xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 110ee4330af41a83afff102c8852c1dc161b7501)
1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	u_register_t scr_el3;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	u_register_t sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if !HANDLE_EA_EL3_FIRST
112 	/*
113 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
114 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
115 	 *  Aborts are taken to EL3.
116 	 */
117 	scr_el3 &= ~SCR_EA_BIT;
118 #endif
119 
120 #if FAULT_INJECTION_SUPPORT
121 	/* Enable fault injection from lower ELs */
122 	scr_el3 |= SCR_FIEN_BIT;
123 #endif
124 
125 #if !CTX_INCLUDE_PAUTH_REGS
126 	/*
127 	 * If the pointer authentication registers aren't saved during world
128 	 * switches the value of the registers can be leaked from the Secure to
129 	 * the Non-secure world. To prevent this, rather than enabling pointer
130 	 * authentication everywhere, we only enable it in the Non-secure world.
131 	 *
132 	 * If the Secure world wants to use pointer authentication,
133 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
134 	 */
135 	if (security_state == NON_SECURE)
136 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
137 #endif /* !CTX_INCLUDE_PAUTH_REGS */
138 
139 	/*
140 	 * Enable MTE support. Support is enabled unilaterally for the normal
141 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
142 	 * set.
143 	 */
144 #if CTX_INCLUDE_MTE_REGS
145 	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
146 	scr_el3 |= SCR_ATA_BIT;
147 #else
148 	unsigned int mte = get_armv8_5_mte_support();
149 	if (mte == MTE_IMPLEMENTED_EL0) {
150 		/*
151 		 * Can enable MTE across both worlds as no MTE registers are
152 		 * used
153 		 */
154 		scr_el3 |= SCR_ATA_BIT;
155 	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
156 		/*
157 		 * Can only enable MTE in Non-Secure world without register
158 		 * saving
159 		 */
160 		scr_el3 |= SCR_ATA_BIT;
161 	}
162 #endif
163 
164 #ifdef IMAGE_BL31
165 	/*
166 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
167 	 *  indicated by the interrupt routing model for BL31.
168 	 */
169 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
170 #endif
171 
172 	/*
173 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
174 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
175 	 * next mode is Hyp.
176 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
177 	 * same conditions as HVC instructions and when the processor supports
178 	 * ARMv8.6-FGT.
179 	 */
180 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
181 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
182 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
183 		scr_el3 |= SCR_HCE_BIT;
184 
185 		if (is_armv8_6_fgt_present()) {
186 			scr_el3 |= SCR_FGTEN_BIT;
187 		}
188 	}
189 
190 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
191 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
192 		if (GET_RW(ep->spsr) != MODE_RW_64) {
193 			ERROR("S-EL2 can not be used in AArch32.");
194 			panic();
195 		}
196 
197 		scr_el3 |= SCR_EEL2_BIT;
198 	}
199 
200 	/*
201 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
202 	 * execution state setting all fields rather than relying of the hw.
203 	 * Some fields have architecturally UNKNOWN reset values and these are
204 	 * set to zero.
205 	 *
206 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
207 	 *
208 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
209 	 *  required by PSCI specification)
210 	 */
211 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
212 	if (GET_RW(ep->spsr) == MODE_RW_64)
213 		sctlr_elx |= SCTLR_EL1_RES1;
214 	else {
215 		/*
216 		 * If the target execution state is AArch32 then the following
217 		 * fields need to be set.
218 		 *
219 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
220 		 *  instructions are not trapped to EL1.
221 		 *
222 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
223 		 *  instructions are not trapped to EL1.
224 		 *
225 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
226 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
227 		 */
228 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
229 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
230 	}
231 
232 #if ERRATA_A75_764081
233 	/*
234 	 * If workaround of errata 764081 for Cortex-A75 is used then set
235 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
236 	 */
237 	sctlr_elx |= SCTLR_IESB_BIT;
238 #endif
239 
240 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
241 	if (is_armv8_6_twed_present()) {
242 		uint32_t delay = plat_arm_set_twedel_scr_el3();
243 
244 		if (delay != TWED_DISABLED) {
245 			/* Make sure delay value fits */
246 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
247 
248 			/* Set delay in SCR_EL3 */
249 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
250 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
251 					<< SCR_TWEDEL_SHIFT);
252 
253 			/* Enable WFE delay */
254 			scr_el3 |= SCR_TWEDEn_BIT;
255 		}
256 	}
257 
258 	/*
259 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
260 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
261 	 * are not part of the stored cpu_context.
262 	 */
263 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
264 
265 	/*
266 	 * Base the context ACTLR_EL1 on the current value, as it is
267 	 * implementation defined. The context restore process will write
268 	 * the value from the context to the actual register and can cause
269 	 * problems for processor cores that don't expect certain bits to
270 	 * be zero.
271 	 */
272 	actlr_elx = read_actlr_el1();
273 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
274 
275 	/*
276 	 * Populate EL3 state so that we've the right context
277 	 * before doing ERET
278 	 */
279 	state = get_el3state_ctx(ctx);
280 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
281 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
282 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
283 
284 	/*
285 	 * Store the X0-X7 value from the entrypoint into the context
286 	 * Use memcpy as we are in control of the layout of the structures
287 	 */
288 	gp_regs = get_gpregs_ctx(ctx);
289 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
290 }
291 
292 /*******************************************************************************
293  * Enable architecture extensions on first entry to Non-secure world.
294  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
295  * it is zero.
296  ******************************************************************************/
297 static void enable_extensions_nonsecure(bool el2_unused)
298 {
299 #if IMAGE_BL31
300 #if ENABLE_SPE_FOR_LOWER_ELS
301 	spe_enable(el2_unused);
302 #endif
303 
304 #if ENABLE_AMU
305 	amu_enable(el2_unused);
306 #endif
307 
308 #if ENABLE_SVE_FOR_NS
309 	sve_enable(el2_unused);
310 #endif
311 
312 #if ENABLE_MPAM_FOR_LOWER_ELS
313 	mpam_enable(el2_unused);
314 #endif
315 #endif
316 }
317 
318 /*******************************************************************************
319  * The following function initializes the cpu_context for a CPU specified by
320  * its `cpu_idx` for first use, and sets the initial entrypoint state as
321  * specified by the entry_point_info structure.
322  ******************************************************************************/
323 void cm_init_context_by_index(unsigned int cpu_idx,
324 			      const entry_point_info_t *ep)
325 {
326 	cpu_context_t *ctx;
327 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
328 	cm_setup_context(ctx, ep);
329 }
330 
331 /*******************************************************************************
332  * The following function initializes the cpu_context for the current CPU
333  * for first use, and sets the initial entrypoint state as specified by the
334  * entry_point_info structure.
335  ******************************************************************************/
336 void cm_init_my_context(const entry_point_info_t *ep)
337 {
338 	cpu_context_t *ctx;
339 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
340 	cm_setup_context(ctx, ep);
341 }
342 
343 /*******************************************************************************
344  * Prepare the CPU system registers for first entry into secure or normal world
345  *
346  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
347  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
348  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
349  * For all entries, the EL1 registers are initialized from the cpu_context
350  ******************************************************************************/
351 void cm_prepare_el3_exit(uint32_t security_state)
352 {
353 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
354 	cpu_context_t *ctx = cm_get_context(security_state);
355 	bool el2_unused = false;
356 	uint64_t hcr_el2 = 0U;
357 
358 	assert(ctx != NULL);
359 
360 	if (security_state == NON_SECURE) {
361 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
362 						 CTX_SCR_EL3);
363 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
364 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
365 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
366 							   CTX_SCTLR_EL1);
367 			sctlr_elx &= SCTLR_EE_BIT;
368 			sctlr_elx |= SCTLR_EL2_RES1;
369 #if ERRATA_A75_764081
370 			/*
371 			 * If workaround of errata 764081 for Cortex-A75 is used
372 			 * then set SCTLR_EL2.IESB to enable Implicit Error
373 			 * Synchronization Barrier.
374 			 */
375 			sctlr_elx |= SCTLR_IESB_BIT;
376 #endif
377 			write_sctlr_el2(sctlr_elx);
378 		} else if (el_implemented(2) != EL_IMPL_NONE) {
379 			el2_unused = true;
380 
381 			/*
382 			 * EL2 present but unused, need to disable safely.
383 			 * SCTLR_EL2 can be ignored in this case.
384 			 *
385 			 * Set EL2 register width appropriately: Set HCR_EL2
386 			 * field to match SCR_EL3.RW.
387 			 */
388 			if ((scr_el3 & SCR_RW_BIT) != 0U)
389 				hcr_el2 |= HCR_RW_BIT;
390 
391 			/*
392 			 * For Armv8.3 pointer authentication feature, disable
393 			 * traps to EL2 when accessing key registers or using
394 			 * pointer authentication instructions from lower ELs.
395 			 */
396 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
397 
398 			write_hcr_el2(hcr_el2);
399 
400 			/*
401 			 * Initialise CPTR_EL2 setting all fields rather than
402 			 * relying on the hw. All fields have architecturally
403 			 * UNKNOWN reset values.
404 			 *
405 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
406 			 *  accesses to the CPACR_EL1 or CPACR from both
407 			 *  Execution states do not trap to EL2.
408 			 *
409 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
410 			 *  register accesses to the trace registers from both
411 			 *  Execution states do not trap to EL2.
412 			 *
413 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
414 			 *  to SIMD and floating-point functionality from both
415 			 *  Execution states do not trap to EL2.
416 			 */
417 			write_cptr_el2(CPTR_EL2_RESET_VAL &
418 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
419 					| CPTR_EL2_TFP_BIT));
420 
421 			/*
422 			 * Initialise CNTHCTL_EL2. All fields are
423 			 * architecturally UNKNOWN on reset and are set to zero
424 			 * except for field(s) listed below.
425 			 *
426 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
427 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
428 			 *  physical timer registers.
429 			 *
430 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
431 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
432 			 *  physical counter registers.
433 			 */
434 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
435 						EL1PCEN_BIT | EL1PCTEN_BIT);
436 
437 			/*
438 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
439 			 * architecturally UNKNOWN value.
440 			 */
441 			write_cntvoff_el2(0);
442 
443 			/*
444 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
445 			 * MPIDR_EL1 respectively.
446 			 */
447 			write_vpidr_el2(read_midr_el1());
448 			write_vmpidr_el2(read_mpidr_el1());
449 
450 			/*
451 			 * Initialise VTTBR_EL2. All fields are architecturally
452 			 * UNKNOWN on reset.
453 			 *
454 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
455 			 *  2 address translation is disabled, cache maintenance
456 			 *  operations depend on the VMID.
457 			 *
458 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
459 			 *  translation is disabled.
460 			 */
461 			write_vttbr_el2(VTTBR_RESET_VAL &
462 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
463 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
464 
465 			/*
466 			 * Initialise MDCR_EL2, setting all fields rather than
467 			 * relying on hw. Some fields are architecturally
468 			 * UNKNOWN on reset.
469 			 *
470 			 * MDCR_EL2.HLP: Set to one so that event counter
471 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
472 			 *  occurs on the increment that changes
473 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
474 			 *  implemented. This bit is RES0 in versions of the
475 			 *  architecture earlier than ARMv8.5, setting it to 1
476 			 *  doesn't have any effect on them.
477 			 *
478 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
479 			 *  Filter Control register TRFCR_EL1 at EL1 is not
480 			 *  trapped to EL2. This bit is RES0 in versions of
481 			 *  the architecture earlier than ARMv8.4.
482 			 *
483 			 * MDCR_EL2.HPMD: Set to one so that event counting is
484 			 *  prohibited at EL2. This bit is RES0 in versions of
485 			 *  the architecture earlier than ARMv8.1, setting it
486 			 *  to 1 doesn't have any effect on them.
487 			 *
488 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
489 			 *  Statistical Profiling control registers from EL1
490 			 *  do not trap to EL2. This bit is RES0 when SPE is
491 			 *  not implemented.
492 			 *
493 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
494 			 *  EL1 System register accesses to the Debug ROM
495 			 *  registers are not trapped to EL2.
496 			 *
497 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
498 			 *  System register accesses to the powerdown debug
499 			 *  registers are not trapped to EL2.
500 			 *
501 			 * MDCR_EL2.TDA: Set to zero so that System register
502 			 *  accesses to the debug registers do not trap to EL2.
503 			 *
504 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
505 			 *  are not routed to EL2.
506 			 *
507 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
508 			 *  Monitors.
509 			 *
510 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
511 			 *  EL1 accesses to all Performance Monitors registers
512 			 *  are not trapped to EL2.
513 			 *
514 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
515 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
516 			 *  trapped to EL2.
517 			 *
518 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
519 			 *  architecturally-defined reset value.
520 			 */
521 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
522 				     MDCR_EL2_HPMD) |
523 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
524 				   >> PMCR_EL0_N_SHIFT)) &
525 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
526 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
527 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
528 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
529 				     MDCR_EL2_TPMCR_BIT);
530 
531 			write_mdcr_el2(mdcr_el2);
532 
533 			/*
534 			 * Initialise HSTR_EL2. All fields are architecturally
535 			 * UNKNOWN on reset.
536 			 *
537 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
538 			 *  Non-secure EL0 or EL1 accesses to System registers
539 			 *  do not trap to EL2.
540 			 */
541 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
542 			/*
543 			 * Initialise CNTHP_CTL_EL2. All fields are
544 			 * architecturally UNKNOWN on reset.
545 			 *
546 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
547 			 *  physical timer and prevent timer interrupts.
548 			 */
549 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
550 						~(CNTHP_CTL_ENABLE_BIT));
551 		}
552 		enable_extensions_nonsecure(el2_unused);
553 	}
554 
555 	cm_el1_sysregs_context_restore(security_state);
556 	cm_set_next_eret_context(security_state);
557 }
558 
559 #if CTX_INCLUDE_EL2_REGS
560 /*******************************************************************************
561  * Save EL2 sysreg context
562  ******************************************************************************/
563 void cm_el2_sysregs_context_save(uint32_t security_state)
564 {
565 	u_register_t scr_el3 = read_scr();
566 
567 	/*
568 	 * Always save the non-secure EL2 context, only save the
569 	 * S-EL2 context if S-EL2 is enabled.
570 	 */
571 	if ((security_state == NON_SECURE) ||
572 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
573 		cpu_context_t *ctx;
574 
575 		ctx = cm_get_context(security_state);
576 		assert(ctx != NULL);
577 
578 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
579 	}
580 }
581 
582 /*******************************************************************************
583  * Restore EL2 sysreg context
584  ******************************************************************************/
585 void cm_el2_sysregs_context_restore(uint32_t security_state)
586 {
587 	u_register_t scr_el3 = read_scr();
588 
589 	/*
590 	 * Always restore the non-secure EL2 context, only restore the
591 	 * S-EL2 context if S-EL2 is enabled.
592 	 */
593 	if ((security_state == NON_SECURE) ||
594 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
595 		cpu_context_t *ctx;
596 
597 		ctx = cm_get_context(security_state);
598 		assert(ctx != NULL);
599 
600 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
601 	}
602 }
603 #endif /* CTX_INCLUDE_EL2_REGS */
604 
605 /*******************************************************************************
606  * The next four functions are used by runtime services to save and restore
607  * EL1 context on the 'cpu_context' structure for the specified security
608  * state.
609  ******************************************************************************/
610 void cm_el1_sysregs_context_save(uint32_t security_state)
611 {
612 	cpu_context_t *ctx;
613 
614 	ctx = cm_get_context(security_state);
615 	assert(ctx != NULL);
616 
617 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
618 
619 #if IMAGE_BL31
620 	if (security_state == SECURE)
621 		PUBLISH_EVENT(cm_exited_secure_world);
622 	else
623 		PUBLISH_EVENT(cm_exited_normal_world);
624 #endif
625 }
626 
627 void cm_el1_sysregs_context_restore(uint32_t security_state)
628 {
629 	cpu_context_t *ctx;
630 
631 	ctx = cm_get_context(security_state);
632 	assert(ctx != NULL);
633 
634 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
635 
636 #if IMAGE_BL31
637 	if (security_state == SECURE)
638 		PUBLISH_EVENT(cm_entering_secure_world);
639 	else
640 		PUBLISH_EVENT(cm_entering_normal_world);
641 #endif
642 }
643 
644 /*******************************************************************************
645  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
646  * given security state with the given entrypoint
647  ******************************************************************************/
648 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
649 {
650 	cpu_context_t *ctx;
651 	el3_state_t *state;
652 
653 	ctx = cm_get_context(security_state);
654 	assert(ctx != NULL);
655 
656 	/* Populate EL3 state so that ERET jumps to the correct entry */
657 	state = get_el3state_ctx(ctx);
658 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
659 }
660 
661 /*******************************************************************************
662  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
663  * pertaining to the given security state
664  ******************************************************************************/
665 void cm_set_elr_spsr_el3(uint32_t security_state,
666 			uintptr_t entrypoint, uint32_t spsr)
667 {
668 	cpu_context_t *ctx;
669 	el3_state_t *state;
670 
671 	ctx = cm_get_context(security_state);
672 	assert(ctx != NULL);
673 
674 	/* Populate EL3 state so that ERET jumps to the correct entry */
675 	state = get_el3state_ctx(ctx);
676 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
677 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
678 }
679 
680 /*******************************************************************************
681  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
682  * pertaining to the given security state using the value and bit position
683  * specified in the parameters. It preserves all other bits.
684  ******************************************************************************/
685 void cm_write_scr_el3_bit(uint32_t security_state,
686 			  uint32_t bit_pos,
687 			  uint32_t value)
688 {
689 	cpu_context_t *ctx;
690 	el3_state_t *state;
691 	u_register_t scr_el3;
692 
693 	ctx = cm_get_context(security_state);
694 	assert(ctx != NULL);
695 
696 	/* Ensure that the bit position is a valid one */
697 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
698 
699 	/* Ensure that the 'value' is only a bit wide */
700 	assert(value <= 1U);
701 
702 	/*
703 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
704 	 * and set it to its new value.
705 	 */
706 	state = get_el3state_ctx(ctx);
707 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
708 	scr_el3 &= ~(1U << bit_pos);
709 	scr_el3 |= (u_register_t)value << bit_pos;
710 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
711 }
712 
713 /*******************************************************************************
714  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
715  * given security state.
716  ******************************************************************************/
717 u_register_t cm_get_scr_el3(uint32_t security_state)
718 {
719 	cpu_context_t *ctx;
720 	el3_state_t *state;
721 
722 	ctx = cm_get_context(security_state);
723 	assert(ctx != NULL);
724 
725 	/* Populate EL3 state so that ERET jumps to the correct entry */
726 	state = get_el3state_ctx(ctx);
727 	return read_ctx_reg(state, CTX_SCR_EL3);
728 }
729 
730 /*******************************************************************************
731  * This function is used to program the context that's used for exception
732  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
733  * the required security state
734  ******************************************************************************/
735 void cm_set_next_eret_context(uint32_t security_state)
736 {
737 	cpu_context_t *ctx;
738 
739 	ctx = cm_get_context(security_state);
740 	assert(ctx != NULL);
741 
742 	cm_set_next_context(ctx);
743 }
744