xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 07c2d18f4ef6cd1ce61326e0e85d93abe8f2f4ed)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/mpam.h>
32 #include <lib/extensions/pmuv3.h>
33 #include <lib/extensions/sme.h>
34 #include <lib/extensions/spe.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/sysreg128.h>
37 #include <lib/extensions/sys_reg_trace.h>
38 #include <lib/extensions/tcr2.h>
39 #include <lib/extensions/trbe.h>
40 #include <lib/extensions/trf.h>
41 #include <lib/utils.h>
42 
43 #if ENABLE_FEAT_TWED
44 /* Make sure delay value fits within the range(0-15) */
45 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
46 #endif /* ENABLE_FEAT_TWED */
47 
48 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
49 static bool has_secure_perworld_init;
50 
51 static void manage_extensions_common(cpu_context_t *ctx);
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
187 }
188 #endif /* ENABLE_RME */
189 
190 /******************************************************************************
191  * This function performs initializations that are specific to NON-SECURE state
192  * and updates the cpu context specified by 'ctx'.
193  *****************************************************************************/
194 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
195 {
196 	u_register_t scr_el3;
197 	el3_state_t *state;
198 
199 	state = get_el3state_ctx(ctx);
200 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
201 
202 	/* SCR_NS: Set the NS bit */
203 	scr_el3 |= SCR_NS_BIT;
204 
205 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
206 	if (is_feat_mte2_supported()) {
207 		scr_el3 |= SCR_ATA_BIT;
208 	}
209 
210 #if !CTX_INCLUDE_PAUTH_REGS
211 	/*
212 	 * Pointer Authentication feature, if present, is always enabled by default
213 	 * for Non secure lower exception levels. We do not have an explicit
214 	 * flag to set it.
215 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
216 	 * exception levels of secure and realm worlds.
217 	 *
218 	 * To prevent the leakage between the worlds during world switch,
219 	 * we enable it only for the non-secure world.
220 	 *
221 	 * If the Secure/realm world wants to use pointer authentication,
222 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
223 	 * it will be enabled globally for all the contexts.
224 	 *
225 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
226 	 *  other than EL3
227 	 *
228 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
229 	 *  than EL3
230 	 */
231 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
232 
233 #endif /* CTX_INCLUDE_PAUTH_REGS */
234 
235 #if HANDLE_EA_EL3_FIRST_NS
236 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
237 	scr_el3 |= SCR_EA_BIT;
238 #endif
239 
240 #if RAS_TRAP_NS_ERR_REC_ACCESS
241 	/*
242 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
243 	 * and RAS ERX registers from EL1 and EL2(from any security state)
244 	 * are trapped to EL3.
245 	 * Set here to trap only for NS EL1/EL2
246 	 *
247 	 */
248 	scr_el3 |= SCR_TERR_BIT;
249 #endif
250 
251 	/* CSV2 version 2 and above */
252 	if (is_feat_csv2_2_supported()) {
253 		/* Enable access to the SCXTNUM_ELx registers. */
254 		scr_el3 |= SCR_EnSCXT_BIT;
255 	}
256 
257 #ifdef IMAGE_BL31
258 	/*
259 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
260 	 *  indicated by the interrupt routing model for BL31.
261 	 */
262 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
263 #endif
264 
265 	if (is_feat_the_supported()) {
266 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
267 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
268 		 */
269 		scr_el3 |= SCR_RCWMASKEn_BIT;
270 	}
271 
272 	if (is_feat_sctlr2_supported()) {
273 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
274 		 * SCTLR2_ELx registers.
275 		 */
276 		scr_el3 |= SCR_SCTLR2En_BIT;
277 	}
278 
279 	if (is_feat_d128_supported()) {
280 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
281 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
282 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
283 		 */
284 		scr_el3 |= SCR_D128En_BIT;
285 	}
286 
287 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
288 
289 	/* Initialize EL2 context registers */
290 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
291 
292 	/*
293 	 * Initialize SCTLR_EL2 context register with reset value.
294 	 */
295 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
296 
297 	if (is_feat_hcx_supported()) {
298 		/*
299 		 * Initialize register HCRX_EL2 with its init value.
300 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
301 		 * chance that this can lead to unexpected behavior in lower
302 		 * ELs that have not been updated since the introduction of
303 		 * this feature if not properly initialized, especially when
304 		 * it comes to those bits that enable/disable traps.
305 		 */
306 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
307 			HCRX_EL2_INIT_VAL);
308 	}
309 
310 	if (is_feat_fgt_supported()) {
311 		/*
312 		 * Initialize HFG*_EL2 registers with a default value so legacy
313 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
314 		 * of initialization for this feature.
315 		 */
316 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
317 			HFGITR_EL2_INIT_VAL);
318 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
319 			HFGRTR_EL2_INIT_VAL);
320 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
321 			HFGWTR_EL2_INIT_VAL);
322 	}
323 #else
324 	/* Initialize EL1 context registers */
325 	setup_el1_context(ctx, ep);
326 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
327 
328 	manage_extensions_nonsecure(ctx);
329 }
330 
331 /*******************************************************************************
332  * The following function performs initialization of the cpu_context 'ctx'
333  * for first use that is common to all security states, and sets the
334  * initial entrypoint state as specified by the entry_point_info structure.
335  *
336  * The EE and ST attributes are used to configure the endianness and secure
337  * timer availability for the new execution context.
338  ******************************************************************************/
339 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
340 {
341 	u_register_t scr_el3;
342 	u_register_t mdcr_el3;
343 	el3_state_t *state;
344 	gp_regs_t *gp_regs;
345 
346 	state = get_el3state_ctx(ctx);
347 
348 	/* Clear any residual register values from the context */
349 	zeromem(ctx, sizeof(*ctx));
350 
351 	/*
352 	 * The lower-EL context is zeroed so that no stale values leak to a world.
353 	 * It is assumed that an all-zero lower-EL context is good enough for it
354 	 * to boot correctly. However, there are very few registers where this
355 	 * is not true and some values need to be recreated.
356 	 */
357 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
358 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
359 
360 	/*
361 	 * These bits are set in the gicv3 driver. Losing them (especially the
362 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
363 	 */
364 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
365 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
366 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
367 
368 	/*
369 	 * The actlr_el2 register can be initialized in platform's reset handler
370 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
371 	 */
372 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
373 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
374 
375 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
376 	scr_el3 = SCR_RESET_VAL;
377 
378 	/*
379 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
380 	 *  EL2, EL1 and EL0 are not trapped to EL3.
381 	 *
382 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
383 	 *  EL2, EL1 and EL0 are not trapped to EL3.
384 	 *
385 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
386 	 *  both Security states and both Execution states.
387 	 *
388 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
389 	 *  Non-secure memory.
390 	 */
391 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
392 
393 	scr_el3 |= SCR_SIF_BIT;
394 
395 	/*
396 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
397 	 *  Exception level as specified by SPSR.
398 	 */
399 	if (GET_RW(ep->spsr) == MODE_RW_64) {
400 		scr_el3 |= SCR_RW_BIT;
401 	}
402 
403 	/*
404 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
405 	 * Secure timer registers to EL3, from AArch64 state only, if specified
406 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
407 	 * bit always behaves as 1 (i.e. secure physical timer register access
408 	 * is not trapped)
409 	 */
410 	if (EP_GET_ST(ep->h.attr) != 0U) {
411 		scr_el3 |= SCR_ST_BIT;
412 	}
413 
414 	/*
415 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
416 	 * SCR_EL3.HXEn.
417 	 */
418 	if (is_feat_hcx_supported()) {
419 		scr_el3 |= SCR_HXEn_BIT;
420 	}
421 
422 	/*
423 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
424 	 * registers are trapped to EL3.
425 	 */
426 #if ENABLE_FEAT_RNG_TRAP
427 	scr_el3 |= SCR_TRNDR_BIT;
428 #endif
429 
430 #if FAULT_INJECTION_SUPPORT
431 	/* Enable fault injection from lower ELs */
432 	scr_el3 |= SCR_FIEN_BIT;
433 #endif
434 
435 #if CTX_INCLUDE_PAUTH_REGS
436 	/*
437 	 * Enable Pointer Authentication globally for all the worlds.
438 	 *
439 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
440 	 *  other than EL3
441 	 *
442 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
443 	 *  than EL3
444 	 */
445 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
446 #endif /* CTX_INCLUDE_PAUTH_REGS */
447 
448 	/*
449 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
450 	 */
451 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
452 		scr_el3 |= SCR_TCR2EN_BIT;
453 	}
454 
455 	/*
456 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
457 	 * registers for AArch64 if present.
458 	 */
459 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
460 		scr_el3 |= SCR_PIEN_BIT;
461 	}
462 
463 	/*
464 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
465 	 */
466 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
467 		scr_el3 |= SCR_GCSEn_BIT;
468 	}
469 
470 	/*
471 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
472 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
473 	 * next mode is Hyp.
474 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
475 	 * same conditions as HVC instructions and when the processor supports
476 	 * ARMv8.6-FGT.
477 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
478 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
479 	 * and when the processor supports ECV.
480 	 */
481 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
482 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
483 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
484 		scr_el3 |= SCR_HCE_BIT;
485 
486 		if (is_feat_fgt_supported()) {
487 			scr_el3 |= SCR_FGTEN_BIT;
488 		}
489 
490 		if (is_feat_ecv_supported()) {
491 			scr_el3 |= SCR_ECVEN_BIT;
492 		}
493 	}
494 
495 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
496 	if (is_feat_twed_supported()) {
497 		/* Set delay in SCR_EL3 */
498 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
499 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
500 				<< SCR_TWEDEL_SHIFT);
501 
502 		/* Enable WFE delay */
503 		scr_el3 |= SCR_TWEDEn_BIT;
504 	}
505 
506 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
507 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
508 	if (is_feat_sel2_supported()) {
509 		scr_el3 |= SCR_EEL2_BIT;
510 	}
511 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
512 
513 	/*
514 	 * Populate EL3 state so that we've the right context
515 	 * before doing ERET
516 	 */
517 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
518 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
519 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
520 
521 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
522 	mdcr_el3 = MDCR_EL3_RESET_VAL;
523 
524 	/* ---------------------------------------------------------------------
525 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
526 	 * Some fields are architecturally UNKNOWN on reset.
527 	 *
528 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
529 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
530 	 *  disabled from all ELs in Secure state.
531 	 *
532 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
533 	 *  privileged debug from S-EL1.
534 	 *
535 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
536 	 *  access to the powerdown debug registers do not trap to EL3.
537 	 *
538 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
539 	 *  debug registers, other than those registers that are controlled by
540 	 *  MDCR_EL3.TDOSA.
541 	 */
542 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
543 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
544 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
545 
546 	/*
547 	 * Configure MDCR_EL3 register as applicable for each world
548 	 * (NS/Secure/Realm) context.
549 	 */
550 	manage_extensions_common(ctx);
551 
552 	/*
553 	 * Store the X0-X7 value from the entrypoint into the context
554 	 * Use memcpy as we are in control of the layout of the structures
555 	 */
556 	gp_regs = get_gpregs_ctx(ctx);
557 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
558 }
559 
560 /*******************************************************************************
561  * Context management library initialization routine. This library is used by
562  * runtime services to share pointers to 'cpu_context' structures for secure
563  * non-secure and realm states. Management of the structures and their associated
564  * memory is not done by the context management library e.g. the PSCI service
565  * manages the cpu context used for entry from and exit to the non-secure state.
566  * The Secure payload dispatcher service manages the context(s) corresponding to
567  * the secure state. It also uses this library to get access to the non-secure
568  * state cpu context pointers.
569  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
570  * which will be used for programming an entry into a lower EL. The same context
571  * will be used to save state upon exception entry from that EL.
572  ******************************************************************************/
573 void __init cm_init(void)
574 {
575 	/*
576 	 * The context management library has only global data to initialize, but
577 	 * that will be done when the BSS is zeroed out.
578 	 */
579 }
580 
581 /*******************************************************************************
582  * This is the high-level function used to initialize the cpu_context 'ctx' for
583  * first use. It performs initializations that are common to all security states
584  * and initializations specific to the security state specified in 'ep'
585  ******************************************************************************/
586 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
587 {
588 	unsigned int security_state;
589 
590 	assert(ctx != NULL);
591 
592 	/*
593 	 * Perform initializations that are common
594 	 * to all security states
595 	 */
596 	setup_context_common(ctx, ep);
597 
598 	security_state = GET_SECURITY_STATE(ep->h.attr);
599 
600 	/* Perform security state specific initializations */
601 	switch (security_state) {
602 	case SECURE:
603 		setup_secure_context(ctx, ep);
604 		break;
605 #if ENABLE_RME
606 	case REALM:
607 		setup_realm_context(ctx, ep);
608 		break;
609 #endif
610 	case NON_SECURE:
611 		setup_ns_context(ctx, ep);
612 		break;
613 	default:
614 		ERROR("Invalid security state\n");
615 		panic();
616 		break;
617 	}
618 }
619 
620 /*******************************************************************************
621  * Enable architecture extensions for EL3 execution. This function only updates
622  * registers in-place which are expected to either never change or be
623  * overwritten by el3_exit.
624  ******************************************************************************/
625 #if IMAGE_BL31
626 void cm_manage_extensions_el3(void)
627 {
628 	if (is_feat_amu_supported()) {
629 		amu_init_el3();
630 	}
631 
632 	if (is_feat_sme_supported()) {
633 		sme_init_el3();
634 	}
635 
636 	pmuv3_init_el3();
637 }
638 #endif /* IMAGE_BL31 */
639 
640 /******************************************************************************
641  * Function to initialise the registers with the RESET values in the context
642  * memory, which are maintained per world.
643  ******************************************************************************/
644 #if IMAGE_BL31
645 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
646 {
647 	/*
648 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
649 	 *
650 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
651 	 *  by Advanced SIMD, floating-point or SVE instructions (if
652 	 *  implemented) do not trap to EL3.
653 	 *
654 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
655 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
656 	 */
657 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
658 
659 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
660 
661 	/*
662 	 * Initialize MPAM3_EL3 to its default reset value
663 	 *
664 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
665 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
666 	 */
667 
668 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
669 }
670 #endif /* IMAGE_BL31 */
671 
672 /*******************************************************************************
673  * Initialise per_world_context for Non-Secure world.
674  * This function enables the architecture extensions, which have same value
675  * across the cores for the non-secure world.
676  ******************************************************************************/
677 #if IMAGE_BL31
678 void manage_extensions_nonsecure_per_world(void)
679 {
680 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
681 
682 	if (is_feat_sme_supported()) {
683 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
684 	}
685 
686 	if (is_feat_sve_supported()) {
687 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
688 	}
689 
690 	if (is_feat_amu_supported()) {
691 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
692 	}
693 
694 	if (is_feat_sys_reg_trace_supported()) {
695 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
696 	}
697 
698 	if (is_feat_mpam_supported()) {
699 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
700 	}
701 }
702 #endif /* IMAGE_BL31 */
703 
704 /*******************************************************************************
705  * Initialise per_world_context for Secure world.
706  * This function enables the architecture extensions, which have same value
707  * across the cores for the secure world.
708  ******************************************************************************/
709 static void manage_extensions_secure_per_world(void)
710 {
711 #if IMAGE_BL31
712 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
713 
714 	if (is_feat_sme_supported()) {
715 
716 		if (ENABLE_SME_FOR_SWD) {
717 		/*
718 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
719 		 * SME, SVE, and FPU/SIMD context properly managed.
720 		 */
721 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
722 		} else {
723 		/*
724 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
725 		 * world can safely use the associated registers.
726 		 */
727 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
728 		}
729 	}
730 	if (is_feat_sve_supported()) {
731 		if (ENABLE_SVE_FOR_SWD) {
732 		/*
733 		 * Enable SVE and FPU in secure context, SPM must ensure
734 		 * that the SVE and FPU register contexts are properly managed.
735 		 */
736 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
737 		} else {
738 		/*
739 		 * Disable SVE and FPU in secure context so non-secure world
740 		 * can safely use them.
741 		 */
742 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
743 		}
744 	}
745 
746 	/* NS can access this but Secure shouldn't */
747 	if (is_feat_sys_reg_trace_supported()) {
748 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
749 	}
750 
751 	has_secure_perworld_init = true;
752 #endif /* IMAGE_BL31 */
753 }
754 
755 /*******************************************************************************
756  * Enable architecture extensions on first entry to Non-secure world only
757  * and disable for secure world.
758  *
759  * NOTE: Arch features which have been provided with the capability of getting
760  * enabled only for non-secure world and being disabled for secure world are
761  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
762  ******************************************************************************/
763 static void manage_extensions_common(cpu_context_t *ctx)
764 {
765 #if IMAGE_BL31
766 	if (is_feat_spe_supported()) {
767 		/*
768 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
769 		 */
770 		spe_enable(ctx);
771 	}
772 
773 	if (is_feat_trbe_supported()) {
774 		/*
775 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
776 		 * Realm state.
777 		 */
778 		trbe_enable(ctx);
779 	}
780 
781 	if (is_feat_trf_supported()) {
782 		/*
783 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
784 		 */
785 		trf_enable(ctx);
786 	}
787 #endif /* IMAGE_BL31 */
788 }
789 
790 /*******************************************************************************
791  * Enable architecture extensions on first entry to Non-secure world.
792  ******************************************************************************/
793 static void manage_extensions_nonsecure(cpu_context_t *ctx)
794 {
795 #if IMAGE_BL31
796 	if (is_feat_amu_supported()) {
797 		amu_enable(ctx);
798 	}
799 
800 	if (is_feat_sme_supported()) {
801 		sme_enable(ctx);
802 	}
803 
804 	if (is_feat_fgt2_supported()) {
805 		fgt2_enable(ctx);
806 	}
807 
808 	if (is_feat_debugv8p9_supported()) {
809 		debugv8p9_extended_bp_wp_enable(ctx);
810 	}
811 
812 	if (is_feat_brbe_supported()) {
813 		brbe_enable(ctx);
814 	}
815 
816 	pmuv3_enable(ctx);
817 #endif /* IMAGE_BL31 */
818 }
819 
820 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
821 static __unused void enable_pauth_el2(void)
822 {
823 	u_register_t hcr_el2 = read_hcr_el2();
824 	/*
825 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
826 	 *  accessing key registers or using pointer authentication instructions
827 	 *  from lower ELs.
828 	 */
829 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
830 
831 	write_hcr_el2(hcr_el2);
832 }
833 
834 #if INIT_UNUSED_NS_EL2
835 /*******************************************************************************
836  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
837  * world when EL2 is empty and unused.
838  ******************************************************************************/
839 static void manage_extensions_nonsecure_el2_unused(void)
840 {
841 #if IMAGE_BL31
842 	if (is_feat_spe_supported()) {
843 		spe_init_el2_unused();
844 	}
845 
846 	if (is_feat_amu_supported()) {
847 		amu_init_el2_unused();
848 	}
849 
850 	if (is_feat_mpam_supported()) {
851 		mpam_init_el2_unused();
852 	}
853 
854 	if (is_feat_trbe_supported()) {
855 		trbe_init_el2_unused();
856 	}
857 
858 	if (is_feat_sys_reg_trace_supported()) {
859 		sys_reg_trace_init_el2_unused();
860 	}
861 
862 	if (is_feat_trf_supported()) {
863 		trf_init_el2_unused();
864 	}
865 
866 	pmuv3_init_el2_unused();
867 
868 	if (is_feat_sve_supported()) {
869 		sve_init_el2_unused();
870 	}
871 
872 	if (is_feat_sme_supported()) {
873 		sme_init_el2_unused();
874 	}
875 
876 #if ENABLE_PAUTH
877 	enable_pauth_el2();
878 #endif /* ENABLE_PAUTH */
879 #endif /* IMAGE_BL31 */
880 }
881 #endif /* INIT_UNUSED_NS_EL2 */
882 
883 /*******************************************************************************
884  * Enable architecture extensions on first entry to Secure world.
885  ******************************************************************************/
886 static void manage_extensions_secure(cpu_context_t *ctx)
887 {
888 #if IMAGE_BL31
889 	if (is_feat_sme_supported()) {
890 		if (ENABLE_SME_FOR_SWD) {
891 		/*
892 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
893 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
894 		 */
895 			sme_init_el3();
896 			sme_enable(ctx);
897 		} else {
898 		/*
899 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
900 		 * world can safely use the associated registers.
901 		 */
902 			sme_disable(ctx);
903 		}
904 	}
905 #endif /* IMAGE_BL31 */
906 }
907 
908 #if !IMAGE_BL1
909 /*******************************************************************************
910  * The following function initializes the cpu_context for a CPU specified by
911  * its `cpu_idx` for first use, and sets the initial entrypoint state as
912  * specified by the entry_point_info structure.
913  ******************************************************************************/
914 void cm_init_context_by_index(unsigned int cpu_idx,
915 			      const entry_point_info_t *ep)
916 {
917 	cpu_context_t *ctx;
918 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
919 	cm_setup_context(ctx, ep);
920 }
921 #endif /* !IMAGE_BL1 */
922 
923 /*******************************************************************************
924  * The following function initializes the cpu_context for the current CPU
925  * for first use, and sets the initial entrypoint state as specified by the
926  * entry_point_info structure.
927  ******************************************************************************/
928 void cm_init_my_context(const entry_point_info_t *ep)
929 {
930 	cpu_context_t *ctx;
931 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
932 	cm_setup_context(ctx, ep);
933 }
934 
935 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
936 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
937 {
938 #if INIT_UNUSED_NS_EL2
939 	u_register_t hcr_el2 = HCR_RESET_VAL;
940 	u_register_t mdcr_el2;
941 	u_register_t scr_el3;
942 
943 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
944 
945 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
946 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
947 		hcr_el2 |= HCR_RW_BIT;
948 	}
949 
950 	write_hcr_el2(hcr_el2);
951 
952 	/*
953 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
954 	 * All fields have architecturally UNKNOWN reset values.
955 	 */
956 	write_cptr_el2(CPTR_EL2_RESET_VAL);
957 
958 	/*
959 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
960 	 * reset and are set to zero except for field(s) listed below.
961 	 *
962 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
963 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
964 	 *
965 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
966 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
967 	 */
968 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
969 
970 	/*
971 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
972 	 * UNKNOWN value.
973 	 */
974 	write_cntvoff_el2(0);
975 
976 	/*
977 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
978 	 * respectively.
979 	 */
980 	write_vpidr_el2(read_midr_el1());
981 	write_vmpidr_el2(read_mpidr_el1());
982 
983 	/*
984 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
985 	 *
986 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
987 	 * translation is disabled, cache maintenance operations depend on the
988 	 * VMID.
989 	 *
990 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
991 	 * disabled.
992 	 */
993 	write_vttbr_el2(VTTBR_RESET_VAL &
994 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
995 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
996 
997 	/*
998 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
999 	 * Some fields are architecturally UNKNOWN on reset.
1000 	 *
1001 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1002 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1003 	 *
1004 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1005 	 * accesses to the powerdown debug registers are not trapped to EL2.
1006 	 *
1007 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1008 	 * debug registers do not trap to EL2.
1009 	 *
1010 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1011 	 * EL2.
1012 	 */
1013 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1014 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1015 		   MDCR_EL2_TDE_BIT);
1016 
1017 	write_mdcr_el2(mdcr_el2);
1018 
1019 	/*
1020 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1021 	 *
1022 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1023 	 * EL1 accesses to System registers do not trap to EL2.
1024 	 */
1025 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1026 
1027 	/*
1028 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1029 	 * reset.
1030 	 *
1031 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1032 	 * and prevent timer interrupts.
1033 	 */
1034 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1035 
1036 	manage_extensions_nonsecure_el2_unused();
1037 #endif /* INIT_UNUSED_NS_EL2 */
1038 }
1039 
1040 /*******************************************************************************
1041  * Prepare the CPU system registers for first entry into realm, secure, or
1042  * normal world.
1043  *
1044  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1045  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1046  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1047  * For all entries, the EL1 registers are initialized from the cpu_context
1048  ******************************************************************************/
1049 void cm_prepare_el3_exit(uint32_t security_state)
1050 {
1051 	u_register_t sctlr_el2, scr_el3;
1052 	cpu_context_t *ctx = cm_get_context(security_state);
1053 
1054 	assert(ctx != NULL);
1055 
1056 	if (security_state == NON_SECURE) {
1057 		uint64_t el2_implemented = el_implemented(2);
1058 
1059 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1060 						 CTX_SCR_EL3);
1061 
1062 		if (el2_implemented != EL_IMPL_NONE) {
1063 
1064 			/*
1065 			 * If context is not being used for EL2, initialize
1066 			 * HCRX_EL2 with its init value here.
1067 			 */
1068 			if (is_feat_hcx_supported()) {
1069 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1070 			}
1071 
1072 			/*
1073 			 * Initialize Fine-grained trap registers introduced
1074 			 * by FEAT_FGT so all traps are initially disabled when
1075 			 * switching to EL2 or a lower EL, preventing undesired
1076 			 * behavior.
1077 			 */
1078 			if (is_feat_fgt_supported()) {
1079 				/*
1080 				 * Initialize HFG*_EL2 registers with a default
1081 				 * value so legacy systems unaware of FEAT_FGT
1082 				 * do not get trapped due to their lack of
1083 				 * initialization for this feature.
1084 				 */
1085 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1086 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1087 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1088 			}
1089 
1090 			/* Condition to ensure EL2 is being used. */
1091 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1092 				/* Initialize SCTLR_EL2 register with reset value. */
1093 				sctlr_el2 = SCTLR_EL2_RES1;
1094 
1095 				/*
1096 				 * If workaround of errata 764081 for Cortex-A75
1097 				 * is used then set SCTLR_EL2.IESB to enable
1098 				 * Implicit Error Synchronization Barrier.
1099 				 */
1100 				if (errata_a75_764081_applies()) {
1101 					sctlr_el2 |= SCTLR_IESB_BIT;
1102 				}
1103 
1104 				write_sctlr_el2(sctlr_el2);
1105 			} else {
1106 				/*
1107 				 * (scr_el3 & SCR_HCE_BIT==0)
1108 				 * EL2 implemented but unused.
1109 				 */
1110 				init_nonsecure_el2_unused(ctx);
1111 			}
1112 		}
1113 	}
1114 #if (!CTX_INCLUDE_EL2_REGS)
1115 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1116 	cm_el1_sysregs_context_restore(security_state);
1117 #endif
1118 	cm_set_next_eret_context(security_state);
1119 }
1120 
1121 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1122 
1123 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1124 {
1125 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1126 	if (is_feat_amu_supported()) {
1127 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1128 	}
1129 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1130 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1131 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1132 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1133 }
1134 
1135 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1136 {
1137 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1138 	if (is_feat_amu_supported()) {
1139 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1140 	}
1141 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1142 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1143 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1144 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1145 }
1146 
1147 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1148 {
1149 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1150 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1151 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1152 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1153 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1154 }
1155 
1156 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1157 {
1158 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1159 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1160 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1161 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1162 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1163 }
1164 
1165 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1166 {
1167 	u_register_t mpam_idr = read_mpamidr_el1();
1168 
1169 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1170 
1171 	/*
1172 	 * The context registers that we intend to save would be part of the
1173 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1174 	 */
1175 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1176 		return;
1177 	}
1178 
1179 	/*
1180 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1181 	 * MPAMIDR_HAS_HCR_BIT == 1.
1182 	 */
1183 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1184 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1185 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1186 
1187 	/*
1188 	 * The number of MPAMVPM registers is implementation defined, their
1189 	 * number is stored in the MPAMIDR_EL1 register.
1190 	 */
1191 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1192 	case 7:
1193 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1194 		__fallthrough;
1195 	case 6:
1196 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1197 		__fallthrough;
1198 	case 5:
1199 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1200 		__fallthrough;
1201 	case 4:
1202 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1203 		__fallthrough;
1204 	case 3:
1205 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1206 		__fallthrough;
1207 	case 2:
1208 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1209 		__fallthrough;
1210 	case 1:
1211 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1212 		break;
1213 	}
1214 }
1215 
1216 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1217 {
1218 	u_register_t mpam_idr = read_mpamidr_el1();
1219 
1220 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1221 
1222 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1223 		return;
1224 	}
1225 
1226 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1227 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1228 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1229 
1230 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1231 	case 7:
1232 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1233 		__fallthrough;
1234 	case 6:
1235 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1236 		__fallthrough;
1237 	case 5:
1238 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1239 		__fallthrough;
1240 	case 4:
1241 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1242 		__fallthrough;
1243 	case 3:
1244 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1245 		__fallthrough;
1246 	case 2:
1247 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1248 		__fallthrough;
1249 	case 1:
1250 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1251 		break;
1252 	}
1253 }
1254 
1255 /* ---------------------------------------------------------------------------
1256  * The following registers are not added:
1257  * ICH_AP0R<n>_EL2
1258  * ICH_AP1R<n>_EL2
1259  * ICH_LR<n>_EL2
1260  *
1261  * NOTE: For a system with S-EL2 present but not enabled, accessing
1262  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1263  * SCR_EL3.NS = 1 before accessing this register.
1264  * ---------------------------------------------------------------------------
1265  */
1266 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1267 {
1268 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1269 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1270 #else
1271 	u_register_t scr_el3 = read_scr_el3();
1272 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1273 	isb();
1274 
1275 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1276 
1277 	write_scr_el3(scr_el3);
1278 	isb();
1279 #endif
1280 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1281 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1282 }
1283 
1284 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1285 {
1286 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1287 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1288 #else
1289 	u_register_t scr_el3 = read_scr_el3();
1290 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1291 	isb();
1292 
1293 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1294 
1295 	write_scr_el3(scr_el3);
1296 	isb();
1297 #endif
1298 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1299 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1300 }
1301 
1302 /* -----------------------------------------------------
1303  * The following registers are not added:
1304  * AMEVCNTVOFF0<n>_EL2
1305  * AMEVCNTVOFF1<n>_EL2
1306  * -----------------------------------------------------
1307  */
1308 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1309 {
1310 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1311 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1312 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1313 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1314 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1315 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1316 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1317 	if (CTX_INCLUDE_AARCH32_REGS) {
1318 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1319 	}
1320 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1321 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1322 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1323 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1324 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1325 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1326 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1327 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1328 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1329 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1330 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1331 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1332 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1333 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1334 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1335 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1336 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1337 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1338 
1339 	write_el2_ctx_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1340 	write_el2_ctx_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1341 }
1342 
1343 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1344 {
1345 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1346 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1347 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1348 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1349 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1350 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1351 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1352 	if (CTX_INCLUDE_AARCH32_REGS) {
1353 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1354 	}
1355 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1356 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1357 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1358 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1359 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1360 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1361 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1362 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1363 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1364 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1365 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1366 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1367 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1368 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1369 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1370 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1371 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1372 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1373 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1374 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1375 }
1376 
1377 /*******************************************************************************
1378  * Save EL2 sysreg context
1379  ******************************************************************************/
1380 void cm_el2_sysregs_context_save(uint32_t security_state)
1381 {
1382 	cpu_context_t *ctx;
1383 	el2_sysregs_t *el2_sysregs_ctx;
1384 
1385 	ctx = cm_get_context(security_state);
1386 	assert(ctx != NULL);
1387 
1388 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1389 
1390 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1391 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1392 
1393 	if (is_feat_mte2_supported()) {
1394 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1395 	}
1396 
1397 	if (is_feat_mpam_supported()) {
1398 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1399 	}
1400 
1401 	if (is_feat_fgt_supported()) {
1402 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1403 	}
1404 
1405 	if (is_feat_fgt2_supported()) {
1406 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1407 	}
1408 
1409 	if (is_feat_ecv_v2_supported()) {
1410 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1411 	}
1412 
1413 	if (is_feat_vhe_supported()) {
1414 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1415 					read_contextidr_el2());
1416 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1417 	}
1418 
1419 	if (is_feat_ras_supported()) {
1420 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1421 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1422 	}
1423 
1424 	if (is_feat_nv2_supported()) {
1425 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1426 	}
1427 
1428 	if (is_feat_trf_supported()) {
1429 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1430 	}
1431 
1432 	if (is_feat_csv2_2_supported()) {
1433 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1434 					read_scxtnum_el2());
1435 	}
1436 
1437 	if (is_feat_hcx_supported()) {
1438 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1439 	}
1440 
1441 	if (is_feat_tcr2_supported()) {
1442 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1443 	}
1444 
1445 	if (is_feat_sxpie_supported()) {
1446 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1447 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1448 	}
1449 
1450 	if (is_feat_sxpoe_supported()) {
1451 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1452 	}
1453 
1454 	if (is_feat_s2pie_supported()) {
1455 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1456 	}
1457 
1458 	if (is_feat_gcs_supported()) {
1459 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1460 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1461 	}
1462 
1463 	if (is_feat_sctlr2_supported()) {
1464 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1465 	}
1466 }
1467 
1468 /*******************************************************************************
1469  * Restore EL2 sysreg context
1470  ******************************************************************************/
1471 void cm_el2_sysregs_context_restore(uint32_t security_state)
1472 {
1473 	cpu_context_t *ctx;
1474 	el2_sysregs_t *el2_sysregs_ctx;
1475 
1476 	ctx = cm_get_context(security_state);
1477 	assert(ctx != NULL);
1478 
1479 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1480 
1481 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1482 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1483 
1484 	if (is_feat_mte2_supported()) {
1485 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1486 	}
1487 
1488 	if (is_feat_mpam_supported()) {
1489 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1490 	}
1491 
1492 	if (is_feat_fgt_supported()) {
1493 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1494 	}
1495 
1496 	if (is_feat_fgt2_supported()) {
1497 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1498 	}
1499 
1500 	if (is_feat_ecv_v2_supported()) {
1501 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1502 	}
1503 
1504 	if (is_feat_vhe_supported()) {
1505 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1506 					contextidr_el2));
1507 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1508 	}
1509 
1510 	if (is_feat_ras_supported()) {
1511 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1512 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1513 	}
1514 
1515 	if (is_feat_nv2_supported()) {
1516 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1517 	}
1518 
1519 	if (is_feat_trf_supported()) {
1520 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1521 	}
1522 
1523 	if (is_feat_csv2_2_supported()) {
1524 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1525 					scxtnum_el2));
1526 	}
1527 
1528 	if (is_feat_hcx_supported()) {
1529 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1530 	}
1531 
1532 	if (is_feat_tcr2_supported()) {
1533 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1534 	}
1535 
1536 	if (is_feat_sxpie_supported()) {
1537 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1538 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1539 	}
1540 
1541 	if (is_feat_sxpoe_supported()) {
1542 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1543 	}
1544 
1545 	if (is_feat_s2pie_supported()) {
1546 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1547 	}
1548 
1549 	if (is_feat_gcs_supported()) {
1550 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1551 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1552 	}
1553 
1554 	if (is_feat_sctlr2_supported()) {
1555 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1556 	}
1557 }
1558 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1559 
1560 #if IMAGE_BL31
1561 /*********************************************************************************
1562 * This function allows Architecture features asymmetry among cores.
1563 * TF-A assumes that all the cores in the platform has architecture feature parity
1564 * and hence the context is setup on different core (e.g. primary sets up the
1565 * context for secondary cores).This assumption may not be true for systems where
1566 * cores are not conforming to same Arch version or there is CPU Erratum which
1567 * requires certain feature to be be disabled only on a given core.
1568 *
1569 * This function is called on secondary cores to override any disparity in context
1570 * setup by primary, this would be called during warmboot path.
1571 *********************************************************************************/
1572 void cm_handle_asymmetric_features(void)
1573 {
1574 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1575 
1576 	assert(ctx != NULL);
1577 
1578 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1579 	if (is_feat_spe_supported()) {
1580 		spe_enable(ctx);
1581 	} else {
1582 		spe_disable(ctx);
1583 	}
1584 #endif
1585 
1586 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1587 	if (check_if_affected_core() == ERRATA_APPLIES) {
1588 		if (is_feat_trbe_supported()) {
1589 			trbe_disable(ctx);
1590 		}
1591 	}
1592 #endif
1593 
1594 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1595 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1596 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1597 
1598 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1599 		tcr2_enable(ctx);
1600 	} else {
1601 		tcr2_disable(ctx);
1602 	}
1603 #endif
1604 
1605 }
1606 #endif
1607 
1608 /*******************************************************************************
1609  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1610  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1611  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1612  * cm_prepare_el3_exit function.
1613  ******************************************************************************/
1614 void cm_prepare_el3_exit_ns(void)
1615 {
1616 #if IMAGE_BL31
1617 	/*
1618 	 * Check and handle Architecture feature asymmetry among cores.
1619 	 *
1620 	 * In warmboot path secondary cores context is initialized on core which
1621 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1622 	 * it in this function call.
1623 	 * For Symmetric cores this is an empty function.
1624 	 */
1625 	cm_handle_asymmetric_features();
1626 #endif
1627 
1628 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1629 #if ENABLE_ASSERTIONS
1630 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1631 	assert(ctx != NULL);
1632 
1633 	/* Assert that EL2 is used. */
1634 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1635 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1636 			(el_implemented(2U) != EL_IMPL_NONE));
1637 #endif /* ENABLE_ASSERTIONS */
1638 
1639 	/* Restore EL2 sysreg contexts */
1640 	cm_el2_sysregs_context_restore(NON_SECURE);
1641 	cm_set_next_eret_context(NON_SECURE);
1642 #else
1643 	cm_prepare_el3_exit(NON_SECURE);
1644 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1645 }
1646 
1647 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1648 /*******************************************************************************
1649  * The next set of six functions are used by runtime services to save and restore
1650  * EL1 context on the 'cpu_context' structure for the specified security state.
1651  ******************************************************************************/
1652 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1653 {
1654 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1655 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1656 
1657 #if (!ERRATA_SPECULATIVE_AT)
1658 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1659 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1660 #endif /* (!ERRATA_SPECULATIVE_AT) */
1661 
1662 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1663 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1664 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1665 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1666 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1667 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1668 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1669 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1670 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1671 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1672 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1673 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1674 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1675 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1676 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1677 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1678 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1679 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1680 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1681 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1682 
1683 	if (CTX_INCLUDE_AARCH32_REGS) {
1684 		/* Save Aarch32 registers */
1685 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1686 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1687 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1688 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1689 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1690 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1691 	}
1692 
1693 	if (NS_TIMER_SWITCH) {
1694 		/* Save NS Timer registers */
1695 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1696 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1697 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1698 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1699 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1700 	}
1701 
1702 	if (is_feat_mte2_supported()) {
1703 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1704 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1705 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1706 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1707 	}
1708 
1709 	if (is_feat_ras_supported()) {
1710 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1711 	}
1712 
1713 	if (is_feat_s1pie_supported()) {
1714 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1715 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1716 	}
1717 
1718 	if (is_feat_s1poe_supported()) {
1719 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1720 	}
1721 
1722 	if (is_feat_s2poe_supported()) {
1723 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1724 	}
1725 
1726 	if (is_feat_tcr2_supported()) {
1727 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1728 	}
1729 
1730 	if (is_feat_trf_supported()) {
1731 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1732 	}
1733 
1734 	if (is_feat_csv2_2_supported()) {
1735 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1736 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1737 	}
1738 
1739 	if (is_feat_gcs_supported()) {
1740 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1741 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1742 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1743 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1744 	}
1745 
1746 	if (is_feat_the_supported()) {
1747 		write_el1_ctx_the(ctx, rcwmask_el1, read_rcwmask_el1());
1748 		write_el1_ctx_the(ctx, rcwsmask_el1, read_rcwsmask_el1());
1749 	}
1750 
1751 	if (is_feat_sctlr2_supported()) {
1752 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1753 	}
1754 
1755 }
1756 
1757 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1758 {
1759 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1760 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1761 
1762 #if (!ERRATA_SPECULATIVE_AT)
1763 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1764 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1765 #endif /* (!ERRATA_SPECULATIVE_AT) */
1766 
1767 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1768 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1769 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1770 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1771 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1772 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1773 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1774 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1775 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1776 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1777 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1778 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1779 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1780 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1781 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1782 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1783 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1784 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1785 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1786 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1787 
1788 	if (CTX_INCLUDE_AARCH32_REGS) {
1789 		/* Restore Aarch32 registers */
1790 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1791 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1792 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1793 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1794 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1795 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1796 	}
1797 
1798 	if (NS_TIMER_SWITCH) {
1799 		/* Restore NS Timer registers */
1800 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1801 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1802 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1803 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1804 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1805 	}
1806 
1807 	if (is_feat_mte2_supported()) {
1808 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1809 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1810 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1811 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1812 	}
1813 
1814 	if (is_feat_ras_supported()) {
1815 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1816 	}
1817 
1818 	if (is_feat_s1pie_supported()) {
1819 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1820 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1821 	}
1822 
1823 	if (is_feat_s1poe_supported()) {
1824 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1825 	}
1826 
1827 	if (is_feat_s2poe_supported()) {
1828 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1829 	}
1830 
1831 	if (is_feat_tcr2_supported()) {
1832 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1833 	}
1834 
1835 	if (is_feat_trf_supported()) {
1836 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1837 	}
1838 
1839 	if (is_feat_csv2_2_supported()) {
1840 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1841 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1842 	}
1843 
1844 	if (is_feat_gcs_supported()) {
1845 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1846 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1847 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1848 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1849 	}
1850 
1851 	if (is_feat_the_supported()) {
1852 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1853 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1854 	}
1855 
1856 	if (is_feat_sctlr2_supported()) {
1857 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1858 	}
1859 
1860 }
1861 
1862 /*******************************************************************************
1863  * The next couple of functions are used by runtime services to save and restore
1864  * EL1 context on the 'cpu_context' structure for the specified security state.
1865  ******************************************************************************/
1866 void cm_el1_sysregs_context_save(uint32_t security_state)
1867 {
1868 	cpu_context_t *ctx;
1869 
1870 	ctx = cm_get_context(security_state);
1871 	assert(ctx != NULL);
1872 
1873 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1874 
1875 #if IMAGE_BL31
1876 	if (security_state == SECURE)
1877 		PUBLISH_EVENT(cm_exited_secure_world);
1878 	else
1879 		PUBLISH_EVENT(cm_exited_normal_world);
1880 #endif
1881 }
1882 
1883 void cm_el1_sysregs_context_restore(uint32_t security_state)
1884 {
1885 	cpu_context_t *ctx;
1886 
1887 	ctx = cm_get_context(security_state);
1888 	assert(ctx != NULL);
1889 
1890 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1891 
1892 #if IMAGE_BL31
1893 	if (security_state == SECURE)
1894 		PUBLISH_EVENT(cm_entering_secure_world);
1895 	else
1896 		PUBLISH_EVENT(cm_entering_normal_world);
1897 #endif
1898 }
1899 
1900 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1901 
1902 /*******************************************************************************
1903  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1904  * given security state with the given entrypoint
1905  ******************************************************************************/
1906 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1907 {
1908 	cpu_context_t *ctx;
1909 	el3_state_t *state;
1910 
1911 	ctx = cm_get_context(security_state);
1912 	assert(ctx != NULL);
1913 
1914 	/* Populate EL3 state so that ERET jumps to the correct entry */
1915 	state = get_el3state_ctx(ctx);
1916 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1917 }
1918 
1919 /*******************************************************************************
1920  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1921  * pertaining to the given security state
1922  ******************************************************************************/
1923 void cm_set_elr_spsr_el3(uint32_t security_state,
1924 			uintptr_t entrypoint, uint32_t spsr)
1925 {
1926 	cpu_context_t *ctx;
1927 	el3_state_t *state;
1928 
1929 	ctx = cm_get_context(security_state);
1930 	assert(ctx != NULL);
1931 
1932 	/* Populate EL3 state so that ERET jumps to the correct entry */
1933 	state = get_el3state_ctx(ctx);
1934 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1935 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1936 }
1937 
1938 /*******************************************************************************
1939  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1940  * pertaining to the given security state using the value and bit position
1941  * specified in the parameters. It preserves all other bits.
1942  ******************************************************************************/
1943 void cm_write_scr_el3_bit(uint32_t security_state,
1944 			  uint32_t bit_pos,
1945 			  uint32_t value)
1946 {
1947 	cpu_context_t *ctx;
1948 	el3_state_t *state;
1949 	u_register_t scr_el3;
1950 
1951 	ctx = cm_get_context(security_state);
1952 	assert(ctx != NULL);
1953 
1954 	/* Ensure that the bit position is a valid one */
1955 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1956 
1957 	/* Ensure that the 'value' is only a bit wide */
1958 	assert(value <= 1U);
1959 
1960 	/*
1961 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1962 	 * and set it to its new value.
1963 	 */
1964 	state = get_el3state_ctx(ctx);
1965 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1966 	scr_el3 &= ~(1UL << bit_pos);
1967 	scr_el3 |= (u_register_t)value << bit_pos;
1968 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1969 }
1970 
1971 /*******************************************************************************
1972  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1973  * given security state.
1974  ******************************************************************************/
1975 u_register_t cm_get_scr_el3(uint32_t security_state)
1976 {
1977 	cpu_context_t *ctx;
1978 	el3_state_t *state;
1979 
1980 	ctx = cm_get_context(security_state);
1981 	assert(ctx != NULL);
1982 
1983 	/* Populate EL3 state so that ERET jumps to the correct entry */
1984 	state = get_el3state_ctx(ctx);
1985 	return read_ctx_reg(state, CTX_SCR_EL3);
1986 }
1987 
1988 /*******************************************************************************
1989  * This function is used to program the context that's used for exception
1990  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1991  * the required security state
1992  ******************************************************************************/
1993 void cm_set_next_eret_context(uint32_t security_state)
1994 {
1995 	cpu_context_t *ctx;
1996 
1997 	ctx = cm_get_context(security_state);
1998 	assert(ctx != NULL);
1999 
2000 	cm_set_next_context(ctx);
2001 }
2002