xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 062b6c6bf23f9656332b0aa3fed59c15f34f9361)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	if (is_feat_csv2_2_supported()) {
175 		/* Enable access to the SCXTNUM_ELx registers. */
176 		scr_el3 |= SCR_EnSCXT_BIT;
177 	}
178 
179 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
180 }
181 #endif /* ENABLE_RME */
182 
183 /******************************************************************************
184  * This function performs initializations that are specific to NON-SECURE state
185  * and updates the cpu context specified by 'ctx'.
186  *****************************************************************************/
187 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
188 {
189 	u_register_t scr_el3;
190 	el3_state_t *state;
191 
192 	state = get_el3state_ctx(ctx);
193 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
194 
195 	/* SCR_NS: Set the NS bit */
196 	scr_el3 |= SCR_NS_BIT;
197 
198 #if !CTX_INCLUDE_PAUTH_REGS
199 	/*
200 	 * If the pointer authentication registers aren't saved during world
201 	 * switches the value of the registers can be leaked from the Secure to
202 	 * the Non-secure world. To prevent this, rather than enabling pointer
203 	 * authentication everywhere, we only enable it in the Non-secure world.
204 	 *
205 	 * If the Secure world wants to use pointer authentication,
206 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
207 	 */
208 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
209 #endif /* !CTX_INCLUDE_PAUTH_REGS */
210 
211 	/* Allow access to Allocation Tags when MTE is implemented. */
212 	scr_el3 |= SCR_ATA_BIT;
213 
214 #if HANDLE_EA_EL3_FIRST_NS
215 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
216 	scr_el3 |= SCR_EA_BIT;
217 #endif
218 
219 #if RAS_TRAP_NS_ERR_REC_ACCESS
220 	/*
221 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
222 	 * and RAS ERX registers from EL1 and EL2(from any security state)
223 	 * are trapped to EL3.
224 	 * Set here to trap only for NS EL1/EL2
225 	 *
226 	 */
227 	scr_el3 |= SCR_TERR_BIT;
228 #endif
229 
230 	if (is_feat_csv2_2_supported()) {
231 		/* Enable access to the SCXTNUM_ELx registers. */
232 		scr_el3 |= SCR_EnSCXT_BIT;
233 	}
234 
235 #ifdef IMAGE_BL31
236 	/*
237 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
238 	 *  indicated by the interrupt routing model for BL31.
239 	 */
240 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
241 #endif
242 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
243 
244 	/* Initialize EL1 context registers */
245 	setup_el1_context(ctx, ep);
246 
247 	/* Initialize EL2 context registers */
248 #if CTX_INCLUDE_EL2_REGS
249 
250 	/*
251 	 * Initialize SCTLR_EL2 context register using Endianness value
252 	 * taken from the entrypoint attribute.
253 	 */
254 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
255 	sctlr_el2 |= SCTLR_EL2_RES1;
256 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
257 			sctlr_el2);
258 
259 	/*
260 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
261 	 * when restoring NS context.
262 	 */
263 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
264 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
265 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
266 			icc_sre_el2);
267 
268 	/*
269 	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
270 	 * throw anyone off who expects this to be sensible.
271 	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
272 	 * unified with the proper PMU implementation
273 	 */
274 	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
275 			PMCR_EL0_N_MASK);
276 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
277 #endif /* CTX_INCLUDE_EL2_REGS */
278 }
279 
280 /*******************************************************************************
281  * The following function performs initialization of the cpu_context 'ctx'
282  * for first use that is common to all security states, and sets the
283  * initial entrypoint state as specified by the entry_point_info structure.
284  *
285  * The EE and ST attributes are used to configure the endianness and secure
286  * timer availability for the new execution context.
287  ******************************************************************************/
288 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
289 {
290 	u_register_t scr_el3;
291 	el3_state_t *state;
292 	gp_regs_t *gp_regs;
293 
294 	/* Clear any residual register values from the context */
295 	zeromem(ctx, sizeof(*ctx));
296 
297 	/*
298 	 * SCR_EL3 was initialised during reset sequence in macro
299 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
300 	 * affect the next EL.
301 	 *
302 	 * The following fields are initially set to zero and then updated to
303 	 * the required value depending on the state of the SPSR_EL3 and the
304 	 * Security state and entrypoint attributes of the next EL.
305 	 */
306 	scr_el3 = read_scr();
307 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
308 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
309 
310 	/*
311 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
312 	 *  Exception level as specified by SPSR.
313 	 */
314 	if (GET_RW(ep->spsr) == MODE_RW_64) {
315 		scr_el3 |= SCR_RW_BIT;
316 	}
317 
318 	/*
319 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
320 	 * Secure timer registers to EL3, from AArch64 state only, if specified
321 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
322 	 * bit always behaves as 1 (i.e. secure physical timer register access
323 	 * is not trapped)
324 	 */
325 	if (EP_GET_ST(ep->h.attr) != 0U) {
326 		scr_el3 |= SCR_ST_BIT;
327 	}
328 
329 	/*
330 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
331 	 * SCR_EL3.HXEn.
332 	 */
333 	if (is_feat_hcx_supported()) {
334 		scr_el3 |= SCR_HXEn_BIT;
335 	}
336 
337 	/*
338 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
339 	 * registers are trapped to EL3.
340 	 */
341 #if ENABLE_FEAT_RNG_TRAP
342 	scr_el3 |= SCR_TRNDR_BIT;
343 #endif
344 
345 #if FAULT_INJECTION_SUPPORT
346 	/* Enable fault injection from lower ELs */
347 	scr_el3 |= SCR_FIEN_BIT;
348 #endif
349 
350 	/*
351 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
352 	 */
353 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
354 		scr_el3 |= SCR_TCR2EN_BIT;
355 	}
356 
357 	/*
358 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
359 	 * registers for AArch64 if present.
360 	 */
361 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
362 		scr_el3 |= SCR_PIEN_BIT;
363 	}
364 
365 	/*
366 	 * CPTR_EL3 was initialized out of reset, copy that value to the
367 	 * context register.
368 	 */
369 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
370 
371 	/*
372 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
373 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
374 	 * next mode is Hyp.
375 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
376 	 * same conditions as HVC instructions and when the processor supports
377 	 * ARMv8.6-FGT.
378 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
379 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
380 	 * and when the processor supports ECV.
381 	 */
382 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
383 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
384 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
385 		scr_el3 |= SCR_HCE_BIT;
386 
387 		if (is_feat_fgt_supported()) {
388 			scr_el3 |= SCR_FGTEN_BIT;
389 		}
390 
391 		if (is_feat_ecv_supported()) {
392 			scr_el3 |= SCR_ECVEN_BIT;
393 		}
394 	}
395 
396 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
397 	if (is_feat_twed_supported()) {
398 		/* Set delay in SCR_EL3 */
399 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
400 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
401 				<< SCR_TWEDEL_SHIFT);
402 
403 		/* Enable WFE delay */
404 		scr_el3 |= SCR_TWEDEn_BIT;
405 	}
406 
407 	/*
408 	 * Populate EL3 state so that we've the right context
409 	 * before doing ERET
410 	 */
411 	state = get_el3state_ctx(ctx);
412 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
413 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
414 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
415 
416 	/*
417 	 * Store the X0-X7 value from the entrypoint into the context
418 	 * Use memcpy as we are in control of the layout of the structures
419 	 */
420 	gp_regs = get_gpregs_ctx(ctx);
421 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
422 }
423 
424 /*******************************************************************************
425  * Context management library initialization routine. This library is used by
426  * runtime services to share pointers to 'cpu_context' structures for secure
427  * non-secure and realm states. Management of the structures and their associated
428  * memory is not done by the context management library e.g. the PSCI service
429  * manages the cpu context used for entry from and exit to the non-secure state.
430  * The Secure payload dispatcher service manages the context(s) corresponding to
431  * the secure state. It also uses this library to get access to the non-secure
432  * state cpu context pointers.
433  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
434  * which will be used for programming an entry into a lower EL. The same context
435  * will be used to save state upon exception entry from that EL.
436  ******************************************************************************/
437 void __init cm_init(void)
438 {
439 	/*
440 	 * The context management library has only global data to intialize, but
441 	 * that will be done when the BSS is zeroed out.
442 	 */
443 }
444 
445 /*******************************************************************************
446  * This is the high-level function used to initialize the cpu_context 'ctx' for
447  * first use. It performs initializations that are common to all security states
448  * and initializations specific to the security state specified in 'ep'
449  ******************************************************************************/
450 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
451 {
452 	unsigned int security_state;
453 
454 	assert(ctx != NULL);
455 
456 	/*
457 	 * Perform initializations that are common
458 	 * to all security states
459 	 */
460 	setup_context_common(ctx, ep);
461 
462 	security_state = GET_SECURITY_STATE(ep->h.attr);
463 
464 	/* Perform security state specific initializations */
465 	switch (security_state) {
466 	case SECURE:
467 		setup_secure_context(ctx, ep);
468 		break;
469 #if ENABLE_RME
470 	case REALM:
471 		setup_realm_context(ctx, ep);
472 		break;
473 #endif
474 	case NON_SECURE:
475 		setup_ns_context(ctx, ep);
476 		break;
477 	default:
478 		ERROR("Invalid security state\n");
479 		panic();
480 		break;
481 	}
482 }
483 
484 /*******************************************************************************
485  * Enable architecture extensions on first entry to Non-secure world.
486  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
487  * it is zero.
488  ******************************************************************************/
489 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
490 {
491 #if IMAGE_BL31
492 	if (is_feat_spe_supported()) {
493 		spe_enable(el2_unused);
494 	}
495 
496 	if (is_feat_amu_supported()) {
497 		amu_enable(el2_unused, ctx);
498 	}
499 
500 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
501 	if (is_feat_sme_supported()) {
502 		sme_enable(ctx);
503 	} else if (is_feat_sve_supported()) {
504 		/* Enable SVE and FPU/SIMD for non-secure world. */
505 		sve_enable(ctx);
506 	}
507 
508 	if (is_feat_mpam_supported()) {
509 		mpam_enable(el2_unused);
510 	}
511 
512 	if (is_feat_trbe_supported()) {
513 		trbe_enable();
514 	}
515 
516 	if (is_feat_brbe_supported()) {
517 		brbe_enable();
518 	}
519 
520 	if (is_feat_sys_reg_trace_supported()) {
521 		sys_reg_trace_enable(ctx);
522 	}
523 
524 	if (is_feat_trf_supported()) {
525 		trf_enable();
526 	}
527 #endif
528 }
529 
530 /*******************************************************************************
531  * Enable architecture extensions on first entry to Secure world.
532  ******************************************************************************/
533 static void manage_extensions_secure(cpu_context_t *ctx)
534 {
535 #if IMAGE_BL31
536 
537 	if (is_feat_sme_supported()) {
538 		if (ENABLE_SME_FOR_SWD) {
539 		/*
540 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
541 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
542 		 */
543 			sme_enable(ctx);
544 		} else {
545 		/*
546 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
547 		 * world can safely use the associated registers.
548 		 */
549 			sme_disable(ctx);
550 		}
551 	} else if (is_feat_sve_supported()) {
552 		if (ENABLE_SVE_FOR_SWD) {
553 		/*
554 		 * Enable SVE and FPU in secure context, secure manager must
555 		 * ensure that the SVE and FPU register contexts are properly
556 		 * managed.
557 		 */
558 			sve_enable(ctx);
559 		} else {
560 		/*
561 		 * Disable SVE and FPU in secure context so non-secure world
562 		 * can safely use them.
563 		 */
564 			sve_disable(ctx);
565 		}
566 	}
567 
568 #endif /* IMAGE_BL31 */
569 }
570 
571 /*******************************************************************************
572  * The following function initializes the cpu_context for a CPU specified by
573  * its `cpu_idx` for first use, and sets the initial entrypoint state as
574  * specified by the entry_point_info structure.
575  ******************************************************************************/
576 void cm_init_context_by_index(unsigned int cpu_idx,
577 			      const entry_point_info_t *ep)
578 {
579 	cpu_context_t *ctx;
580 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
581 	cm_setup_context(ctx, ep);
582 }
583 
584 /*******************************************************************************
585  * The following function initializes the cpu_context for the current CPU
586  * for first use, and sets the initial entrypoint state as specified by the
587  * entry_point_info structure.
588  ******************************************************************************/
589 void cm_init_my_context(const entry_point_info_t *ep)
590 {
591 	cpu_context_t *ctx;
592 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
593 	cm_setup_context(ctx, ep);
594 }
595 
596 /*******************************************************************************
597  * Prepare the CPU system registers for first entry into realm, secure, or
598  * normal world.
599  *
600  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
601  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
602  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
603  * For all entries, the EL1 registers are initialized from the cpu_context
604  ******************************************************************************/
605 void cm_prepare_el3_exit(uint32_t security_state)
606 {
607 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
608 	cpu_context_t *ctx = cm_get_context(security_state);
609 	bool el2_unused = false;
610 	uint64_t hcr_el2 = 0U;
611 
612 	assert(ctx != NULL);
613 
614 	if (security_state == NON_SECURE) {
615 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
616 						 CTX_SCR_EL3);
617 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
618 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
619 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
620 							   CTX_SCTLR_EL1);
621 			sctlr_elx &= SCTLR_EE_BIT;
622 			sctlr_elx |= SCTLR_EL2_RES1;
623 #if ERRATA_A75_764081
624 			/*
625 			 * If workaround of errata 764081 for Cortex-A75 is used
626 			 * then set SCTLR_EL2.IESB to enable Implicit Error
627 			 * Synchronization Barrier.
628 			 */
629 			sctlr_elx |= SCTLR_IESB_BIT;
630 #endif
631 			write_sctlr_el2(sctlr_elx);
632 		} else if (el_implemented(2) != EL_IMPL_NONE) {
633 			el2_unused = true;
634 
635 			/*
636 			 * EL2 present but unused, need to disable safely.
637 			 * SCTLR_EL2 can be ignored in this case.
638 			 *
639 			 * Set EL2 register width appropriately: Set HCR_EL2
640 			 * field to match SCR_EL3.RW.
641 			 */
642 			if ((scr_el3 & SCR_RW_BIT) != 0U)
643 				hcr_el2 |= HCR_RW_BIT;
644 
645 			/*
646 			 * For Armv8.3 pointer authentication feature, disable
647 			 * traps to EL2 when accessing key registers or using
648 			 * pointer authentication instructions from lower ELs.
649 			 */
650 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
651 
652 			write_hcr_el2(hcr_el2);
653 
654 			/*
655 			 * Initialise CPTR_EL2 setting all fields rather than
656 			 * relying on the hw. All fields have architecturally
657 			 * UNKNOWN reset values.
658 			 *
659 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
660 			 *  accesses to the CPACR_EL1 or CPACR from both
661 			 *  Execution states do not trap to EL2.
662 			 *
663 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
664 			 *  register accesses to the trace registers from both
665 			 *  Execution states do not trap to EL2.
666 			 *  If PE trace unit System registers are not implemented
667 			 *  then this bit is reserved, and must be set to zero.
668 			 *
669 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
670 			 *  to SIMD and floating-point functionality from both
671 			 *  Execution states do not trap to EL2.
672 			 */
673 			write_cptr_el2(CPTR_EL2_RESET_VAL &
674 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
675 					| CPTR_EL2_TFP_BIT));
676 
677 			/*
678 			 * Initialise CNTHCTL_EL2. All fields are
679 			 * architecturally UNKNOWN on reset and are set to zero
680 			 * except for field(s) listed below.
681 			 *
682 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
683 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
684 			 *  physical timer registers.
685 			 *
686 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
687 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
688 			 *  physical counter registers.
689 			 */
690 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
691 						EL1PCEN_BIT | EL1PCTEN_BIT);
692 
693 			/*
694 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
695 			 * architecturally UNKNOWN value.
696 			 */
697 			write_cntvoff_el2(0);
698 
699 			/*
700 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
701 			 * MPIDR_EL1 respectively.
702 			 */
703 			write_vpidr_el2(read_midr_el1());
704 			write_vmpidr_el2(read_mpidr_el1());
705 
706 			/*
707 			 * Initialise VTTBR_EL2. All fields are architecturally
708 			 * UNKNOWN on reset.
709 			 *
710 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
711 			 *  2 address translation is disabled, cache maintenance
712 			 *  operations depend on the VMID.
713 			 *
714 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
715 			 *  translation is disabled.
716 			 */
717 			write_vttbr_el2(VTTBR_RESET_VAL &
718 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
719 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
720 
721 			/*
722 			 * Initialise MDCR_EL2, setting all fields rather than
723 			 * relying on hw. Some fields are architecturally
724 			 * UNKNOWN on reset.
725 			 *
726 			 * MDCR_EL2.HLP: Set to one so that event counter
727 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
728 			 *  occurs on the increment that changes
729 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
730 			 *  implemented. This bit is RES0 in versions of the
731 			 *  architecture earlier than ARMv8.5, setting it to 1
732 			 *  doesn't have any effect on them.
733 			 *
734 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
735 			 *  Filter Control register TRFCR_EL1 at EL1 is not
736 			 *  trapped to EL2. This bit is RES0 in versions of
737 			 *  the architecture earlier than ARMv8.4.
738 			 *
739 			 * MDCR_EL2.HPMD: Set to one so that event counting is
740 			 *  prohibited at EL2. This bit is RES0 in versions of
741 			 *  the architecture earlier than ARMv8.1, setting it
742 			 *  to 1 doesn't have any effect on them.
743 			 *
744 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
745 			 *  Statistical Profiling control registers from EL1
746 			 *  do not trap to EL2. This bit is RES0 when SPE is
747 			 *  not implemented.
748 			 *
749 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
750 			 *  EL1 System register accesses to the Debug ROM
751 			 *  registers are not trapped to EL2.
752 			 *
753 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
754 			 *  System register accesses to the powerdown debug
755 			 *  registers are not trapped to EL2.
756 			 *
757 			 * MDCR_EL2.TDA: Set to zero so that System register
758 			 *  accesses to the debug registers do not trap to EL2.
759 			 *
760 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
761 			 *  are not routed to EL2.
762 			 *
763 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
764 			 *  Monitors.
765 			 *
766 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
767 			 *  EL1 accesses to all Performance Monitors registers
768 			 *  are not trapped to EL2.
769 			 *
770 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
771 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
772 			 *  trapped to EL2.
773 			 *
774 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
775 			 *  architecturally-defined reset value.
776 			 *
777 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
778 			 *  owning exception level is NS-EL1 and, tracing is
779 			 *  prohibited at NS-EL2. These bits are RES0 when
780 			 *  FEAT_TRBE is not implemented.
781 			 */
782 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
783 				     MDCR_EL2_HPMD) |
784 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
785 				   >> PMCR_EL0_N_SHIFT)) &
786 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
787 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
788 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
789 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
790 				     MDCR_EL2_TPMCR_BIT |
791 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
792 
793 			write_mdcr_el2(mdcr_el2);
794 
795 			/*
796 			 * Initialise HSTR_EL2. All fields are architecturally
797 			 * UNKNOWN on reset.
798 			 *
799 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
800 			 *  Non-secure EL0 or EL1 accesses to System registers
801 			 *  do not trap to EL2.
802 			 */
803 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
804 			/*
805 			 * Initialise CNTHP_CTL_EL2. All fields are
806 			 * architecturally UNKNOWN on reset.
807 			 *
808 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
809 			 *  physical timer and prevent timer interrupts.
810 			 */
811 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
812 						~(CNTHP_CTL_ENABLE_BIT));
813 		}
814 		manage_extensions_nonsecure(el2_unused, ctx);
815 	}
816 
817 	cm_el1_sysregs_context_restore(security_state);
818 	cm_set_next_eret_context(security_state);
819 }
820 
821 #if CTX_INCLUDE_EL2_REGS
822 
823 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
824 {
825 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
826 	if (is_feat_amu_supported()) {
827 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
828 	}
829 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
830 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
831 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
832 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
833 }
834 
835 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
836 {
837 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
838 	if (is_feat_amu_supported()) {
839 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
840 	}
841 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
842 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
843 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
844 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
845 }
846 
847 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
848 {
849 	u_register_t mpam_idr = read_mpamidr_el1();
850 
851 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
852 
853 	/*
854 	 * The context registers that we intend to save would be part of the
855 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
856 	 */
857 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
858 		return;
859 	}
860 
861 	/*
862 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
863 	 * MPAMIDR_HAS_HCR_BIT == 1.
864 	 */
865 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
866 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
867 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
868 
869 	/*
870 	 * The number of MPAMVPM registers is implementation defined, their
871 	 * number is stored in the MPAMIDR_EL1 register.
872 	 */
873 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
874 	case 7:
875 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
876 		__fallthrough;
877 	case 6:
878 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
879 		__fallthrough;
880 	case 5:
881 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
882 		__fallthrough;
883 	case 4:
884 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
885 		__fallthrough;
886 	case 3:
887 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
888 		__fallthrough;
889 	case 2:
890 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
891 		__fallthrough;
892 	case 1:
893 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
894 		break;
895 	}
896 }
897 
898 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
899 {
900 	u_register_t mpam_idr = read_mpamidr_el1();
901 
902 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
903 
904 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
905 		return;
906 	}
907 
908 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
909 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
910 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
911 
912 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
913 	case 7:
914 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
915 		__fallthrough;
916 	case 6:
917 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
918 		__fallthrough;
919 	case 5:
920 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
921 		__fallthrough;
922 	case 4:
923 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
924 		__fallthrough;
925 	case 3:
926 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
927 		__fallthrough;
928 	case 2:
929 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
930 		__fallthrough;
931 	case 1:
932 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
933 		break;
934 	}
935 }
936 
937 /*******************************************************************************
938  * Save EL2 sysreg context
939  ******************************************************************************/
940 void cm_el2_sysregs_context_save(uint32_t security_state)
941 {
942 	u_register_t scr_el3 = read_scr();
943 
944 	/*
945 	 * Always save the non-secure and realm EL2 context, only save the
946 	 * S-EL2 context if S-EL2 is enabled.
947 	 */
948 	if ((security_state != SECURE) ||
949 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
950 		cpu_context_t *ctx;
951 		el2_sysregs_t *el2_sysregs_ctx;
952 
953 		ctx = cm_get_context(security_state);
954 		assert(ctx != NULL);
955 
956 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
957 
958 		el2_sysregs_context_save_common(el2_sysregs_ctx);
959 #if CTX_INCLUDE_MTE_REGS
960 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
961 #endif
962 		if (is_feat_mpam_supported()) {
963 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
964 		}
965 
966 		if (is_feat_fgt_supported()) {
967 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
968 		}
969 
970 		if (is_feat_ecv_v2_supported()) {
971 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
972 				      read_cntpoff_el2());
973 		}
974 
975 		if (is_feat_vhe_supported()) {
976 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
977 				      read_contextidr_el2());
978 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
979 				      read_ttbr1_el2());
980 		}
981 #if RAS_EXTENSION
982 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
983 #endif
984 
985 		if (is_feat_nv2_supported()) {
986 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
987 				      read_vncr_el2());
988 		}
989 
990 		if (is_feat_trf_supported()) {
991 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
992 		}
993 
994 		if (is_feat_csv2_2_supported()) {
995 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
996 				      read_scxtnum_el2());
997 		}
998 
999 		if (is_feat_hcx_supported()) {
1000 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1001 		}
1002 		if (is_feat_tcr2_supported()) {
1003 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1004 		}
1005 		if (is_feat_sxpie_supported()) {
1006 			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1007 			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1008 		}
1009 		if (is_feat_s2pie_supported()) {
1010 			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1011 		}
1012 		if (is_feat_sxpoe_supported()) {
1013 			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1014 		}
1015 	}
1016 }
1017 
1018 /*******************************************************************************
1019  * Restore EL2 sysreg context
1020  ******************************************************************************/
1021 void cm_el2_sysregs_context_restore(uint32_t security_state)
1022 {
1023 	u_register_t scr_el3 = read_scr();
1024 
1025 	/*
1026 	 * Always restore the non-secure and realm EL2 context, only restore the
1027 	 * S-EL2 context if S-EL2 is enabled.
1028 	 */
1029 	if ((security_state != SECURE) ||
1030 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1031 		cpu_context_t *ctx;
1032 		el2_sysregs_t *el2_sysregs_ctx;
1033 
1034 		ctx = cm_get_context(security_state);
1035 		assert(ctx != NULL);
1036 
1037 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1038 
1039 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1040 #if CTX_INCLUDE_MTE_REGS
1041 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
1042 #endif
1043 		if (is_feat_mpam_supported()) {
1044 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1045 		}
1046 
1047 		if (is_feat_fgt_supported()) {
1048 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1049 		}
1050 
1051 		if (is_feat_ecv_v2_supported()) {
1052 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1053 						       CTX_CNTPOFF_EL2));
1054 		}
1055 
1056 		if (is_feat_vhe_supported()) {
1057 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1058 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1059 		}
1060 #if RAS_EXTENSION
1061 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
1062 #endif
1063 
1064 		if (is_feat_nv2_supported()) {
1065 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1066 		}
1067 		if (is_feat_trf_supported()) {
1068 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1069 		}
1070 
1071 		if (is_feat_csv2_2_supported()) {
1072 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1073 						       CTX_SCXTNUM_EL2));
1074 		}
1075 
1076 		if (is_feat_hcx_supported()) {
1077 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1078 		}
1079 		if (is_feat_tcr2_supported()) {
1080 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1081 		}
1082 		if (is_feat_sxpie_supported()) {
1083 			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1084 			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1085 		}
1086 		if (is_feat_s2pie_supported()) {
1087 			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1088 		}
1089 		if (is_feat_sxpoe_supported()) {
1090 			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1091 		}
1092 	}
1093 }
1094 #endif /* CTX_INCLUDE_EL2_REGS */
1095 
1096 /*******************************************************************************
1097  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1098  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1099  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1100  * cm_prepare_el3_exit function.
1101  ******************************************************************************/
1102 void cm_prepare_el3_exit_ns(void)
1103 {
1104 #if CTX_INCLUDE_EL2_REGS
1105 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1106 	assert(ctx != NULL);
1107 
1108 	/* Assert that EL2 is used. */
1109 #if ENABLE_ASSERTIONS
1110 	el3_state_t *state = get_el3state_ctx(ctx);
1111 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1112 #endif
1113 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1114 			(el_implemented(2U) != EL_IMPL_NONE));
1115 
1116 	/*
1117 	 * Currently some extensions are configured using
1118 	 * direct register updates. Therefore, do this here
1119 	 * instead of when setting up context.
1120 	 */
1121 	manage_extensions_nonsecure(0, ctx);
1122 
1123 	/*
1124 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1125 	 * register when restoring context.
1126 	 */
1127 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1128 
1129 	/*
1130 	 * Ensure the NS bit change is committed before the EL2/EL1
1131 	 * state restoration.
1132 	 */
1133 	isb();
1134 
1135 	/* Restore EL2 and EL1 sysreg contexts */
1136 	cm_el2_sysregs_context_restore(NON_SECURE);
1137 	cm_el1_sysregs_context_restore(NON_SECURE);
1138 	cm_set_next_eret_context(NON_SECURE);
1139 #else
1140 	cm_prepare_el3_exit(NON_SECURE);
1141 #endif /* CTX_INCLUDE_EL2_REGS */
1142 }
1143 
1144 /*******************************************************************************
1145  * The next four functions are used by runtime services to save and restore
1146  * EL1 context on the 'cpu_context' structure for the specified security
1147  * state.
1148  ******************************************************************************/
1149 void cm_el1_sysregs_context_save(uint32_t security_state)
1150 {
1151 	cpu_context_t *ctx;
1152 
1153 	ctx = cm_get_context(security_state);
1154 	assert(ctx != NULL);
1155 
1156 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1157 
1158 #if IMAGE_BL31
1159 	if (security_state == SECURE)
1160 		PUBLISH_EVENT(cm_exited_secure_world);
1161 	else
1162 		PUBLISH_EVENT(cm_exited_normal_world);
1163 #endif
1164 }
1165 
1166 void cm_el1_sysregs_context_restore(uint32_t security_state)
1167 {
1168 	cpu_context_t *ctx;
1169 
1170 	ctx = cm_get_context(security_state);
1171 	assert(ctx != NULL);
1172 
1173 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1174 
1175 #if IMAGE_BL31
1176 	if (security_state == SECURE)
1177 		PUBLISH_EVENT(cm_entering_secure_world);
1178 	else
1179 		PUBLISH_EVENT(cm_entering_normal_world);
1180 #endif
1181 }
1182 
1183 /*******************************************************************************
1184  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1185  * given security state with the given entrypoint
1186  ******************************************************************************/
1187 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1188 {
1189 	cpu_context_t *ctx;
1190 	el3_state_t *state;
1191 
1192 	ctx = cm_get_context(security_state);
1193 	assert(ctx != NULL);
1194 
1195 	/* Populate EL3 state so that ERET jumps to the correct entry */
1196 	state = get_el3state_ctx(ctx);
1197 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1198 }
1199 
1200 /*******************************************************************************
1201  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1202  * pertaining to the given security state
1203  ******************************************************************************/
1204 void cm_set_elr_spsr_el3(uint32_t security_state,
1205 			uintptr_t entrypoint, uint32_t spsr)
1206 {
1207 	cpu_context_t *ctx;
1208 	el3_state_t *state;
1209 
1210 	ctx = cm_get_context(security_state);
1211 	assert(ctx != NULL);
1212 
1213 	/* Populate EL3 state so that ERET jumps to the correct entry */
1214 	state = get_el3state_ctx(ctx);
1215 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1216 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1217 }
1218 
1219 /*******************************************************************************
1220  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1221  * pertaining to the given security state using the value and bit position
1222  * specified in the parameters. It preserves all other bits.
1223  ******************************************************************************/
1224 void cm_write_scr_el3_bit(uint32_t security_state,
1225 			  uint32_t bit_pos,
1226 			  uint32_t value)
1227 {
1228 	cpu_context_t *ctx;
1229 	el3_state_t *state;
1230 	u_register_t scr_el3;
1231 
1232 	ctx = cm_get_context(security_state);
1233 	assert(ctx != NULL);
1234 
1235 	/* Ensure that the bit position is a valid one */
1236 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1237 
1238 	/* Ensure that the 'value' is only a bit wide */
1239 	assert(value <= 1U);
1240 
1241 	/*
1242 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1243 	 * and set it to its new value.
1244 	 */
1245 	state = get_el3state_ctx(ctx);
1246 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1247 	scr_el3 &= ~(1UL << bit_pos);
1248 	scr_el3 |= (u_register_t)value << bit_pos;
1249 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1250 }
1251 
1252 /*******************************************************************************
1253  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1254  * given security state.
1255  ******************************************************************************/
1256 u_register_t cm_get_scr_el3(uint32_t security_state)
1257 {
1258 	cpu_context_t *ctx;
1259 	el3_state_t *state;
1260 
1261 	ctx = cm_get_context(security_state);
1262 	assert(ctx != NULL);
1263 
1264 	/* Populate EL3 state so that ERET jumps to the correct entry */
1265 	state = get_el3state_ctx(ctx);
1266 	return read_ctx_reg(state, CTX_SCR_EL3);
1267 }
1268 
1269 /*******************************************************************************
1270  * This function is used to program the context that's used for exception
1271  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1272  * the required security state
1273  ******************************************************************************/
1274 void cm_set_next_eret_context(uint32_t security_state)
1275 {
1276 	cpu_context_t *ctx;
1277 
1278 	ctx = cm_get_context(security_state);
1279 	assert(ctx != NULL);
1280 
1281 	cm_set_next_context(ctx);
1282 }
1283