xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 0376e7c4aa2ce9ae94d72555cea27cd7aff8e32a)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/utils.h>
26 #include <plat/common/platform.h>
27 #include <smccc_helpers.h>
28 
29 
30 /*******************************************************************************
31  * Context management library initialisation routine. This library is used by
32  * runtime services to share pointers to 'cpu_context' structures for the secure
33  * and non-secure states. Management of the structures and their associated
34  * memory is not done by the context management library e.g. the PSCI service
35  * manages the cpu context used for entry from and exit to the non-secure state.
36  * The Secure payload dispatcher service manages the context(s) corresponding to
37  * the secure state. It also uses this library to get access to the non-secure
38  * state cpu context pointers.
39  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
40  * which will used for programming an entry into a lower EL. The same context
41  * will used to save state upon exception entry from that EL.
42  ******************************************************************************/
43 void __init cm_init(void)
44 {
45 	/*
46 	 * The context management library has only global data to intialize, but
47 	 * that will be done when the BSS is zeroed out
48 	 */
49 }
50 
51 /*******************************************************************************
52  * The following function initializes the cpu_context 'ctx' for
53  * first use, and sets the initial entrypoint state as specified by the
54  * entry_point_info structure.
55  *
56  * The security state to initialize is determined by the SECURE attribute
57  * of the entry_point_info.
58  *
59  * The EE and ST attributes are used to configure the endianness and secure
60  * timer availability for the new execution context.
61  *
62  * To prepare the register state for entry call cm_prepare_el3_exit() and
63  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
64  * cm_e1_sysreg_context_restore().
65  ******************************************************************************/
66 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
67 {
68 	unsigned int security_state;
69 	uint32_t scr_el3;
70 	el3_state_t *state;
71 	gp_regs_t *gp_regs;
72 	u_register_t sctlr_elx, actlr_elx;
73 
74 	assert(ctx != NULL);
75 
76 	security_state = GET_SECURITY_STATE(ep->h.attr);
77 
78 	/* Clear any residual register values from the context */
79 	zeromem(ctx, sizeof(*ctx));
80 
81 	/*
82 	 * SCR_EL3 was initialised during reset sequence in macro
83 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
84 	 * affect the next EL.
85 	 *
86 	 * The following fields are initially set to zero and then updated to
87 	 * the required value depending on the state of the SPSR_EL3 and the
88 	 * Security state and entrypoint attributes of the next EL.
89 	 */
90 	scr_el3 = (uint32_t)read_scr();
91 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
92 			SCR_ST_BIT | SCR_HCE_BIT);
93 	/*
94 	 * SCR_NS: Set the security state of the next EL.
95 	 */
96 	if (security_state != SECURE)
97 		scr_el3 |= SCR_NS_BIT;
98 	/*
99 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
100 	 *  Exception level as specified by SPSR.
101 	 */
102 	if (GET_RW(ep->spsr) == MODE_RW_64)
103 		scr_el3 |= SCR_RW_BIT;
104 	/*
105 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
106 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
107 	 *  by the entrypoint attributes.
108 	 */
109 	if (EP_GET_ST(ep->h.attr) != 0U)
110 		scr_el3 |= SCR_ST_BIT;
111 
112 #if !HANDLE_EA_EL3_FIRST
113 	/*
114 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
115 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
116 	 *  Aborts are taken to EL3.
117 	 */
118 	scr_el3 &= ~SCR_EA_BIT;
119 #endif
120 
121 #if FAULT_INJECTION_SUPPORT
122 	/* Enable fault injection from lower ELs */
123 	scr_el3 |= SCR_FIEN_BIT;
124 #endif
125 
126 #if !CTX_INCLUDE_PAUTH_REGS
127 	/*
128 	 * If the pointer authentication registers aren't saved during world
129 	 * switches the value of the registers can be leaked from the Secure to
130 	 * the Non-secure world. To prevent this, rather than enabling pointer
131 	 * authentication everywhere, we only enable it in the Non-secure world.
132 	 *
133 	 * If the Secure world wants to use pointer authentication,
134 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
135 	 */
136 	if (security_state == NON_SECURE)
137 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
138 #endif /* !CTX_INCLUDE_PAUTH_REGS */
139 
140 	/*
141 	 * Enable MTE support. Support is enabled unilaterally for the normal
142 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
143 	 * set.
144 	 */
145 #if CTX_INCLUDE_MTE_REGS
146 	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
147 	scr_el3 |= SCR_ATA_BIT;
148 #else
149 	unsigned int mte = get_armv8_5_mte_support();
150 	if (mte == MTE_IMPLEMENTED_EL0) {
151 		/*
152 		 * Can enable MTE across both worlds as no MTE registers are
153 		 * used
154 		 */
155 		scr_el3 |= SCR_ATA_BIT;
156 	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
157 		/*
158 		 * Can only enable MTE in Non-Secure world without register
159 		 * saving
160 		 */
161 		scr_el3 |= SCR_ATA_BIT;
162 	}
163 #endif
164 
165 #ifdef IMAGE_BL31
166 	/*
167 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
168 	 *  indicated by the interrupt routing model for BL31.
169 	 */
170 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
171 #endif
172 
173 	/*
174 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
175 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
176 	 * next mode is Hyp.
177 	 */
178 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
179 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
180 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
181 		scr_el3 |= SCR_HCE_BIT;
182 	}
183 
184 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
185 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2))
186 		scr_el3 |= SCR_EEL2_BIT;
187 
188 	/*
189 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
190 	 * execution state setting all fields rather than relying of the hw.
191 	 * Some fields have architecturally UNKNOWN reset values and these are
192 	 * set to zero.
193 	 *
194 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
195 	 *
196 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
197 	 *  required by PSCI specification)
198 	 */
199 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
200 	if (GET_RW(ep->spsr) == MODE_RW_64)
201 		sctlr_elx |= SCTLR_EL1_RES1;
202 	else {
203 		/*
204 		 * If the target execution state is AArch32 then the following
205 		 * fields need to be set.
206 		 *
207 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
208 		 *  instructions are not trapped to EL1.
209 		 *
210 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
211 		 *  instructions are not trapped to EL1.
212 		 *
213 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
214 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
215 		 */
216 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
217 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
218 	}
219 
220 #if ERRATA_A75_764081
221 	/*
222 	 * If workaround of errata 764081 for Cortex-A75 is used then set
223 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
224 	 */
225 	sctlr_elx |= SCTLR_IESB_BIT;
226 #endif
227 
228 	/*
229 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
230 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
231 	 * are not part of the stored cpu_context.
232 	 */
233 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
234 
235 	/*
236 	 * Base the context ACTLR_EL1 on the current value, as it is
237 	 * implementation defined. The context restore process will write
238 	 * the value from the context to the actual register and can cause
239 	 * problems for processor cores that don't expect certain bits to
240 	 * be zero.
241 	 */
242 	actlr_elx = read_actlr_el1();
243 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
244 
245 	/*
246 	 * Populate EL3 state so that we've the right context
247 	 * before doing ERET
248 	 */
249 	state = get_el3state_ctx(ctx);
250 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
251 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
252 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
253 
254 	/*
255 	 * Store the X0-X7 value from the entrypoint into the context
256 	 * Use memcpy as we are in control of the layout of the structures
257 	 */
258 	gp_regs = get_gpregs_ctx(ctx);
259 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
260 }
261 
262 /*******************************************************************************
263  * Enable architecture extensions on first entry to Non-secure world.
264  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
265  * it is zero.
266  ******************************************************************************/
267 static void enable_extensions_nonsecure(bool el2_unused)
268 {
269 #if IMAGE_BL31
270 #if ENABLE_SPE_FOR_LOWER_ELS
271 	spe_enable(el2_unused);
272 #endif
273 
274 #if ENABLE_AMU
275 	amu_enable(el2_unused);
276 #endif
277 
278 #if ENABLE_SVE_FOR_NS
279 	sve_enable(el2_unused);
280 #endif
281 
282 #if ENABLE_MPAM_FOR_LOWER_ELS
283 	mpam_enable(el2_unused);
284 #endif
285 #endif
286 }
287 
288 /*******************************************************************************
289  * The following function initializes the cpu_context for a CPU specified by
290  * its `cpu_idx` for first use, and sets the initial entrypoint state as
291  * specified by the entry_point_info structure.
292  ******************************************************************************/
293 void cm_init_context_by_index(unsigned int cpu_idx,
294 			      const entry_point_info_t *ep)
295 {
296 	cpu_context_t *ctx;
297 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
298 	cm_setup_context(ctx, ep);
299 }
300 
301 /*******************************************************************************
302  * The following function initializes the cpu_context for the current CPU
303  * for first use, and sets the initial entrypoint state as specified by the
304  * entry_point_info structure.
305  ******************************************************************************/
306 void cm_init_my_context(const entry_point_info_t *ep)
307 {
308 	cpu_context_t *ctx;
309 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
310 	cm_setup_context(ctx, ep);
311 }
312 
313 /*******************************************************************************
314  * Prepare the CPU system registers for first entry into secure or normal world
315  *
316  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
317  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
318  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
319  * For all entries, the EL1 registers are initialized from the cpu_context
320  ******************************************************************************/
321 void cm_prepare_el3_exit(uint32_t security_state)
322 {
323 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
324 	cpu_context_t *ctx = cm_get_context(security_state);
325 	bool el2_unused = false;
326 	uint64_t hcr_el2 = 0U;
327 
328 	assert(ctx != NULL);
329 
330 	if (security_state == NON_SECURE) {
331 		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
332 						 CTX_SCR_EL3);
333 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
334 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
335 			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
336 							   CTX_SCTLR_EL1);
337 			sctlr_elx &= SCTLR_EE_BIT;
338 			sctlr_elx |= SCTLR_EL2_RES1;
339 #if ERRATA_A75_764081
340 			/*
341 			 * If workaround of errata 764081 for Cortex-A75 is used
342 			 * then set SCTLR_EL2.IESB to enable Implicit Error
343 			 * Synchronization Barrier.
344 			 */
345 			sctlr_elx |= SCTLR_IESB_BIT;
346 #endif
347 			write_sctlr_el2(sctlr_elx);
348 		} else if (el_implemented(2) != EL_IMPL_NONE) {
349 			el2_unused = true;
350 
351 			/*
352 			 * EL2 present but unused, need to disable safely.
353 			 * SCTLR_EL2 can be ignored in this case.
354 			 *
355 			 * Set EL2 register width appropriately: Set HCR_EL2
356 			 * field to match SCR_EL3.RW.
357 			 */
358 			if ((scr_el3 & SCR_RW_BIT) != 0U)
359 				hcr_el2 |= HCR_RW_BIT;
360 
361 			/*
362 			 * For Armv8.3 pointer authentication feature, disable
363 			 * traps to EL2 when accessing key registers or using
364 			 * pointer authentication instructions from lower ELs.
365 			 */
366 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
367 
368 			write_hcr_el2(hcr_el2);
369 
370 			/*
371 			 * Initialise CPTR_EL2 setting all fields rather than
372 			 * relying on the hw. All fields have architecturally
373 			 * UNKNOWN reset values.
374 			 *
375 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
376 			 *  accesses to the CPACR_EL1 or CPACR from both
377 			 *  Execution states do not trap to EL2.
378 			 *
379 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
380 			 *  register accesses to the trace registers from both
381 			 *  Execution states do not trap to EL2.
382 			 *
383 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
384 			 *  to SIMD and floating-point functionality from both
385 			 *  Execution states do not trap to EL2.
386 			 */
387 			write_cptr_el2(CPTR_EL2_RESET_VAL &
388 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
389 					| CPTR_EL2_TFP_BIT));
390 
391 			/*
392 			 * Initialise CNTHCTL_EL2. All fields are
393 			 * architecturally UNKNOWN on reset and are set to zero
394 			 * except for field(s) listed below.
395 			 *
396 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
397 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
398 			 *  physical timer registers.
399 			 *
400 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
401 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
402 			 *  physical counter registers.
403 			 */
404 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
405 						EL1PCEN_BIT | EL1PCTEN_BIT);
406 
407 			/*
408 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
409 			 * architecturally UNKNOWN value.
410 			 */
411 			write_cntvoff_el2(0);
412 
413 			/*
414 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
415 			 * MPIDR_EL1 respectively.
416 			 */
417 			write_vpidr_el2(read_midr_el1());
418 			write_vmpidr_el2(read_mpidr_el1());
419 
420 			/*
421 			 * Initialise VTTBR_EL2. All fields are architecturally
422 			 * UNKNOWN on reset.
423 			 *
424 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
425 			 *  2 address translation is disabled, cache maintenance
426 			 *  operations depend on the VMID.
427 			 *
428 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
429 			 *  translation is disabled.
430 			 */
431 			write_vttbr_el2(VTTBR_RESET_VAL &
432 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
433 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
434 
435 			/*
436 			 * Initialise MDCR_EL2, setting all fields rather than
437 			 * relying on hw. Some fields are architecturally
438 			 * UNKNOWN on reset.
439 			 *
440 			 * MDCR_EL2.HLP: Set to one so that event counter
441 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
442 			 *  occurs on the increment that changes
443 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
444 			 *  implemented. This bit is RES0 in versions of the
445 			 *  architecture earlier than ARMv8.5, setting it to 1
446 			 *  doesn't have any effect on them.
447 			 *
448 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
449 			 *  Filter Control register TRFCR_EL1 at EL1 is not
450 			 *  trapped to EL2. This bit is RES0 in versions of
451 			 *  the architecture earlier than ARMv8.4.
452 			 *
453 			 * MDCR_EL2.HPMD: Set to one so that event counting is
454 			 *  prohibited at EL2. This bit is RES0 in versions of
455 			 *  the architecture earlier than ARMv8.1, setting it
456 			 *  to 1 doesn't have any effect on them.
457 			 *
458 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
459 			 *  Statistical Profiling control registers from EL1
460 			 *  do not trap to EL2. This bit is RES0 when SPE is
461 			 *  not implemented.
462 			 *
463 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
464 			 *  EL1 System register accesses to the Debug ROM
465 			 *  registers are not trapped to EL2.
466 			 *
467 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
468 			 *  System register accesses to the powerdown debug
469 			 *  registers are not trapped to EL2.
470 			 *
471 			 * MDCR_EL2.TDA: Set to zero so that System register
472 			 *  accesses to the debug registers do not trap to EL2.
473 			 *
474 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
475 			 *  are not routed to EL2.
476 			 *
477 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
478 			 *  Monitors.
479 			 *
480 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
481 			 *  EL1 accesses to all Performance Monitors registers
482 			 *  are not trapped to EL2.
483 			 *
484 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
485 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
486 			 *  trapped to EL2.
487 			 *
488 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
489 			 *  architecturally-defined reset value.
490 			 */
491 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
492 				     MDCR_EL2_HPMD) |
493 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
494 				   >> PMCR_EL0_N_SHIFT)) &
495 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
496 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
497 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
498 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
499 				     MDCR_EL2_TPMCR_BIT);
500 
501 			write_mdcr_el2(mdcr_el2);
502 
503 			/*
504 			 * Initialise HSTR_EL2. All fields are architecturally
505 			 * UNKNOWN on reset.
506 			 *
507 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
508 			 *  Non-secure EL0 or EL1 accesses to System registers
509 			 *  do not trap to EL2.
510 			 */
511 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
512 			/*
513 			 * Initialise CNTHP_CTL_EL2. All fields are
514 			 * architecturally UNKNOWN on reset.
515 			 *
516 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
517 			 *  physical timer and prevent timer interrupts.
518 			 */
519 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
520 						~(CNTHP_CTL_ENABLE_BIT));
521 		}
522 		enable_extensions_nonsecure(el2_unused);
523 	}
524 
525 	cm_el1_sysregs_context_restore(security_state);
526 	cm_set_next_eret_context(security_state);
527 }
528 
529 /*******************************************************************************
530  * The next four functions are used by runtime services to save and restore
531  * EL1 context on the 'cpu_context' structure for the specified security
532  * state.
533  ******************************************************************************/
534 void cm_el1_sysregs_context_save(uint32_t security_state)
535 {
536 	cpu_context_t *ctx;
537 
538 	ctx = cm_get_context(security_state);
539 	assert(ctx != NULL);
540 
541 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
542 
543 #if IMAGE_BL31
544 	if (security_state == SECURE)
545 		PUBLISH_EVENT(cm_exited_secure_world);
546 	else
547 		PUBLISH_EVENT(cm_exited_normal_world);
548 #endif
549 }
550 
551 void cm_el1_sysregs_context_restore(uint32_t security_state)
552 {
553 	cpu_context_t *ctx;
554 
555 	ctx = cm_get_context(security_state);
556 	assert(ctx != NULL);
557 
558 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
559 
560 #if IMAGE_BL31
561 	if (security_state == SECURE)
562 		PUBLISH_EVENT(cm_entering_secure_world);
563 	else
564 		PUBLISH_EVENT(cm_entering_normal_world);
565 #endif
566 }
567 
568 /*******************************************************************************
569  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
570  * given security state with the given entrypoint
571  ******************************************************************************/
572 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
573 {
574 	cpu_context_t *ctx;
575 	el3_state_t *state;
576 
577 	ctx = cm_get_context(security_state);
578 	assert(ctx != NULL);
579 
580 	/* Populate EL3 state so that ERET jumps to the correct entry */
581 	state = get_el3state_ctx(ctx);
582 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
583 }
584 
585 /*******************************************************************************
586  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
587  * pertaining to the given security state
588  ******************************************************************************/
589 void cm_set_elr_spsr_el3(uint32_t security_state,
590 			uintptr_t entrypoint, uint32_t spsr)
591 {
592 	cpu_context_t *ctx;
593 	el3_state_t *state;
594 
595 	ctx = cm_get_context(security_state);
596 	assert(ctx != NULL);
597 
598 	/* Populate EL3 state so that ERET jumps to the correct entry */
599 	state = get_el3state_ctx(ctx);
600 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
601 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
602 }
603 
604 /*******************************************************************************
605  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
606  * pertaining to the given security state using the value and bit position
607  * specified in the parameters. It preserves all other bits.
608  ******************************************************************************/
609 void cm_write_scr_el3_bit(uint32_t security_state,
610 			  uint32_t bit_pos,
611 			  uint32_t value)
612 {
613 	cpu_context_t *ctx;
614 	el3_state_t *state;
615 	uint32_t scr_el3;
616 
617 	ctx = cm_get_context(security_state);
618 	assert(ctx != NULL);
619 
620 	/* Ensure that the bit position is a valid one */
621 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
622 
623 	/* Ensure that the 'value' is only a bit wide */
624 	assert(value <= 1U);
625 
626 	/*
627 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
628 	 * and set it to its new value.
629 	 */
630 	state = get_el3state_ctx(ctx);
631 	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
632 	scr_el3 &= ~(1U << bit_pos);
633 	scr_el3 |= value << bit_pos;
634 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
635 }
636 
637 /*******************************************************************************
638  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
639  * given security state.
640  ******************************************************************************/
641 uint32_t cm_get_scr_el3(uint32_t security_state)
642 {
643 	cpu_context_t *ctx;
644 	el3_state_t *state;
645 
646 	ctx = cm_get_context(security_state);
647 	assert(ctx != NULL);
648 
649 	/* Populate EL3 state so that ERET jumps to the correct entry */
650 	state = get_el3state_ctx(ctx);
651 	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
652 }
653 
654 /*******************************************************************************
655  * This function is used to program the context that's used for exception
656  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
657  * the required security state
658  ******************************************************************************/
659 void cm_set_next_eret_context(uint32_t security_state)
660 {
661 	cpu_context_t *ctx;
662 
663 	ctx = cm_get_context(security_state);
664 	assert(ctx != NULL);
665 
666 	cm_set_next_context(ctx);
667 }
668