xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 1123a5e2f973dc9f0223467f4782f6b2df542620)
1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	u_register_t scr_el3;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	u_register_t sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
112 	/*
113 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
114 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
115 	 */
116 	scr_el3 |= SCR_TERR_BIT;
117 #endif
118 
119 #if !HANDLE_EA_EL3_FIRST
120 	/*
121 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
122 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
123 	 *  Aborts are taken to EL3.
124 	 */
125 	scr_el3 &= ~SCR_EA_BIT;
126 #endif
127 
128 #if FAULT_INJECTION_SUPPORT
129 	/* Enable fault injection from lower ELs */
130 	scr_el3 |= SCR_FIEN_BIT;
131 #endif
132 
133 #if !CTX_INCLUDE_PAUTH_REGS
134 	/*
135 	 * If the pointer authentication registers aren't saved during world
136 	 * switches the value of the registers can be leaked from the Secure to
137 	 * the Non-secure world. To prevent this, rather than enabling pointer
138 	 * authentication everywhere, we only enable it in the Non-secure world.
139 	 *
140 	 * If the Secure world wants to use pointer authentication,
141 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
142 	 */
143 	if (security_state == NON_SECURE)
144 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
145 #endif /* !CTX_INCLUDE_PAUTH_REGS */
146 
147 	/*
148 	 * Enable MTE support. Support is enabled unilaterally for the normal
149 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
150 	 * set.
151 	 */
152 #if CTX_INCLUDE_MTE_REGS
153 	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
154 	scr_el3 |= SCR_ATA_BIT;
155 #else
156 	unsigned int mte = get_armv8_5_mte_support();
157 	if (mte == MTE_IMPLEMENTED_EL0) {
158 		/*
159 		 * Can enable MTE across both worlds as no MTE registers are
160 		 * used
161 		 */
162 		scr_el3 |= SCR_ATA_BIT;
163 	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
164 		/*
165 		 * Can only enable MTE in Non-Secure world without register
166 		 * saving
167 		 */
168 		scr_el3 |= SCR_ATA_BIT;
169 	}
170 #endif
171 
172 #ifdef IMAGE_BL31
173 	/*
174 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
175 	 *  indicated by the interrupt routing model for BL31.
176 	 */
177 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
178 #endif
179 
180 	/*
181 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
182 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
183 	 * next mode is Hyp.
184 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
185 	 * same conditions as HVC instructions and when the processor supports
186 	 * ARMv8.6-FGT.
187 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
188 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
189 	 * and when the processor supports ECV.
190 	 */
191 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
192 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
193 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
194 		scr_el3 |= SCR_HCE_BIT;
195 
196 		if (is_armv8_6_fgt_present()) {
197 			scr_el3 |= SCR_FGTEN_BIT;
198 		}
199 
200 		if (get_armv8_6_ecv_support()
201 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
202 			scr_el3 |= SCR_ECVEN_BIT;
203 		}
204 	}
205 
206 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
207 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
208 		if (GET_RW(ep->spsr) != MODE_RW_64) {
209 			ERROR("S-EL2 can not be used in AArch32.");
210 			panic();
211 		}
212 
213 		scr_el3 |= SCR_EEL2_BIT;
214 	}
215 
216 	/*
217 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
218 	 * execution state setting all fields rather than relying of the hw.
219 	 * Some fields have architecturally UNKNOWN reset values and these are
220 	 * set to zero.
221 	 *
222 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
223 	 *
224 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
225 	 *  required by PSCI specification)
226 	 */
227 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
228 	if (GET_RW(ep->spsr) == MODE_RW_64)
229 		sctlr_elx |= SCTLR_EL1_RES1;
230 	else {
231 		/*
232 		 * If the target execution state is AArch32 then the following
233 		 * fields need to be set.
234 		 *
235 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
236 		 *  instructions are not trapped to EL1.
237 		 *
238 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
239 		 *  instructions are not trapped to EL1.
240 		 *
241 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
242 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
243 		 */
244 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
245 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
246 	}
247 
248 #if ERRATA_A75_764081
249 	/*
250 	 * If workaround of errata 764081 for Cortex-A75 is used then set
251 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
252 	 */
253 	sctlr_elx |= SCTLR_IESB_BIT;
254 #endif
255 
256 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
257 	if (is_armv8_6_twed_present()) {
258 		uint32_t delay = plat_arm_set_twedel_scr_el3();
259 
260 		if (delay != TWED_DISABLED) {
261 			/* Make sure delay value fits */
262 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
263 
264 			/* Set delay in SCR_EL3 */
265 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
266 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
267 					<< SCR_TWEDEL_SHIFT);
268 
269 			/* Enable WFE delay */
270 			scr_el3 |= SCR_TWEDEn_BIT;
271 		}
272 	}
273 
274 	/*
275 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
276 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
277 	 * are not part of the stored cpu_context.
278 	 */
279 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
280 
281 	/*
282 	 * Base the context ACTLR_EL1 on the current value, as it is
283 	 * implementation defined. The context restore process will write
284 	 * the value from the context to the actual register and can cause
285 	 * problems for processor cores that don't expect certain bits to
286 	 * be zero.
287 	 */
288 	actlr_elx = read_actlr_el1();
289 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
290 
291 	/*
292 	 * Populate EL3 state so that we've the right context
293 	 * before doing ERET
294 	 */
295 	state = get_el3state_ctx(ctx);
296 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
297 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
298 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
299 
300 	/*
301 	 * Store the X0-X7 value from the entrypoint into the context
302 	 * Use memcpy as we are in control of the layout of the structures
303 	 */
304 	gp_regs = get_gpregs_ctx(ctx);
305 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
306 }
307 
308 /*******************************************************************************
309  * Enable architecture extensions on first entry to Non-secure world.
310  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
311  * it is zero.
312  ******************************************************************************/
313 static void enable_extensions_nonsecure(bool el2_unused)
314 {
315 #if IMAGE_BL31
316 #if ENABLE_SPE_FOR_LOWER_ELS
317 	spe_enable(el2_unused);
318 #endif
319 
320 #if ENABLE_AMU
321 	amu_enable(el2_unused);
322 #endif
323 
324 #if ENABLE_SVE_FOR_NS
325 	sve_enable(el2_unused);
326 #endif
327 
328 #if ENABLE_MPAM_FOR_LOWER_ELS
329 	mpam_enable(el2_unused);
330 #endif
331 #endif
332 }
333 
334 /*******************************************************************************
335  * The following function initializes the cpu_context for a CPU specified by
336  * its `cpu_idx` for first use, and sets the initial entrypoint state as
337  * specified by the entry_point_info structure.
338  ******************************************************************************/
339 void cm_init_context_by_index(unsigned int cpu_idx,
340 			      const entry_point_info_t *ep)
341 {
342 	cpu_context_t *ctx;
343 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
344 	cm_setup_context(ctx, ep);
345 }
346 
347 /*******************************************************************************
348  * The following function initializes the cpu_context for the current CPU
349  * for first use, and sets the initial entrypoint state as specified by the
350  * entry_point_info structure.
351  ******************************************************************************/
352 void cm_init_my_context(const entry_point_info_t *ep)
353 {
354 	cpu_context_t *ctx;
355 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
356 	cm_setup_context(ctx, ep);
357 }
358 
359 /*******************************************************************************
360  * Prepare the CPU system registers for first entry into secure or normal world
361  *
362  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
363  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
364  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
365  * For all entries, the EL1 registers are initialized from the cpu_context
366  ******************************************************************************/
367 void cm_prepare_el3_exit(uint32_t security_state)
368 {
369 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
370 	cpu_context_t *ctx = cm_get_context(security_state);
371 	bool el2_unused = false;
372 	uint64_t hcr_el2 = 0U;
373 
374 	assert(ctx != NULL);
375 
376 	if (security_state == NON_SECURE) {
377 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
378 						 CTX_SCR_EL3);
379 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
380 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
381 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
382 							   CTX_SCTLR_EL1);
383 			sctlr_elx &= SCTLR_EE_BIT;
384 			sctlr_elx |= SCTLR_EL2_RES1;
385 #if ERRATA_A75_764081
386 			/*
387 			 * If workaround of errata 764081 for Cortex-A75 is used
388 			 * then set SCTLR_EL2.IESB to enable Implicit Error
389 			 * Synchronization Barrier.
390 			 */
391 			sctlr_elx |= SCTLR_IESB_BIT;
392 #endif
393 			write_sctlr_el2(sctlr_elx);
394 		} else if (el_implemented(2) != EL_IMPL_NONE) {
395 			el2_unused = true;
396 
397 			/*
398 			 * EL2 present but unused, need to disable safely.
399 			 * SCTLR_EL2 can be ignored in this case.
400 			 *
401 			 * Set EL2 register width appropriately: Set HCR_EL2
402 			 * field to match SCR_EL3.RW.
403 			 */
404 			if ((scr_el3 & SCR_RW_BIT) != 0U)
405 				hcr_el2 |= HCR_RW_BIT;
406 
407 			/*
408 			 * For Armv8.3 pointer authentication feature, disable
409 			 * traps to EL2 when accessing key registers or using
410 			 * pointer authentication instructions from lower ELs.
411 			 */
412 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
413 
414 			write_hcr_el2(hcr_el2);
415 
416 			/*
417 			 * Initialise CPTR_EL2 setting all fields rather than
418 			 * relying on the hw. All fields have architecturally
419 			 * UNKNOWN reset values.
420 			 *
421 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
422 			 *  accesses to the CPACR_EL1 or CPACR from both
423 			 *  Execution states do not trap to EL2.
424 			 *
425 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
426 			 *  register accesses to the trace registers from both
427 			 *  Execution states do not trap to EL2.
428 			 *
429 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
430 			 *  to SIMD and floating-point functionality from both
431 			 *  Execution states do not trap to EL2.
432 			 */
433 			write_cptr_el2(CPTR_EL2_RESET_VAL &
434 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
435 					| CPTR_EL2_TFP_BIT));
436 
437 			/*
438 			 * Initialise CNTHCTL_EL2. All fields are
439 			 * architecturally UNKNOWN on reset and are set to zero
440 			 * except for field(s) listed below.
441 			 *
442 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
443 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
444 			 *  physical timer registers.
445 			 *
446 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
447 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
448 			 *  physical counter registers.
449 			 */
450 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
451 						EL1PCEN_BIT | EL1PCTEN_BIT);
452 
453 			/*
454 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
455 			 * architecturally UNKNOWN value.
456 			 */
457 			write_cntvoff_el2(0);
458 
459 			/*
460 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
461 			 * MPIDR_EL1 respectively.
462 			 */
463 			write_vpidr_el2(read_midr_el1());
464 			write_vmpidr_el2(read_mpidr_el1());
465 
466 			/*
467 			 * Initialise VTTBR_EL2. All fields are architecturally
468 			 * UNKNOWN on reset.
469 			 *
470 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
471 			 *  2 address translation is disabled, cache maintenance
472 			 *  operations depend on the VMID.
473 			 *
474 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
475 			 *  translation is disabled.
476 			 */
477 			write_vttbr_el2(VTTBR_RESET_VAL &
478 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
479 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
480 
481 			/*
482 			 * Initialise MDCR_EL2, setting all fields rather than
483 			 * relying on hw. Some fields are architecturally
484 			 * UNKNOWN on reset.
485 			 *
486 			 * MDCR_EL2.HLP: Set to one so that event counter
487 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
488 			 *  occurs on the increment that changes
489 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
490 			 *  implemented. This bit is RES0 in versions of the
491 			 *  architecture earlier than ARMv8.5, setting it to 1
492 			 *  doesn't have any effect on them.
493 			 *
494 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
495 			 *  Filter Control register TRFCR_EL1 at EL1 is not
496 			 *  trapped to EL2. This bit is RES0 in versions of
497 			 *  the architecture earlier than ARMv8.4.
498 			 *
499 			 * MDCR_EL2.HPMD: Set to one so that event counting is
500 			 *  prohibited at EL2. This bit is RES0 in versions of
501 			 *  the architecture earlier than ARMv8.1, setting it
502 			 *  to 1 doesn't have any effect on them.
503 			 *
504 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
505 			 *  Statistical Profiling control registers from EL1
506 			 *  do not trap to EL2. This bit is RES0 when SPE is
507 			 *  not implemented.
508 			 *
509 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
510 			 *  EL1 System register accesses to the Debug ROM
511 			 *  registers are not trapped to EL2.
512 			 *
513 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
514 			 *  System register accesses to the powerdown debug
515 			 *  registers are not trapped to EL2.
516 			 *
517 			 * MDCR_EL2.TDA: Set to zero so that System register
518 			 *  accesses to the debug registers do not trap to EL2.
519 			 *
520 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
521 			 *  are not routed to EL2.
522 			 *
523 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
524 			 *  Monitors.
525 			 *
526 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
527 			 *  EL1 accesses to all Performance Monitors registers
528 			 *  are not trapped to EL2.
529 			 *
530 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
531 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
532 			 *  trapped to EL2.
533 			 *
534 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
535 			 *  architecturally-defined reset value.
536 			 */
537 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
538 				     MDCR_EL2_HPMD) |
539 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
540 				   >> PMCR_EL0_N_SHIFT)) &
541 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
542 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
543 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
544 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
545 				     MDCR_EL2_TPMCR_BIT);
546 
547 			write_mdcr_el2(mdcr_el2);
548 
549 			/*
550 			 * Initialise HSTR_EL2. All fields are architecturally
551 			 * UNKNOWN on reset.
552 			 *
553 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
554 			 *  Non-secure EL0 or EL1 accesses to System registers
555 			 *  do not trap to EL2.
556 			 */
557 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
558 			/*
559 			 * Initialise CNTHP_CTL_EL2. All fields are
560 			 * architecturally UNKNOWN on reset.
561 			 *
562 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
563 			 *  physical timer and prevent timer interrupts.
564 			 */
565 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
566 						~(CNTHP_CTL_ENABLE_BIT));
567 		}
568 		enable_extensions_nonsecure(el2_unused);
569 	}
570 
571 	cm_el1_sysregs_context_restore(security_state);
572 	cm_set_next_eret_context(security_state);
573 }
574 
575 #if CTX_INCLUDE_EL2_REGS
576 /*******************************************************************************
577  * Save EL2 sysreg context
578  ******************************************************************************/
579 void cm_el2_sysregs_context_save(uint32_t security_state)
580 {
581 	u_register_t scr_el3 = read_scr();
582 
583 	/*
584 	 * Always save the non-secure EL2 context, only save the
585 	 * S-EL2 context if S-EL2 is enabled.
586 	 */
587 	if ((security_state == NON_SECURE) ||
588 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
589 		cpu_context_t *ctx;
590 
591 		ctx = cm_get_context(security_state);
592 		assert(ctx != NULL);
593 
594 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
595 	}
596 }
597 
598 /*******************************************************************************
599  * Restore EL2 sysreg context
600  ******************************************************************************/
601 void cm_el2_sysregs_context_restore(uint32_t security_state)
602 {
603 	u_register_t scr_el3 = read_scr();
604 
605 	/*
606 	 * Always restore the non-secure EL2 context, only restore the
607 	 * S-EL2 context if S-EL2 is enabled.
608 	 */
609 	if ((security_state == NON_SECURE) ||
610 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
611 		cpu_context_t *ctx;
612 
613 		ctx = cm_get_context(security_state);
614 		assert(ctx != NULL);
615 
616 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
617 	}
618 }
619 #endif /* CTX_INCLUDE_EL2_REGS */
620 
621 /*******************************************************************************
622  * The next four functions are used by runtime services to save and restore
623  * EL1 context on the 'cpu_context' structure for the specified security
624  * state.
625  ******************************************************************************/
626 void cm_el1_sysregs_context_save(uint32_t security_state)
627 {
628 	cpu_context_t *ctx;
629 
630 	ctx = cm_get_context(security_state);
631 	assert(ctx != NULL);
632 
633 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
634 
635 #if IMAGE_BL31
636 	if (security_state == SECURE)
637 		PUBLISH_EVENT(cm_exited_secure_world);
638 	else
639 		PUBLISH_EVENT(cm_exited_normal_world);
640 #endif
641 }
642 
643 void cm_el1_sysregs_context_restore(uint32_t security_state)
644 {
645 	cpu_context_t *ctx;
646 
647 	ctx = cm_get_context(security_state);
648 	assert(ctx != NULL);
649 
650 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
651 
652 #if IMAGE_BL31
653 	if (security_state == SECURE)
654 		PUBLISH_EVENT(cm_entering_secure_world);
655 	else
656 		PUBLISH_EVENT(cm_entering_normal_world);
657 #endif
658 }
659 
660 /*******************************************************************************
661  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
662  * given security state with the given entrypoint
663  ******************************************************************************/
664 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
665 {
666 	cpu_context_t *ctx;
667 	el3_state_t *state;
668 
669 	ctx = cm_get_context(security_state);
670 	assert(ctx != NULL);
671 
672 	/* Populate EL3 state so that ERET jumps to the correct entry */
673 	state = get_el3state_ctx(ctx);
674 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
675 }
676 
677 /*******************************************************************************
678  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
679  * pertaining to the given security state
680  ******************************************************************************/
681 void cm_set_elr_spsr_el3(uint32_t security_state,
682 			uintptr_t entrypoint, uint32_t spsr)
683 {
684 	cpu_context_t *ctx;
685 	el3_state_t *state;
686 
687 	ctx = cm_get_context(security_state);
688 	assert(ctx != NULL);
689 
690 	/* Populate EL3 state so that ERET jumps to the correct entry */
691 	state = get_el3state_ctx(ctx);
692 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
693 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
694 }
695 
696 /*******************************************************************************
697  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
698  * pertaining to the given security state using the value and bit position
699  * specified in the parameters. It preserves all other bits.
700  ******************************************************************************/
701 void cm_write_scr_el3_bit(uint32_t security_state,
702 			  uint32_t bit_pos,
703 			  uint32_t value)
704 {
705 	cpu_context_t *ctx;
706 	el3_state_t *state;
707 	u_register_t scr_el3;
708 
709 	ctx = cm_get_context(security_state);
710 	assert(ctx != NULL);
711 
712 	/* Ensure that the bit position is a valid one */
713 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
714 
715 	/* Ensure that the 'value' is only a bit wide */
716 	assert(value <= 1U);
717 
718 	/*
719 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
720 	 * and set it to its new value.
721 	 */
722 	state = get_el3state_ctx(ctx);
723 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
724 	scr_el3 &= ~(1U << bit_pos);
725 	scr_el3 |= (u_register_t)value << bit_pos;
726 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
727 }
728 
729 /*******************************************************************************
730  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
731  * given security state.
732  ******************************************************************************/
733 u_register_t cm_get_scr_el3(uint32_t security_state)
734 {
735 	cpu_context_t *ctx;
736 	el3_state_t *state;
737 
738 	ctx = cm_get_context(security_state);
739 	assert(ctx != NULL);
740 
741 	/* Populate EL3 state so that ERET jumps to the correct entry */
742 	state = get_el3state_ctx(ctx);
743 	return read_ctx_reg(state, CTX_SCR_EL3);
744 }
745 
746 /*******************************************************************************
747  * This function is used to program the context that's used for exception
748  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
749  * the required security state
750  ******************************************************************************/
751 void cm_set_next_eret_context(uint32_t security_state)
752 {
753 	cpu_context_t *ctx;
754 
755 	ctx = cm_get_context(security_state);
756 	assert(ctx != NULL);
757 
758 	cm_set_next_context(ctx);
759 }
760