xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 0a33adc058080433f73bde73895266068990245c)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_nonsecure(cpu_context_t *ctx);
46 static void manage_extensions_secure(cpu_context_t *ctx);
47 static void manage_extensions_secure_per_world(void);
48 
49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
50 {
51 	u_register_t sctlr_elx, actlr_elx;
52 
53 	/*
54 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
55 	 * execution state setting all fields rather than relying on the hw.
56 	 * Some fields have architecturally UNKNOWN reset values and these are
57 	 * set to zero.
58 	 *
59 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
60 	 *
61 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
62 	 * required by PSCI specification)
63 	 */
64 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
65 	if (GET_RW(ep->spsr) == MODE_RW_64) {
66 		sctlr_elx |= SCTLR_EL1_RES1;
67 	} else {
68 		/*
69 		 * If the target execution state is AArch32 then the following
70 		 * fields need to be set.
71 		 *
72 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
73 		 *  instructions are not trapped to EL1.
74 		 *
75 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
79 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
80 		 */
81 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
82 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
83 	}
84 
85 #if ERRATA_A75_764081
86 	/*
87 	 * If workaround of errata 764081 for Cortex-A75 is used then set
88 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
89 	 */
90 	sctlr_elx |= SCTLR_IESB_BIT;
91 #endif
92 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
93 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
94 
95 	/*
96 	 * Base the context ACTLR_EL1 on the current value, as it is
97 	 * implementation defined. The context restore process will write
98 	 * the value from the context to the actual register and can cause
99 	 * problems for processor cores that don't expect certain bits to
100 	 * be zero.
101 	 */
102 	actlr_elx = read_actlr_el1();
103 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
104 }
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
119 	/*
120 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
121 	 * indicated by the interrupt routing model for BL31.
122 	 */
123 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
124 #endif
125 
126 	/* Allow access to Allocation Tags when mte is set*/
127 	if (is_feat_mte_supported()) {
128 		scr_el3 |= SCR_ATA_BIT;
129 	}
130 
131 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
132 
133 	/*
134 	 * Initialize EL1 context registers unless SPMC is running
135 	 * at S-EL2.
136 	 */
137 #if !SPMD_SPM_AT_SEL2
138 	setup_el1_context(ctx, ep);
139 #endif
140 
141 	manage_extensions_secure(ctx);
142 
143 	/**
144 	 * manage_extensions_secure_per_world api has to be executed once,
145 	 * as the registers getting initialised, maintain constant value across
146 	 * all the cpus for the secure world.
147 	 * Henceforth, this check ensures that the registers are initialised once
148 	 * and avoids re-initialization from multiple cores.
149 	 */
150 	if (!has_secure_perworld_init) {
151 		manage_extensions_secure_per_world();
152 	}
153 
154 }
155 
156 #if ENABLE_RME
157 /******************************************************************************
158  * This function performs initializations that are specific to REALM state
159  * and updates the cpu context specified by 'ctx'.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 
169 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
170 
171 	if (is_feat_csv2_2_supported()) {
172 		/* Enable access to the SCXTNUM_ELx registers. */
173 		scr_el3 |= SCR_EnSCXT_BIT;
174 	}
175 
176 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
177 }
178 #endif /* ENABLE_RME */
179 
180 /******************************************************************************
181  * This function performs initializations that are specific to NON-SECURE state
182  * and updates the cpu context specified by 'ctx'.
183  *****************************************************************************/
184 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
185 {
186 	u_register_t scr_el3;
187 	el3_state_t *state;
188 
189 	state = get_el3state_ctx(ctx);
190 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
191 
192 	/* SCR_NS: Set the NS bit */
193 	scr_el3 |= SCR_NS_BIT;
194 
195 	/* Allow access to Allocation Tags when MTE is implemented. */
196 	scr_el3 |= SCR_ATA_BIT;
197 
198 #if !CTX_INCLUDE_PAUTH_REGS
199 	/*
200 	 * Pointer Authentication feature, if present, is always enabled by default
201 	 * for Non secure lower exception levels. We do not have an explicit
202 	 * flag to set it.
203 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
204 	 * exception levels of secure and realm worlds.
205 	 *
206 	 * To prevent the leakage between the worlds during world switch,
207 	 * we enable it only for the non-secure world.
208 	 *
209 	 * If the Secure/realm world wants to use pointer authentication,
210 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
211 	 * it will be enabled globally for all the contexts.
212 	 *
213 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
214 	 *  other than EL3
215 	 *
216 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
217 	 *  than EL3
218 	 */
219 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
220 
221 #endif /* CTX_INCLUDE_PAUTH_REGS */
222 
223 #if HANDLE_EA_EL3_FIRST_NS
224 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
225 	scr_el3 |= SCR_EA_BIT;
226 #endif
227 
228 #if RAS_TRAP_NS_ERR_REC_ACCESS
229 	/*
230 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
231 	 * and RAS ERX registers from EL1 and EL2(from any security state)
232 	 * are trapped to EL3.
233 	 * Set here to trap only for NS EL1/EL2
234 	 *
235 	 */
236 	scr_el3 |= SCR_TERR_BIT;
237 #endif
238 
239 	if (is_feat_csv2_2_supported()) {
240 		/* Enable access to the SCXTNUM_ELx registers. */
241 		scr_el3 |= SCR_EnSCXT_BIT;
242 	}
243 
244 #ifdef IMAGE_BL31
245 	/*
246 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
247 	 *  indicated by the interrupt routing model for BL31.
248 	 */
249 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
250 #endif
251 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
252 
253 	/* Initialize EL1 context registers */
254 	setup_el1_context(ctx, ep);
255 
256 	/* Initialize EL2 context registers */
257 #if CTX_INCLUDE_EL2_REGS
258 
259 	/*
260 	 * Initialize SCTLR_EL2 context register using Endianness value
261 	 * taken from the entrypoint attribute.
262 	 */
263 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
264 	sctlr_el2 |= SCTLR_EL2_RES1;
265 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
266 			sctlr_el2);
267 
268 	if (is_feat_hcx_supported()) {
269 		/*
270 		 * Initialize register HCRX_EL2 with its init value.
271 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
272 		 * chance that this can lead to unexpected behavior in lower
273 		 * ELs that have not been updated since the introduction of
274 		 * this feature if not properly initialized, especially when
275 		 * it comes to those bits that enable/disable traps.
276 		 */
277 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
278 			HCRX_EL2_INIT_VAL);
279 	}
280 
281 	if (is_feat_fgt_supported()) {
282 		/*
283 		 * Initialize HFG*_EL2 registers with a default value so legacy
284 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
285 		 * of initialization for this feature.
286 		 */
287 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
288 			HFGITR_EL2_INIT_VAL);
289 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
290 			HFGRTR_EL2_INIT_VAL);
291 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
292 			HFGWTR_EL2_INIT_VAL);
293 	}
294 #endif /* CTX_INCLUDE_EL2_REGS */
295 
296 	manage_extensions_nonsecure(ctx);
297 }
298 
299 /*******************************************************************************
300  * The following function performs initialization of the cpu_context 'ctx'
301  * for first use that is common to all security states, and sets the
302  * initial entrypoint state as specified by the entry_point_info structure.
303  *
304  * The EE and ST attributes are used to configure the endianness and secure
305  * timer availability for the new execution context.
306  ******************************************************************************/
307 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
308 {
309 	u_register_t scr_el3;
310 	el3_state_t *state;
311 	gp_regs_t *gp_regs;
312 
313 	state = get_el3state_ctx(ctx);
314 
315 	/* Clear any residual register values from the context */
316 	zeromem(ctx, sizeof(*ctx));
317 
318 	/*
319 	 * The lower-EL context is zeroed so that no stale values leak to a world.
320 	 * It is assumed that an all-zero lower-EL context is good enough for it
321 	 * to boot correctly. However, there are very few registers where this
322 	 * is not true and some values need to be recreated.
323 	 */
324 #if CTX_INCLUDE_EL2_REGS
325 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
326 
327 	/*
328 	 * These bits are set in the gicv3 driver. Losing them (especially the
329 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
330 	 */
331 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
332 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
333 	write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
334 #endif /* CTX_INCLUDE_EL2_REGS */
335 
336 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
337 	scr_el3 = SCR_RESET_VAL;
338 
339 	/*
340 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
341 	 *  EL2, EL1 and EL0 are not trapped to EL3.
342 	 *
343 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
344 	 *  EL2, EL1 and EL0 are not trapped to EL3.
345 	 *
346 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
347 	 *  both Security states and both Execution states.
348 	 *
349 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
350 	 *  Non-secure memory.
351 	 */
352 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
353 
354 	scr_el3 |= SCR_SIF_BIT;
355 
356 	/*
357 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
358 	 *  Exception level as specified by SPSR.
359 	 */
360 	if (GET_RW(ep->spsr) == MODE_RW_64) {
361 		scr_el3 |= SCR_RW_BIT;
362 	}
363 
364 	/*
365 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
366 	 * Secure timer registers to EL3, from AArch64 state only, if specified
367 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
368 	 * bit always behaves as 1 (i.e. secure physical timer register access
369 	 * is not trapped)
370 	 */
371 	if (EP_GET_ST(ep->h.attr) != 0U) {
372 		scr_el3 |= SCR_ST_BIT;
373 	}
374 
375 	/*
376 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
377 	 * SCR_EL3.HXEn.
378 	 */
379 	if (is_feat_hcx_supported()) {
380 		scr_el3 |= SCR_HXEn_BIT;
381 	}
382 
383 	/*
384 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
385 	 * registers are trapped to EL3.
386 	 */
387 #if ENABLE_FEAT_RNG_TRAP
388 	scr_el3 |= SCR_TRNDR_BIT;
389 #endif
390 
391 #if FAULT_INJECTION_SUPPORT
392 	/* Enable fault injection from lower ELs */
393 	scr_el3 |= SCR_FIEN_BIT;
394 #endif
395 
396 #if CTX_INCLUDE_PAUTH_REGS
397 	/*
398 	 * Enable Pointer Authentication globally for all the worlds.
399 	 *
400 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
401 	 *  other than EL3
402 	 *
403 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
404 	 *  than EL3
405 	 */
406 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
407 #endif /* CTX_INCLUDE_PAUTH_REGS */
408 
409 	/*
410 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
411 	 */
412 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
413 		scr_el3 |= SCR_TCR2EN_BIT;
414 	}
415 
416 	/*
417 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
418 	 * registers for AArch64 if present.
419 	 */
420 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
421 		scr_el3 |= SCR_PIEN_BIT;
422 	}
423 
424 	/*
425 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
426 	 */
427 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
428 		scr_el3 |= SCR_GCSEn_BIT;
429 	}
430 
431 	/*
432 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
433 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
434 	 * next mode is Hyp.
435 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
436 	 * same conditions as HVC instructions and when the processor supports
437 	 * ARMv8.6-FGT.
438 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
439 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
440 	 * and when the processor supports ECV.
441 	 */
442 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
443 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
444 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
445 		scr_el3 |= SCR_HCE_BIT;
446 
447 		if (is_feat_fgt_supported()) {
448 			scr_el3 |= SCR_FGTEN_BIT;
449 		}
450 
451 		if (is_feat_ecv_supported()) {
452 			scr_el3 |= SCR_ECVEN_BIT;
453 		}
454 	}
455 
456 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
457 	if (is_feat_twed_supported()) {
458 		/* Set delay in SCR_EL3 */
459 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
460 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
461 				<< SCR_TWEDEL_SHIFT);
462 
463 		/* Enable WFE delay */
464 		scr_el3 |= SCR_TWEDEn_BIT;
465 	}
466 
467 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
468 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
469 	if (is_feat_sel2_supported()) {
470 		scr_el3 |= SCR_EEL2_BIT;
471 	}
472 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
473 
474 	/*
475 	 * Populate EL3 state so that we've the right context
476 	 * before doing ERET
477 	 */
478 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
479 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
480 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
481 
482 	/*
483 	 * Store the X0-X7 value from the entrypoint into the context
484 	 * Use memcpy as we are in control of the layout of the structures
485 	 */
486 	gp_regs = get_gpregs_ctx(ctx);
487 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
488 }
489 
490 /*******************************************************************************
491  * Context management library initialization routine. This library is used by
492  * runtime services to share pointers to 'cpu_context' structures for secure
493  * non-secure and realm states. Management of the structures and their associated
494  * memory is not done by the context management library e.g. the PSCI service
495  * manages the cpu context used for entry from and exit to the non-secure state.
496  * The Secure payload dispatcher service manages the context(s) corresponding to
497  * the secure state. It also uses this library to get access to the non-secure
498  * state cpu context pointers.
499  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
500  * which will be used for programming an entry into a lower EL. The same context
501  * will be used to save state upon exception entry from that EL.
502  ******************************************************************************/
503 void __init cm_init(void)
504 {
505 	/*
506 	 * The context management library has only global data to initialize, but
507 	 * that will be done when the BSS is zeroed out.
508 	 */
509 }
510 
511 /*******************************************************************************
512  * This is the high-level function used to initialize the cpu_context 'ctx' for
513  * first use. It performs initializations that are common to all security states
514  * and initializations specific to the security state specified in 'ep'
515  ******************************************************************************/
516 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
517 {
518 	unsigned int security_state;
519 
520 	assert(ctx != NULL);
521 
522 	/*
523 	 * Perform initializations that are common
524 	 * to all security states
525 	 */
526 	setup_context_common(ctx, ep);
527 
528 	security_state = GET_SECURITY_STATE(ep->h.attr);
529 
530 	/* Perform security state specific initializations */
531 	switch (security_state) {
532 	case SECURE:
533 		setup_secure_context(ctx, ep);
534 		break;
535 #if ENABLE_RME
536 	case REALM:
537 		setup_realm_context(ctx, ep);
538 		break;
539 #endif
540 	case NON_SECURE:
541 		setup_ns_context(ctx, ep);
542 		break;
543 	default:
544 		ERROR("Invalid security state\n");
545 		panic();
546 		break;
547 	}
548 }
549 
550 /*******************************************************************************
551  * Enable architecture extensions for EL3 execution. This function only updates
552  * registers in-place which are expected to either never change or be
553  * overwritten by el3_exit.
554  ******************************************************************************/
555 #if IMAGE_BL31
556 void cm_manage_extensions_el3(void)
557 {
558 	if (is_feat_spe_supported()) {
559 		spe_init_el3();
560 	}
561 
562 	if (is_feat_amu_supported()) {
563 		amu_init_el3();
564 	}
565 
566 	if (is_feat_sme_supported()) {
567 		sme_init_el3();
568 	}
569 
570 	if (is_feat_trbe_supported()) {
571 		trbe_init_el3();
572 	}
573 
574 	if (is_feat_brbe_supported()) {
575 		brbe_init_el3();
576 	}
577 
578 	if (is_feat_trf_supported()) {
579 		trf_init_el3();
580 	}
581 
582 	pmuv3_init_el3();
583 }
584 #endif /* IMAGE_BL31 */
585 
586 /******************************************************************************
587  * Function to initialise the registers with the RESET values in the context
588  * memory, which are maintained per world.
589  ******************************************************************************/
590 #if IMAGE_BL31
591 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
592 {
593 	/*
594 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
595 	 *
596 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
597 	 *  by Advanced SIMD, floating-point or SVE instructions (if
598 	 *  implemented) do not trap to EL3.
599 	 *
600 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
601 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
602 	 */
603 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
604 
605 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
606 
607 	/*
608 	 * Initialize MPAM3_EL3 to its default reset value
609 	 *
610 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
611 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
612 	 */
613 
614 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
615 }
616 #endif /* IMAGE_BL31 */
617 
618 /*******************************************************************************
619  * Initialise per_world_context for Non-Secure world.
620  * This function enables the architecture extensions, which have same value
621  * across the cores for the non-secure world.
622  ******************************************************************************/
623 #if IMAGE_BL31
624 void manage_extensions_nonsecure_per_world(void)
625 {
626 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
627 
628 	if (is_feat_sme_supported()) {
629 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
630 	}
631 
632 	if (is_feat_sve_supported()) {
633 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
634 	}
635 
636 	if (is_feat_amu_supported()) {
637 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
638 	}
639 
640 	if (is_feat_sys_reg_trace_supported()) {
641 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
642 	}
643 
644 	if (is_feat_mpam_supported()) {
645 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
646 	}
647 }
648 #endif /* IMAGE_BL31 */
649 
650 /*******************************************************************************
651  * Initialise per_world_context for Secure world.
652  * This function enables the architecture extensions, which have same value
653  * across the cores for the secure world.
654  ******************************************************************************/
655 static void manage_extensions_secure_per_world(void)
656 {
657 #if IMAGE_BL31
658 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
659 
660 	if (is_feat_sme_supported()) {
661 
662 		if (ENABLE_SME_FOR_SWD) {
663 		/*
664 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
665 		 * SME, SVE, and FPU/SIMD context properly managed.
666 		 */
667 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
668 		} else {
669 		/*
670 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
671 		 * world can safely use the associated registers.
672 		 */
673 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
674 		}
675 	}
676 	if (is_feat_sve_supported()) {
677 		if (ENABLE_SVE_FOR_SWD) {
678 		/*
679 		 * Enable SVE and FPU in secure context, SPM must ensure
680 		 * that the SVE and FPU register contexts are properly managed.
681 		 */
682 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
683 		} else {
684 		/*
685 		 * Disable SVE and FPU in secure context so non-secure world
686 		 * can safely use them.
687 		 */
688 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
689 		}
690 	}
691 
692 	/* NS can access this but Secure shouldn't */
693 	if (is_feat_sys_reg_trace_supported()) {
694 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
695 	}
696 
697 	has_secure_perworld_init = true;
698 #endif /* IMAGE_BL31 */
699 }
700 
701 /*******************************************************************************
702  * Enable architecture extensions on first entry to Non-secure world.
703  ******************************************************************************/
704 static void manage_extensions_nonsecure(cpu_context_t *ctx)
705 {
706 #if IMAGE_BL31
707 	if (is_feat_amu_supported()) {
708 		amu_enable(ctx);
709 	}
710 
711 	if (is_feat_sme_supported()) {
712 		sme_enable(ctx);
713 	}
714 
715 	pmuv3_enable(ctx);
716 #endif /* IMAGE_BL31 */
717 }
718 
719 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
720 static __unused void enable_pauth_el2(void)
721 {
722 	u_register_t hcr_el2 = read_hcr_el2();
723 	/*
724 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
725 	 *  accessing key registers or using pointer authentication instructions
726 	 *  from lower ELs.
727 	 */
728 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
729 
730 	write_hcr_el2(hcr_el2);
731 }
732 
733 #if INIT_UNUSED_NS_EL2
734 /*******************************************************************************
735  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
736  * world when EL2 is empty and unused.
737  ******************************************************************************/
738 static void manage_extensions_nonsecure_el2_unused(void)
739 {
740 #if IMAGE_BL31
741 	if (is_feat_spe_supported()) {
742 		spe_init_el2_unused();
743 	}
744 
745 	if (is_feat_amu_supported()) {
746 		amu_init_el2_unused();
747 	}
748 
749 	if (is_feat_mpam_supported()) {
750 		mpam_init_el2_unused();
751 	}
752 
753 	if (is_feat_trbe_supported()) {
754 		trbe_init_el2_unused();
755 	}
756 
757 	if (is_feat_sys_reg_trace_supported()) {
758 		sys_reg_trace_init_el2_unused();
759 	}
760 
761 	if (is_feat_trf_supported()) {
762 		trf_init_el2_unused();
763 	}
764 
765 	pmuv3_init_el2_unused();
766 
767 	if (is_feat_sve_supported()) {
768 		sve_init_el2_unused();
769 	}
770 
771 	if (is_feat_sme_supported()) {
772 		sme_init_el2_unused();
773 	}
774 
775 #if ENABLE_PAUTH
776 	enable_pauth_el2();
777 #endif /* ENABLE_PAUTH */
778 #endif /* IMAGE_BL31 */
779 }
780 #endif /* INIT_UNUSED_NS_EL2 */
781 
782 /*******************************************************************************
783  * Enable architecture extensions on first entry to Secure world.
784  ******************************************************************************/
785 static void manage_extensions_secure(cpu_context_t *ctx)
786 {
787 #if IMAGE_BL31
788 	if (is_feat_sme_supported()) {
789 		if (ENABLE_SME_FOR_SWD) {
790 		/*
791 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
792 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
793 		 */
794 			sme_init_el3();
795 			sme_enable(ctx);
796 		} else {
797 		/*
798 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
799 		 * world can safely use the associated registers.
800 		 */
801 			sme_disable(ctx);
802 		}
803 	}
804 #endif /* IMAGE_BL31 */
805 }
806 
807 /*******************************************************************************
808  * The following function initializes the cpu_context for a CPU specified by
809  * its `cpu_idx` for first use, and sets the initial entrypoint state as
810  * specified by the entry_point_info structure.
811  ******************************************************************************/
812 void cm_init_context_by_index(unsigned int cpu_idx,
813 			      const entry_point_info_t *ep)
814 {
815 	cpu_context_t *ctx;
816 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
817 	cm_setup_context(ctx, ep);
818 }
819 
820 /*******************************************************************************
821  * The following function initializes the cpu_context for the current CPU
822  * for first use, and sets the initial entrypoint state as specified by the
823  * entry_point_info structure.
824  ******************************************************************************/
825 void cm_init_my_context(const entry_point_info_t *ep)
826 {
827 	cpu_context_t *ctx;
828 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
829 	cm_setup_context(ctx, ep);
830 }
831 
832 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
833 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
834 {
835 #if INIT_UNUSED_NS_EL2
836 	u_register_t hcr_el2 = HCR_RESET_VAL;
837 	u_register_t mdcr_el2;
838 	u_register_t scr_el3;
839 
840 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
841 
842 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
843 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
844 		hcr_el2 |= HCR_RW_BIT;
845 	}
846 
847 	write_hcr_el2(hcr_el2);
848 
849 	/*
850 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
851 	 * All fields have architecturally UNKNOWN reset values.
852 	 */
853 	write_cptr_el2(CPTR_EL2_RESET_VAL);
854 
855 	/*
856 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
857 	 * reset and are set to zero except for field(s) listed below.
858 	 *
859 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
860 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
861 	 *
862 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
863 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
864 	 */
865 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
866 
867 	/*
868 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
869 	 * UNKNOWN value.
870 	 */
871 	write_cntvoff_el2(0);
872 
873 	/*
874 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
875 	 * respectively.
876 	 */
877 	write_vpidr_el2(read_midr_el1());
878 	write_vmpidr_el2(read_mpidr_el1());
879 
880 	/*
881 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
882 	 *
883 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
884 	 * translation is disabled, cache maintenance operations depend on the
885 	 * VMID.
886 	 *
887 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
888 	 * disabled.
889 	 */
890 	write_vttbr_el2(VTTBR_RESET_VAL &
891 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
892 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
893 
894 	/*
895 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
896 	 * Some fields are architecturally UNKNOWN on reset.
897 	 *
898 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
899 	 * register accesses to the Debug ROM registers are not trapped to EL2.
900 	 *
901 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
902 	 * accesses to the powerdown debug registers are not trapped to EL2.
903 	 *
904 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
905 	 * debug registers do not trap to EL2.
906 	 *
907 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
908 	 * EL2.
909 	 */
910 	mdcr_el2 = MDCR_EL2_RESET_VAL &
911 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
912 		   MDCR_EL2_TDE_BIT);
913 
914 	write_mdcr_el2(mdcr_el2);
915 
916 	/*
917 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
918 	 *
919 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
920 	 * EL1 accesses to System registers do not trap to EL2.
921 	 */
922 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
923 
924 	/*
925 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
926 	 * reset.
927 	 *
928 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
929 	 * and prevent timer interrupts.
930 	 */
931 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
932 
933 	manage_extensions_nonsecure_el2_unused();
934 #endif /* INIT_UNUSED_NS_EL2 */
935 }
936 
937 /*******************************************************************************
938  * Prepare the CPU system registers for first entry into realm, secure, or
939  * normal world.
940  *
941  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
942  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
943  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
944  * For all entries, the EL1 registers are initialized from the cpu_context
945  ******************************************************************************/
946 void cm_prepare_el3_exit(uint32_t security_state)
947 {
948 	u_register_t sctlr_elx, scr_el3;
949 	cpu_context_t *ctx = cm_get_context(security_state);
950 
951 	assert(ctx != NULL);
952 
953 	if (security_state == NON_SECURE) {
954 		uint64_t el2_implemented = el_implemented(2);
955 
956 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
957 						 CTX_SCR_EL3);
958 
959 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
960 			|| (el2_implemented != EL_IMPL_NONE)) {
961 			/*
962 			 * If context is not being used for EL2, initialize
963 			 * HCRX_EL2 with its init value here.
964 			 */
965 			if (is_feat_hcx_supported()) {
966 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
967 			}
968 
969 			/*
970 			 * Initialize Fine-grained trap registers introduced
971 			 * by FEAT_FGT so all traps are initially disabled when
972 			 * switching to EL2 or a lower EL, preventing undesired
973 			 * behavior.
974 			 */
975 			if (is_feat_fgt_supported()) {
976 				/*
977 				 * Initialize HFG*_EL2 registers with a default
978 				 * value so legacy systems unaware of FEAT_FGT
979 				 * do not get trapped due to their lack of
980 				 * initialization for this feature.
981 				 */
982 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
983 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
984 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
985 			}
986 		}
987 
988 
989 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
990 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
991 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
992 							   CTX_SCTLR_EL1);
993 			sctlr_elx &= SCTLR_EE_BIT;
994 			sctlr_elx |= SCTLR_EL2_RES1;
995 #if ERRATA_A75_764081
996 			/*
997 			 * If workaround of errata 764081 for Cortex-A75 is used
998 			 * then set SCTLR_EL2.IESB to enable Implicit Error
999 			 * Synchronization Barrier.
1000 			 */
1001 			sctlr_elx |= SCTLR_IESB_BIT;
1002 #endif
1003 			write_sctlr_el2(sctlr_elx);
1004 		} else if (el2_implemented != EL_IMPL_NONE) {
1005 			init_nonsecure_el2_unused(ctx);
1006 		}
1007 	}
1008 
1009 	cm_el1_sysregs_context_restore(security_state);
1010 	cm_set_next_eret_context(security_state);
1011 }
1012 
1013 #if CTX_INCLUDE_EL2_REGS
1014 
1015 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1016 {
1017 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
1018 	if (is_feat_amu_supported()) {
1019 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
1020 	}
1021 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
1022 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
1023 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
1024 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
1025 }
1026 
1027 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1028 {
1029 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
1030 	if (is_feat_amu_supported()) {
1031 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
1032 	}
1033 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
1034 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
1035 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
1036 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
1037 }
1038 
1039 #if CTX_INCLUDE_MPAM_REGS
1040 
1041 static void el2_sysregs_context_save_mpam(mpam_t *ctx)
1042 {
1043 	u_register_t mpam_idr = read_mpamidr_el1();
1044 
1045 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
1046 
1047 	/*
1048 	 * The context registers that we intend to save would be part of the
1049 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1050 	 */
1051 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1052 		return;
1053 	}
1054 
1055 	/*
1056 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1057 	 * MPAMIDR_HAS_HCR_BIT == 1.
1058 	 */
1059 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
1060 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
1061 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
1062 
1063 	/*
1064 	 * The number of MPAMVPM registers is implementation defined, their
1065 	 * number is stored in the MPAMIDR_EL1 register.
1066 	 */
1067 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1068 	case 7:
1069 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
1070 		__fallthrough;
1071 	case 6:
1072 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1073 		__fallthrough;
1074 	case 5:
1075 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1076 		__fallthrough;
1077 	case 4:
1078 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1079 		__fallthrough;
1080 	case 3:
1081 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1082 		__fallthrough;
1083 	case 2:
1084 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1085 		__fallthrough;
1086 	case 1:
1087 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1088 		break;
1089 	}
1090 }
1091 
1092 #endif /* CTX_INCLUDE_MPAM_REGS */
1093 
1094 #if CTX_INCLUDE_MPAM_REGS
1095 static void el2_sysregs_context_restore_mpam(mpam_t *ctx)
1096 {
1097 	u_register_t mpam_idr = read_mpamidr_el1();
1098 
1099 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1100 
1101 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1102 		return;
1103 	}
1104 
1105 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1106 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1107 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1108 
1109 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1110 	case 7:
1111 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1112 		__fallthrough;
1113 	case 6:
1114 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1115 		__fallthrough;
1116 	case 5:
1117 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1118 		__fallthrough;
1119 	case 4:
1120 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1121 		__fallthrough;
1122 	case 3:
1123 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1124 		__fallthrough;
1125 	case 2:
1126 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1127 		__fallthrough;
1128 	case 1:
1129 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1130 		break;
1131 	}
1132 }
1133 #endif /* CTX_INCLUDE_MPAM_REGS */
1134 
1135 /* -----------------------------------------------------
1136  * The following registers are not added:
1137  * AMEVCNTVOFF0<n>_EL2
1138  * AMEVCNTVOFF1<n>_EL2
1139  * ICH_AP0R<n>_EL2
1140  * ICH_AP1R<n>_EL2
1141  * ICH_LR<n>_EL2
1142  * -----------------------------------------------------
1143  */
1144 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1145 {
1146 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1147 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1148 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1149 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1150 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1151 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1152 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1153 	if (CTX_INCLUDE_AARCH32_REGS) {
1154 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1155 	}
1156 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1157 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1158 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1159 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1160 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1161 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1162 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1163 
1164 	/*
1165 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1166 	 * TODO: remove with root context
1167 	 */
1168 	u_register_t scr_el3 = read_scr_el3();
1169 
1170 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1171 	isb();
1172 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1173 
1174 	write_scr_el3(scr_el3);
1175 	isb();
1176 
1177 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1178 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1179 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1180 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1181 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1182 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1183 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1184 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1185 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1186 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1187 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1188 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1189 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1190 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1191 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1192 }
1193 
1194 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1195 {
1196 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1197 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1198 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1199 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1200 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1201 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1202 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1203 	if (CTX_INCLUDE_AARCH32_REGS) {
1204 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1205 	}
1206 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1207 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1208 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1209 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1210 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1211 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1212 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1213 
1214 	/*
1215 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1216 	 * TODO: remove with root context
1217 	 */
1218 	u_register_t scr_el3 = read_scr_el3();
1219 
1220 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1221 	isb();
1222 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1223 
1224 	write_scr_el3(scr_el3);
1225 	isb();
1226 
1227 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1228 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1229 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1230 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1231 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1232 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1233 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1234 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1235 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1236 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1237 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1238 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1239 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1240 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1241 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1242 }
1243 
1244 /*******************************************************************************
1245  * Save EL2 sysreg context
1246  ******************************************************************************/
1247 void cm_el2_sysregs_context_save(uint32_t security_state)
1248 {
1249 	cpu_context_t *ctx;
1250 	el2_sysregs_t *el2_sysregs_ctx;
1251 
1252 	ctx = cm_get_context(security_state);
1253 	assert(ctx != NULL);
1254 
1255 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1256 
1257 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1258 
1259 	if (is_feat_mte_supported()) {
1260 		write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1261 	}
1262 
1263 #if CTX_INCLUDE_MPAM_REGS
1264 	if (is_feat_mpam_supported()) {
1265 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1266 		el2_sysregs_context_save_mpam(mpam_ctx);
1267 	}
1268 #endif
1269 
1270 	if (is_feat_fgt_supported()) {
1271 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1272 	}
1273 
1274 	if (is_feat_ecv_v2_supported()) {
1275 		write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2());
1276 	}
1277 
1278 	if (is_feat_vhe_supported()) {
1279 		write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2());
1280 		write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2());
1281 	}
1282 
1283 	if (is_feat_ras_supported()) {
1284 		write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2());
1285 		write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2());
1286 	}
1287 
1288 	if (is_feat_nv2_supported()) {
1289 		write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2());
1290 	}
1291 
1292 	if (is_feat_trf_supported()) {
1293 		write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1294 	}
1295 
1296 	if (is_feat_csv2_2_supported()) {
1297 		write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2());
1298 	}
1299 
1300 	if (is_feat_hcx_supported()) {
1301 		write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1302 	}
1303 	if (is_feat_tcr2_supported()) {
1304 		write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1305 	}
1306 	if (is_feat_sxpie_supported()) {
1307 		write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1308 		write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1309 	}
1310 	if (is_feat_s2pie_supported()) {
1311 		write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1312 	}
1313 	if (is_feat_sxpoe_supported()) {
1314 		write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1315 	}
1316 	if (is_feat_gcs_supported()) {
1317 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1318 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1319 	}
1320 }
1321 
1322 /*******************************************************************************
1323  * Restore EL2 sysreg context
1324  ******************************************************************************/
1325 void cm_el2_sysregs_context_restore(uint32_t security_state)
1326 {
1327 	cpu_context_t *ctx;
1328 	el2_sysregs_t *el2_sysregs_ctx;
1329 
1330 	ctx = cm_get_context(security_state);
1331 	assert(ctx != NULL);
1332 
1333 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1334 
1335 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1336 #if CTX_INCLUDE_MTE_REGS
1337 	write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1338 #endif
1339 
1340 #if CTX_INCLUDE_MPAM_REGS
1341 	if (is_feat_mpam_supported()) {
1342 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1343 		el2_sysregs_context_restore_mpam(mpam_ctx);
1344 	}
1345 #endif
1346 
1347 	if (is_feat_fgt_supported()) {
1348 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1349 	}
1350 
1351 	if (is_feat_ecv_v2_supported()) {
1352 		write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2));
1353 	}
1354 
1355 	if (is_feat_vhe_supported()) {
1356 		write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1357 		write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1358 	}
1359 
1360 	if (is_feat_ras_supported()) {
1361 		write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1362 		write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1363 	}
1364 
1365 	if (is_feat_nv2_supported()) {
1366 		write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1367 	}
1368 	if (is_feat_trf_supported()) {
1369 		write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1370 	}
1371 
1372 	if (is_feat_csv2_2_supported()) {
1373 		write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2));
1374 	}
1375 
1376 	if (is_feat_hcx_supported()) {
1377 		write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1378 	}
1379 	if (is_feat_tcr2_supported()) {
1380 		write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1381 	}
1382 	if (is_feat_sxpie_supported()) {
1383 		write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1384 		write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1385 	}
1386 	if (is_feat_s2pie_supported()) {
1387 		write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1388 	}
1389 	if (is_feat_sxpoe_supported()) {
1390 		write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1391 	}
1392 	if (is_feat_gcs_supported()) {
1393 		write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1394 		write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1395 	}
1396 }
1397 #endif /* CTX_INCLUDE_EL2_REGS */
1398 
1399 /*******************************************************************************
1400  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1401  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1402  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1403  * cm_prepare_el3_exit function.
1404  ******************************************************************************/
1405 void cm_prepare_el3_exit_ns(void)
1406 {
1407 #if CTX_INCLUDE_EL2_REGS
1408 #if ENABLE_ASSERTIONS
1409 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1410 	assert(ctx != NULL);
1411 
1412 	/* Assert that EL2 is used. */
1413 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1414 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1415 			(el_implemented(2U) != EL_IMPL_NONE));
1416 #endif /* ENABLE_ASSERTIONS */
1417 
1418 	/* Restore EL2 and EL1 sysreg contexts */
1419 	cm_el2_sysregs_context_restore(NON_SECURE);
1420 	cm_el1_sysregs_context_restore(NON_SECURE);
1421 	cm_set_next_eret_context(NON_SECURE);
1422 #else
1423 	cm_prepare_el3_exit(NON_SECURE);
1424 #endif /* CTX_INCLUDE_EL2_REGS */
1425 }
1426 
1427 /*******************************************************************************
1428  * The next four functions are used by runtime services to save and restore
1429  * EL1 context on the 'cpu_context' structure for the specified security
1430  * state.
1431  ******************************************************************************/
1432 void cm_el1_sysregs_context_save(uint32_t security_state)
1433 {
1434 	cpu_context_t *ctx;
1435 
1436 	ctx = cm_get_context(security_state);
1437 	assert(ctx != NULL);
1438 
1439 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1440 
1441 #if IMAGE_BL31
1442 	if (security_state == SECURE)
1443 		PUBLISH_EVENT(cm_exited_secure_world);
1444 	else
1445 		PUBLISH_EVENT(cm_exited_normal_world);
1446 #endif
1447 }
1448 
1449 void cm_el1_sysregs_context_restore(uint32_t security_state)
1450 {
1451 	cpu_context_t *ctx;
1452 
1453 	ctx = cm_get_context(security_state);
1454 	assert(ctx != NULL);
1455 
1456 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1457 
1458 #if IMAGE_BL31
1459 	if (security_state == SECURE)
1460 		PUBLISH_EVENT(cm_entering_secure_world);
1461 	else
1462 		PUBLISH_EVENT(cm_entering_normal_world);
1463 #endif
1464 }
1465 
1466 /*******************************************************************************
1467  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1468  * given security state with the given entrypoint
1469  ******************************************************************************/
1470 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1471 {
1472 	cpu_context_t *ctx;
1473 	el3_state_t *state;
1474 
1475 	ctx = cm_get_context(security_state);
1476 	assert(ctx != NULL);
1477 
1478 	/* Populate EL3 state so that ERET jumps to the correct entry */
1479 	state = get_el3state_ctx(ctx);
1480 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1481 }
1482 
1483 /*******************************************************************************
1484  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1485  * pertaining to the given security state
1486  ******************************************************************************/
1487 void cm_set_elr_spsr_el3(uint32_t security_state,
1488 			uintptr_t entrypoint, uint32_t spsr)
1489 {
1490 	cpu_context_t *ctx;
1491 	el3_state_t *state;
1492 
1493 	ctx = cm_get_context(security_state);
1494 	assert(ctx != NULL);
1495 
1496 	/* Populate EL3 state so that ERET jumps to the correct entry */
1497 	state = get_el3state_ctx(ctx);
1498 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1499 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1500 }
1501 
1502 /*******************************************************************************
1503  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1504  * pertaining to the given security state using the value and bit position
1505  * specified in the parameters. It preserves all other bits.
1506  ******************************************************************************/
1507 void cm_write_scr_el3_bit(uint32_t security_state,
1508 			  uint32_t bit_pos,
1509 			  uint32_t value)
1510 {
1511 	cpu_context_t *ctx;
1512 	el3_state_t *state;
1513 	u_register_t scr_el3;
1514 
1515 	ctx = cm_get_context(security_state);
1516 	assert(ctx != NULL);
1517 
1518 	/* Ensure that the bit position is a valid one */
1519 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1520 
1521 	/* Ensure that the 'value' is only a bit wide */
1522 	assert(value <= 1U);
1523 
1524 	/*
1525 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1526 	 * and set it to its new value.
1527 	 */
1528 	state = get_el3state_ctx(ctx);
1529 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1530 	scr_el3 &= ~(1UL << bit_pos);
1531 	scr_el3 |= (u_register_t)value << bit_pos;
1532 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1533 }
1534 
1535 /*******************************************************************************
1536  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1537  * given security state.
1538  ******************************************************************************/
1539 u_register_t cm_get_scr_el3(uint32_t security_state)
1540 {
1541 	cpu_context_t *ctx;
1542 	el3_state_t *state;
1543 
1544 	ctx = cm_get_context(security_state);
1545 	assert(ctx != NULL);
1546 
1547 	/* Populate EL3 state so that ERET jumps to the correct entry */
1548 	state = get_el3state_ctx(ctx);
1549 	return read_ctx_reg(state, CTX_SCR_EL3);
1550 }
1551 
1552 /*******************************************************************************
1553  * This function is used to program the context that's used for exception
1554  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1555  * the required security state
1556  ******************************************************************************/
1557 void cm_set_next_eret_context(uint32_t security_state)
1558 {
1559 	cpu_context_t *ctx;
1560 
1561 	ctx = cm_get_context(security_state);
1562 	assert(ctx != NULL);
1563 
1564 	cm_set_next_context(ctx);
1565 }
1566