */
988 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
989 
990 	/*
991 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
992 	 * reset.
993 	 *
994 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
995 	 * and prevent timer interrupts.
996 	 */
997 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
998 
999 	manage_extensions_nonsecure_el2_unused();
1000 #endif /* INIT_UNUSED_NS_EL2 */
1001 }
1002 
1003 /*******************************************************************************
1004  * Prepare the CPU system registers for first entry into realm, secure, or
1005  * normal world.
1006  *
1007  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1008  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1009  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1010  * For all entries, the EL1 registers are initialized from the cpu_context
1011  ******************************************************************************/
1012 void cm_prepare_el3_exit(uint32_t security_state)
1013 {
1014 	u_register_t sctlr_elx, scr_el3;
1015 	cpu_context_t *ctx = cm_get_context(security_state);
1016 
1017 	assert(ctx != NULL);
1018 
1019 	if (security_state == NON_SECURE) {
1020 		uint64_t el2_implemented = el_implemented(2);
1021 
1022 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1023 						 CTX_SCR_EL3);
1024 
1025 		if (el2_implemented != EL_IMPL_NONE) {
1026 
1027 			/*
1028 			 * If context is not being used for EL2, initialize
1029 			 * HCRX_EL2 with its init value here.
1030 			 */
1031 			if (is_feat_hcx_supported()) {
1032 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1033 			}
1034 
1035 			/*
1036 			 * Initialize Fine-grained trap registers introduced
1037 			 * by FEAT_FGT so all traps are initially disabled when
1038 			 * switching to EL2 or a lower EL, preventing undesired
1039 			 * behavior.
1040 			 */
1041 			if (is_feat_fgt_supported()) {
1042 				/*
1043 				 * Initialize HFG*_EL2 registers with a default
1044 				 * value so legacy systems unaware of FEAT_FGT
1045 				 * do not get trapped due to their lack of
1046 				 * initialization for this feature.
1047 				 */
1048 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1049 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1050 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1051 			}
1052 
1053 			/* Condition to ensure EL2 is being used. */
1054 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1055 				/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
1056 				sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
1057 								CTX_SCTLR_EL1);
1058 				sctlr_elx &= SCTLR_EE_BIT;
1059 				sctlr_elx |= SCTLR_EL2_RES1;
1060 #if ERRATA_A75_764081
1061 				/*
1062 				 * If workaround of errata 764081 for Cortex-A75
1063 				 * is used then set SCTLR_EL2.IESB to enable
1064 				 * Implicit Error Synchronization Barrier.
1065 				 */
1066 				sctlr_elx |= SCTLR_IESB_BIT;
1067 #endif /* ERRATA_A75_764081 */
1068 				write_sctlr_el2(sctlr_elx);
1069 			} else {
1070 				/*
1071 				 * (scr_el3 & SCR_HCE_BIT==0)
1072 				 * EL2 implemented but unused.
1073 				 */
1074 				init_nonsecure_el2_unused(ctx);
1075 			}
1076 		}
1077 	}
1078 	cm_el1_sysregs_context_restore(security_state);
1079 	cm_set_next_eret_context(security_state);
1080 }
1081 
1082 #if CTX_INCLUDE_EL2_REGS
1083 
1084 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1085 {
1086 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1087 	if (is_feat_amu_supported()) {
1088 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1089 	}
1090 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1091 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1092 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1093 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1094 }
1095 
1096 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1097 {
1098 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1099 	if (is_feat_amu_supported()) {
1100 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1101 	}
1102 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1103 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1104 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1105 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1106 }
1107 
1108 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1109 {
1110 	u_register_t mpam_idr = read_mpamidr_el1();
1111 
1112 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1113 
1114 	/*
1115 	 * The context registers that we intend to save would be part of the
1116 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1117 	 */
1118 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1119 		return;
1120 	}
1121 
1122 	/*
1123 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1124 	 * MPAMIDR_HAS_HCR_BIT == 1.
1125 	 */
1126 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1127 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1128 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1129 
1130 	/*
1131 	 * The number of MPAMVPM registers is implementation defined, their
1132 	 * number is stored in the MPAMIDR_EL1 register.
1133 	 */
1134 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1135 	case 7:
1136 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1137 		__fallthrough;
1138 	case 6:
1139 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1140 		__fallthrough;
1141 	case 5:
1142 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1143 		__fallthrough;
1144 	case 4:
1145 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1146 		__fallthrough;
1147 	case 3:
1148 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1149 		__fallthrough;
1150 	case 2:
1151 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1152 		__fallthrough;
1153 	case 1:
1154 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1155 		break;
1156 	}
1157 }
1158 
1159 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1160 {
1161 	u_register_t mpam_idr = read_mpamidr_el1();
1162 
1163 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1164 
1165 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1166 		return;
1167 	}
1168 
1169 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1170 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1171 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1172 
1173 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1174 	case 7:
1175 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1176 		__fallthrough;
1177 	case 6:
1178 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1179 		__fallthrough;
1180 	case 5:
1181 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1182 		__fallthrough;
1183 	case 4:
1184 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1185 		__fallthrough;
1186 	case 3:
1187 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1188 		__fallthrough;
1189 	case 2:
1190 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1191 		__fallthrough;
1192 	case 1:
1193 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1194 		break;
1195 	}
1196 }
1197 
1198 /* ---------------------------------------------------------------------------
1199  * The following registers are not added:
1200  * ICH_AP0R<n>_EL2
1201  * ICH_AP1R<n>_EL2
1202  * ICH_LR<n>_EL2
1203  *
1204  * NOTE: For a system with S-EL2 present but not enabled, accessing
1205  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1206  * SCR_EL3.NS = 1 before accessing this register.
1207  * ---------------------------------------------------------------------------
1208  */
1209 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1210 {
1211 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1212 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1213 #else
1214 	u_register_t scr_el3 = read_scr_el3();
1215 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1216 	isb();
1217 
1218 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1219 
1220 	write_scr_el3(scr_el3);
1221 	isb();
1222 #endif
1223 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1224 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1225 }
1226 
1227 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1228 {
1229 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1230 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1231 #else
1232 	u_register_t scr_el3 = read_scr_el3();
1233 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1234 	isb();
1235 
1236 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1237 
1238 	write_scr_el3(scr_el3);
1239 	isb();
1240 #endif
1241 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1242 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1243 }
1244 
1245 /* -----------------------------------------------------
1246  * The following registers are not added:
1247  * AMEVCNTVOFF0<n>_EL2
1248  * AMEVCNTVOFF1<n>_EL2
1249  * -----------------------------------------------------
1250  */
1251 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1252 {
1253 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1254 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1255 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1256 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1257 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1258 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1259 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1260 	if (CTX_INCLUDE_AARCH32_REGS) {
1261 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1262 	}
1263 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1264 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1265 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1266 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1267 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1268 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1269 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1270 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1271 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1272 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1273 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1274 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1275 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1276 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1277 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1278 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1279 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1280 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1281 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1282 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1283 }
1284 
1285 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1286 {
1287 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1288 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1289 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1290 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1291 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1292 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1293 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1294 	if (CTX_INCLUDE_AARCH32_REGS) {
1295 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1296 	}
1297 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1298 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1299 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1300 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1301 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1302 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1303 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1304 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1305 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1306 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1307 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1308 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1309 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1310 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1311 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1312 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1313 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1314 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1315 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1316 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1317 }
1318 
1319 /*******************************************************************************
1320  * Save EL2 sysreg context
1321  ******************************************************************************/
1322 void cm_el2_sysregs_context_save(uint32_t security_state)
1323 {
1324 	cpu_context_t *ctx;
1325 	el2_sysregs_t *el2_sysregs_ctx;
1326 
1327 	ctx = cm_get_context(security_state);
1328 	assert(ctx != NULL);
1329 
1330 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1331 
1332 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1333 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1334 
1335 	if (is_feat_mte2_supported()) {
1336 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1337 	}
1338 
1339 	if (is_feat_mpam_supported()) {
1340 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1341 	}
1342 
1343 	if (is_feat_fgt_supported()) {
1344 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1345 	}
1346 
1347 	if (is_feat_ecv_v2_supported()) {
1348 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1349 	}
1350 
1351 	if (is_feat_vhe_supported()) {
1352 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1353 					read_contextidr_el2());
1354 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1355 	}
1356 
1357 	if (is_feat_ras_supported()) {
1358 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1359 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1360 	}
1361 
1362 	if (is_feat_nv2_supported()) {
1363 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1364 	}
1365 
1366 	if (is_feat_trf_supported()) {
1367 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1368 	}
1369 
1370 	if (is_feat_csv2_2_supported()) {
1371 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1372 					read_scxtnum_el2());
1373 	}
1374 
1375 	if (is_feat_hcx_supported()) {
1376 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1377 	}
1378 
1379 	if (is_feat_tcr2_supported()) {
1380 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1381 	}
1382 
1383 	if (is_feat_sxpie_supported()) {
1384 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1385 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1386 	}
1387 
1388 	if (is_feat_sxpoe_supported()) {
1389 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1390 	}
1391 
1392 	if (is_feat_s2pie_supported()) {
1393 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1394 	}
1395 
1396 	if (is_feat_gcs_supported()) {
1397 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1398 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1399 	}
1400 }
1401 
1402 /*******************************************************************************
1403  * Restore EL2 sysreg context
1404  ******************************************************************************/
1405 void cm_el2_sysregs_context_restore(uint32_t security_state)
1406 {
1407 	cpu_context_t *ctx;
1408 	el2_sysregs_t *el2_sysregs_ctx;
1409 
1410 	ctx = cm_get_context(security_state);
1411 	assert(ctx != NULL);
1412 
1413 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1414 
1415 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1416 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1417 
1418 	if (is_feat_mte2_supported()) {
1419 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1420 	}
1421 
1422 	if (is_feat_mpam_supported()) {
1423 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1424 	}
1425 
1426 	if (is_feat_fgt_supported()) {
1427 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1428 	}
1429 
1430 	if (is_feat_ecv_v2_supported()) {
1431 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1432 	}
1433 
1434 	if (is_feat_vhe_supported()) {
1435 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1436 					contextidr_el2));
1437 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1438 	}
1439 
1440 	if (is_feat_ras_supported()) {
1441 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1442 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1443 	}
1444 
1445 	if (is_feat_nv2_supported()) {
1446 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1447 	}
1448 
1449 	if (is_feat_trf_supported()) {
1450 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1451 	}
1452 
1453 	if (is_feat_csv2_2_supported()) {
1454 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1455 					scxtnum_el2));
1456 	}
1457 
1458 	if (is_feat_hcx_supported()) {
1459 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1460 	}
1461 
1462 	if (is_feat_tcr2_supported()) {
1463 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1464 	}
1465 
1466 	if (is_feat_sxpie_supported()) {
1467 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1468 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1469 	}
1470 
1471 	if (is_feat_sxpoe_supported()) {
1472 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1473 	}
1474 
1475 	if (is_feat_s2pie_supported()) {
1476 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1477 	}
1478 
1479 	if (is_feat_gcs_supported()) {
1480 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1481 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1482 	}
1483 }
1484 #endif /* CTX_INCLUDE_EL2_REGS */
1485 
1486 /*******************************************************************************
1487  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1488  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1489  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1490  * cm_prepare_el3_exit function.
1491  ******************************************************************************/
1492 void cm_prepare_el3_exit_ns(void)
1493 {
1494 #if CTX_INCLUDE_EL2_REGS
1495 #if ENABLE_ASSERTIONS
1496 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1497 	assert(ctx != NULL);
1498 
1499 	/* Assert that EL2 is used. */
1500 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1501 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1502 			(el_implemented(2U) != EL_IMPL_NONE));
1503 #endif /* ENABLE_ASSERTIONS */
1504 
1505 	/* Restore EL2 and EL1 sysreg contexts */
1506 	cm_el2_sysregs_context_restore(NON_SECURE);
1507 	cm_el1_sysregs_context_restore(NON_SECURE);
1508 	cm_set_next_eret_context(NON_SECURE);
1509 #else
1510 	cm_prepare_el3_exit(NON_SECURE);
1511 #endif /* CTX_INCLUDE_EL2_REGS */
1512 }
1513 
1514 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1515 {
1516 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1517 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1518 
1519 #if !ERRATA_SPECULATIVE_AT
1520 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1521 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1522 #endif /* (!ERRATA_SPECULATIVE_AT) */
1523 
1524 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1525 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1526 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1527 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1528 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1529 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1530 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1531 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1532 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1533 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1534 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1535 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1536 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1537 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1538 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1539 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1540 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1541 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1542 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1543 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1544 
1545 #if CTX_INCLUDE_AARCH32_REGS
1546 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1547 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1548 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1549 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1550 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1551 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1552 #endif /* CTX_INCLUDE_AARCH32_REGS */
1553 
1554 #if NS_TIMER_SWITCH
1555 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1556 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1557 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1558 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1559 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1560 #endif /* NS_TIMER_SWITCH */
1561 
1562 #if ENABLE_FEAT_MTE2
1563 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1564 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1565 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1566 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1567 #endif /* ENABLE_FEAT_MTE2 */
1568 
1569 #if ENABLE_FEAT_RAS
1570 	if (is_feat_ras_supported()) {
1571 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1572 	}
1573 #endif
1574 
1575 #if ENABLE_FEAT_S1PIE
1576 	if (is_feat_s1pie_supported()) {
1577 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1578 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1579 	}
1580 #endif
1581 
1582 #if ENABLE_FEAT_S1POE
1583 	if (is_feat_s1poe_supported()) {
1584 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1585 	}
1586 #endif
1587 
1588 #if ENABLE_FEAT_S2POE
1589 	if (is_feat_s2poe_supported()) {
1590 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1591 	}
1592 #endif
1593 
1594 #if ENABLE_FEAT_TCR2
1595 	if (is_feat_tcr2_supported()) {
1596 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1597 	}
1598 #endif
1599 
1600 #if ENABLE_TRF_FOR_NS
1601 	if (is_feat_trf_supported()) {
1602 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1603 	}
1604 #endif
1605 
1606 #if ENABLE_FEAT_CSV2_2
1607 	if (is_feat_csv2_2_supported()) {
1608 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1609 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1610 	}
1611 #endif
1612 
1613 #if ENABLE_FEAT_GCS
1614 	if (is_feat_gcs_supported()) {
1615 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1616 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1617 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1618 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1619 	}
1620 #endif
1621 }
1622 
1623 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1624 {
1625 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1626 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1627 
1628 #if !ERRATA_SPECULATIVE_AT
1629 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1630 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1631 #endif /* (!ERRATA_SPECULATIVE_AT) */
1632 
1633 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1634 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1635 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1636 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1637 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1638 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1639 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1640 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1641 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1642 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1643 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1644 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1645 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1646 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1647 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1648 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1649 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1650 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1651 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1652 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1653 
1654 #if CTX_INCLUDE_AARCH32_REGS
1655 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1656 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1657 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1658 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1659 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1660 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1661 #endif /* CTX_INCLUDE_AARCH32_REGS */
1662 
1663 #if NS_TIMER_SWITCH
1664 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1665 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1666 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1667 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1668 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1669 #endif /* NS_TIMER_SWITCH */
1670 
1671 #if ENABLE_FEAT_MTE2
1672 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1673 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1674 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1675 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1676 #endif /* ENABLE_FEAT_MTE2 */
1677 
1678 #if ENABLE_FEAT_RAS
1679 	if (is_feat_ras_supported()) {
1680 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1681 	}
1682 #endif
1683 
1684 #if ENABLE_FEAT_S1PIE
1685 	if (is_feat_s1pie_supported()) {
1686 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1687 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1688 	}
1689 #endif
1690 
1691 #if ENABLE_FEAT_S1POE
1692 	if (is_feat_s1poe_supported()) {
1693 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1694 	}
1695 #endif
1696 
1697 #if ENABLE_FEAT_S2POE
1698 	if (is_feat_s2poe_supported()) {
1699 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1700 	}
1701 #endif
1702 
1703 #if ENABLE_FEAT_TCR2
1704 	if (is_feat_tcr2_supported()) {
1705 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1706 	}
1707 #endif
1708 
1709 #if ENABLE_TRF_FOR_NS
1710 	if (is_feat_trf_supported()) {
1711 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1712 	}
1713 #endif
1714 
1715 #if ENABLE_FEAT_CSV2_2
1716 	if (is_feat_csv2_2_supported()) {
1717 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1718 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1719 	}
1720 #endif
1721 
1722 #if ENABLE_FEAT_GCS
1723 	if (is_feat_gcs_supported()) {
1724 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1725 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1726 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1727 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1728 	}
1729 #endif
1730 }
1731 
1732 /*******************************************************************************
1733  * The next four functions are used by runtime services to save and restore
1734  * EL1 context on the 'cpu_context' structure for the specified security
1735  * state.
1736  ******************************************************************************/
1737 void cm_el1_sysregs_context_save(uint32_t security_state)
1738 {
1739 	cpu_context_t *ctx;
1740 
1741 	ctx = cm_get_context(security_state);
1742 	assert(ctx != NULL);
1743 
1744 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1745 
1746 #if IMAGE_BL31
1747 	if (security_state == SECURE)
1748 		PUBLISH_EVENT(cm_exited_secure_world);
1749 	else
1750 		PUBLISH_EVENT(cm_exited_normal_world);
1751 #endif
1752 }
1753 
1754 void cm_el1_sysregs_context_restore(uint32_t security_state)
1755 {
1756 	cpu_context_t *ctx;
1757 
1758 	ctx = cm_get_context(security_state);
1759 	assert(ctx != NULL);
1760 
1761 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1762 
1763 #if IMAGE_BL31
1764 	if (security_state == SECURE)
1765 		PUBLISH_EVENT(cm_entering_secure_world);
1766 	else
1767 		PUBLISH_EVENT(cm_entering_normal_world);
1768 #endif
1769 }
1770 
1771 /*******************************************************************************
1772  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1773  * given security state with the given entrypoint
1774  ******************************************************************************/
1775 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1776 {
1777 	cpu_context_t *ctx;
1778 	el3_state_t *state;
1779 
1780 	ctx = cm_get_context(security_state);
1781 	assert(ctx != NULL);
1782 
1783 	/* Populate EL3 state so that ERET jumps to the correct entry */
1784 	state = get_el3state_ctx(ctx);
1785 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1786 }
1787 
1788 /*******************************************************************************
1789  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1790  * pertaining to the given security state
1791  ******************************************************************************/
1792 void cm_set_elr_spsr_el3(uint32_t security_state,
1793 			uintptr_t entrypoint, uint32_t spsr)
1794 {
1795 	cpu_context_t *ctx;
1796 	el3_state_t *state;
1797 
1798 	ctx = cm_get_context(security_state);
1799 	assert(ctx != NULL);
1800 
1801 	/* Populate EL3 state so that ERET jumps to the correct entry */
1802 	state = get_el3state_ctx(ctx);
1803 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1804 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1805 }
1806 
1807 /*******************************************************************************
1808  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1809  * pertaining to the given security state using the value and bit position
1810  * specified in the parameters. It preserves all other bits.
1811  ******************************************************************************/
1812 void cm_write_scr_el3_bit(uint32_t security_state,
1813 			  uint32_t bit_pos,
1814 			  uint32_t value)
1815 {
1816 	cpu_context_t *ctx;
1817 	el3_state_t *state;
1818 	u_register_t scr_el3;
1819 
1820 	ctx = cm_get_context(security_state);
1821 	assert(ctx != NULL);
1822 
1823 	/* Ensure that the bit position is a valid one */
1824 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1825 
1826 	/* Ensure that the 'value' is only a bit wide */
1827 	assert(value <= 1U);
1828 
1829 	/*
1830 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1831 	 * and set it to its new value.
1832 	 */
1833 	state = get_el3state_ctx(ctx);
1834 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1835 	scr_el3 &= ~(1UL << bit_pos);
1836 	scr_el3 |= (u_register_t)value << bit_pos;
1837 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1838 }
1839 
1840 /*******************************************************************************
1841  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1842  * given security state.
1843  ******************************************************************************/
1844 u_register_t cm_get_scr_el3(uint32_t security_state)
1845 {
1846 	cpu_context_t *ctx;
1847 	el3_state_t *state;
1848 
1849 	ctx = cm_get_context(security_state);
1850 	assert(ctx != NULL);
1851 
1852 	/* Populate EL3 state so that ERET jumps to the correct entry */
1853 	state = get_el3state_ctx(ctx);
1854 	return read_ctx_reg(state, CTX_SCR_EL3);
1855 }
1856 
1857 /*******************************************************************************
1858  * This function is used to program the context that's used for exception
1859  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1860  * the required security state
1861  ******************************************************************************/
1862 void cm_set_next_eret_context(uint32_t security_state)
1863 {
1864 	cpu_context_t *ctx;
1865 
1866 	ctx = cm_get_context(security_state);
1867 	assert(ctx != NULL);
1868 
1869 	cm_set_next_context(ctx);
1870 }
1871