xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 02d3ef333d4a0a07a3e40defb12a8cde3a7cba03)
1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <drivers/arm/gicv3.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/el3_runtime/pubsub_events.h>
22 #include <lib/extensions/amu.h>
23 #include <lib/extensions/brbe.h>
24 #include <lib/extensions/mpam.h>
25 #include <lib/extensions/sme.h>
26 #include <lib/extensions/spe.h>
27 #include <lib/extensions/sve.h>
28 #include <lib/extensions/sys_reg_trace.h>
29 #include <lib/extensions/trbe.h>
30 #include <lib/extensions/trf.h>
31 #include <lib/utils.h>
32 
33 #if ENABLE_FEAT_TWED
34 /* Make sure delay value fits within the range(0-15) */
35 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
36 #endif /* ENABLE_FEAT_TWED */
37 
38 static void manage_extensions_secure(cpu_context_t *ctx);
39 /******************************************************************************
40  * This function performs initializations that are specific to SECURE state
41  * and updates the cpu context specified by 'ctx'.
42  *****************************************************************************/
43 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
44 {
45 	u_register_t scr_el3;
46 	el3_state_t *state;
47 
48 	state = get_el3state_ctx(ctx);
49 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
50 
51 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
52 	/*
53 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
54 	 * indicated by the interrupt routing model for BL31.
55 	 */
56 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
57 #endif
58 
59 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
60 	/* Get Memory Tagging Extension support level */
61 	unsigned int mte = get_armv8_5_mte_support();
62 #endif
63 	/*
64 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
65 	 * is set, or when MTE is only implemented at EL0.
66 	 */
67 #if CTX_INCLUDE_MTE_REGS
68 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
69 	scr_el3 |= SCR_ATA_BIT;
70 #else
71 	if (mte == MTE_IMPLEMENTED_EL0) {
72 		scr_el3 |= SCR_ATA_BIT;
73 	}
74 #endif /* CTX_INCLUDE_MTE_REGS */
75 
76 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
77 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
78 		if (GET_RW(ep->spsr) != MODE_RW_64) {
79 			ERROR("S-EL2 can not be used in AArch32\n.");
80 			panic();
81 		}
82 
83 		scr_el3 |= SCR_EEL2_BIT;
84 	}
85 
86 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
87 
88 	manage_extensions_secure(ctx);
89 }
90 
91 #if ENABLE_RME
92 /******************************************************************************
93  * This function performs initializations that are specific to REALM state
94  * and updates the cpu context specified by 'ctx'.
95  *****************************************************************************/
96 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
97 {
98 	u_register_t scr_el3;
99 	el3_state_t *state;
100 
101 	state = get_el3state_ctx(ctx);
102 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
103 
104 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
105 
106 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
107 }
108 #endif /* ENABLE_RME */
109 
110 /******************************************************************************
111  * This function performs initializations that are specific to NON-SECURE state
112  * and updates the cpu context specified by 'ctx'.
113  *****************************************************************************/
114 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
115 {
116 	u_register_t scr_el3;
117 	el3_state_t *state;
118 
119 	state = get_el3state_ctx(ctx);
120 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
121 
122 	/* SCR_NS: Set the NS bit */
123 	scr_el3 |= SCR_NS_BIT;
124 
125 #if !CTX_INCLUDE_PAUTH_REGS
126 	/*
127 	 * If the pointer authentication registers aren't saved during world
128 	 * switches the value of the registers can be leaked from the Secure to
129 	 * the Non-secure world. To prevent this, rather than enabling pointer
130 	 * authentication everywhere, we only enable it in the Non-secure world.
131 	 *
132 	 * If the Secure world wants to use pointer authentication,
133 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
134 	 */
135 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
136 #endif /* !CTX_INCLUDE_PAUTH_REGS */
137 
138 	/* Allow access to Allocation Tags when MTE is implemented. */
139 	scr_el3 |= SCR_ATA_BIT;
140 
141 #ifdef IMAGE_BL31
142 	/*
143 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
144 	 *  indicated by the interrupt routing model for BL31.
145 	 */
146 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
147 #endif
148 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
149 
150 	/* Initialize EL2 context registers */
151 #if CTX_INCLUDE_EL2_REGS
152 
153 	/*
154 	 * Initialize SCTLR_EL2 context register using Endianness value
155 	 * taken from the entrypoint attribute.
156 	 */
157 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
158 	sctlr_el2 |= SCTLR_EL2_RES1;
159 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
160 			sctlr_el2);
161 
162 	/*
163 	 * The GICv3 driver initializes the ICC_SRE_EL2 register during
164 	 * platform setup. Use the same setting for the corresponding
165 	 * context register to make sure the correct bits are set when
166 	 * restoring NS context.
167 	 */
168 	u_register_t icc_sre_el2 = read_icc_sre_el2();
169 	icc_sre_el2 |= (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT);
170 	icc_sre_el2 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
171 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
172 			icc_sre_el2);
173 #endif /* CTX_INCLUDE_EL2_REGS */
174 }
175 
176 /*******************************************************************************
177  * The following function performs initialization of the cpu_context 'ctx'
178  * for first use that is common to all security states, and sets the
179  * initial entrypoint state as specified by the entry_point_info structure.
180  *
181  * The EE and ST attributes are used to configure the endianness and secure
182  * timer availability for the new execution context.
183  ******************************************************************************/
184 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
185 {
186 	u_register_t scr_el3;
187 	el3_state_t *state;
188 	gp_regs_t *gp_regs;
189 	u_register_t sctlr_elx, actlr_elx;
190 
191 	/* Clear any residual register values from the context */
192 	zeromem(ctx, sizeof(*ctx));
193 
194 	/*
195 	 * SCR_EL3 was initialised during reset sequence in macro
196 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
197 	 * affect the next EL.
198 	 *
199 	 * The following fields are initially set to zero and then updated to
200 	 * the required value depending on the state of the SPSR_EL3 and the
201 	 * Security state and entrypoint attributes of the next EL.
202 	 */
203 	scr_el3 = read_scr();
204 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
205 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
206 
207 	/*
208 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
209 	 *  Exception level as specified by SPSR.
210 	 */
211 	if (GET_RW(ep->spsr) == MODE_RW_64) {
212 		scr_el3 |= SCR_RW_BIT;
213 	}
214 
215 	/*
216 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
217 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
218 	 *  by the entrypoint attributes.
219 	 */
220 	if (EP_GET_ST(ep->h.attr) != 0U) {
221 		scr_el3 |= SCR_ST_BIT;
222 	}
223 
224 	/*
225 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
226 	 * SCR_EL3.HXEn.
227 	 */
228 #if ENABLE_FEAT_HCX
229 	scr_el3 |= SCR_HXEn_BIT;
230 #endif
231 
232 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
233 	/*
234 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
235 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
236 	 */
237 	scr_el3 |= SCR_TERR_BIT;
238 #endif
239 
240 #if !HANDLE_EA_EL3_FIRST
241 	/*
242 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
243 	 * to EL3 when executing at a lower EL. When executing at EL3, External
244 	 * Aborts are taken to EL3.
245 	 */
246 	scr_el3 &= ~SCR_EA_BIT;
247 #endif
248 
249 #if FAULT_INJECTION_SUPPORT
250 	/* Enable fault injection from lower ELs */
251 	scr_el3 |= SCR_FIEN_BIT;
252 #endif
253 
254 	/*
255 	 * CPTR_EL3 was initialized out of reset, copy that value to the
256 	 * context register.
257 	 */
258 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
259 
260 	/*
261 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
262 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
263 	 * next mode is Hyp.
264 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
265 	 * same conditions as HVC instructions and when the processor supports
266 	 * ARMv8.6-FGT.
267 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
268 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
269 	 * and when the processor supports ECV.
270 	 */
271 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
272 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
273 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
274 		scr_el3 |= SCR_HCE_BIT;
275 
276 		if (is_armv8_6_fgt_present()) {
277 			scr_el3 |= SCR_FGTEN_BIT;
278 		}
279 
280 		if (get_armv8_6_ecv_support()
281 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
282 			scr_el3 |= SCR_ECVEN_BIT;
283 		}
284 	}
285 
286 	/*
287 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
288 	 * execution state setting all fields rather than relying of the hw.
289 	 * Some fields have architecturally UNKNOWN reset values and these are
290 	 * set to zero.
291 	 *
292 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
293 	 *
294 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
295 	 *  required by PSCI specification)
296 	 */
297 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
298 	if (GET_RW(ep->spsr) == MODE_RW_64) {
299 		sctlr_elx |= SCTLR_EL1_RES1;
300 	} else {
301 		/*
302 		 * If the target execution state is AArch32 then the following
303 		 * fields need to be set.
304 		 *
305 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
306 		 *  instructions are not trapped to EL1.
307 		 *
308 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
309 		 *  instructions are not trapped to EL1.
310 		 *
311 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
312 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
313 		 */
314 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
315 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
316 	}
317 
318 #if ERRATA_A75_764081
319 	/*
320 	 * If workaround of errata 764081 for Cortex-A75 is used then set
321 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
322 	 */
323 	sctlr_elx |= SCTLR_IESB_BIT;
324 #endif
325 
326 #if ENABLE_FEAT_TWED
327 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
328 	/* Set delay in SCR_EL3 */
329 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
330 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
331 			<< SCR_TWEDEL_SHIFT);
332 
333 	/* Enable WFE delay */
334 	scr_el3 |= SCR_TWEDEn_BIT;
335 #endif /* ENABLE_FEAT_TWED */
336 
337 	/*
338 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
339 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
340 	 * are not part of the stored cpu_context.
341 	 */
342 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
343 
344 	/*
345 	 * Base the context ACTLR_EL1 on the current value, as it is
346 	 * implementation defined. The context restore process will write
347 	 * the value from the context to the actual register and can cause
348 	 * problems for processor cores that don't expect certain bits to
349 	 * be zero.
350 	 */
351 	actlr_elx = read_actlr_el1();
352 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
353 
354 	/*
355 	 * Populate EL3 state so that we've the right context
356 	 * before doing ERET
357 	 */
358 	state = get_el3state_ctx(ctx);
359 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
360 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
361 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
362 
363 	/*
364 	 * Store the X0-X7 value from the entrypoint into the context
365 	 * Use memcpy as we are in control of the layout of the structures
366 	 */
367 	gp_regs = get_gpregs_ctx(ctx);
368 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
369 }
370 
371 /*******************************************************************************
372  * Context management library initialization routine. This library is used by
373  * runtime services to share pointers to 'cpu_context' structures for secure
374  * non-secure and realm states. Management of the structures and their associated
375  * memory is not done by the context management library e.g. the PSCI service
376  * manages the cpu context used for entry from and exit to the non-secure state.
377  * The Secure payload dispatcher service manages the context(s) corresponding to
378  * the secure state. It also uses this library to get access to the non-secure
379  * state cpu context pointers.
380  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
381  * which will be used for programming an entry into a lower EL. The same context
382  * will be used to save state upon exception entry from that EL.
383  ******************************************************************************/
384 void __init cm_init(void)
385 {
386 	/*
387 	 * The context management library has only global data to intialize, but
388 	 * that will be done when the BSS is zeroed out.
389 	 */
390 }
391 
392 /*******************************************************************************
393  * This is the high-level function used to initialize the cpu_context 'ctx' for
394  * first use. It performs initializations that are common to all security states
395  * and initializations specific to the security state specified in 'ep'
396  ******************************************************************************/
397 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
398 {
399 	unsigned int security_state;
400 
401 	assert(ctx != NULL);
402 
403 	/*
404 	 * Perform initializations that are common
405 	 * to all security states
406 	 */
407 	setup_context_common(ctx, ep);
408 
409 	security_state = GET_SECURITY_STATE(ep->h.attr);
410 
411 	/* Perform security state specific initializations */
412 	switch (security_state) {
413 	case SECURE:
414 		setup_secure_context(ctx, ep);
415 		break;
416 #if ENABLE_RME
417 	case REALM:
418 		setup_realm_context(ctx, ep);
419 		break;
420 #endif
421 	case NON_SECURE:
422 		setup_ns_context(ctx, ep);
423 		break;
424 	default:
425 		ERROR("Invalid security state\n");
426 		panic();
427 		break;
428 	}
429 }
430 
431 /*******************************************************************************
432  * Enable architecture extensions on first entry to Non-secure world.
433  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
434  * it is zero.
435  ******************************************************************************/
436 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
437 {
438 #if IMAGE_BL31
439 #if ENABLE_SPE_FOR_LOWER_ELS
440 	spe_enable(el2_unused);
441 #endif
442 
443 #if ENABLE_AMU
444 	amu_enable(el2_unused, ctx);
445 #endif
446 
447 #if ENABLE_SME_FOR_NS
448 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
449 	sme_enable(ctx);
450 #elif ENABLE_SVE_FOR_NS
451 	/* Enable SVE and FPU/SIMD for non-secure world. */
452 	sve_enable(ctx);
453 #endif
454 
455 #if ENABLE_MPAM_FOR_LOWER_ELS
456 	mpam_enable(el2_unused);
457 #endif
458 
459 #if ENABLE_TRBE_FOR_NS
460 	trbe_enable();
461 #endif /* ENABLE_TRBE_FOR_NS */
462 
463 #if ENABLE_BRBE_FOR_NS
464 	brbe_enable();
465 #endif /* ENABLE_BRBE_FOR_NS */
466 
467 #if ENABLE_SYS_REG_TRACE_FOR_NS
468 	sys_reg_trace_enable(ctx);
469 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
470 
471 #if ENABLE_TRF_FOR_NS
472 	trf_enable();
473 #endif /* ENABLE_TRF_FOR_NS */
474 #endif
475 }
476 
477 /*******************************************************************************
478  * Enable architecture extensions on first entry to Secure world.
479  ******************************************************************************/
480 static void manage_extensions_secure(cpu_context_t *ctx)
481 {
482 #if IMAGE_BL31
483  #if ENABLE_SME_FOR_NS
484   #if ENABLE_SME_FOR_SWD
485 	/*
486 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
487 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
488 	 */
489 	sme_enable(ctx);
490   #else /* ENABLE_SME_FOR_SWD */
491 	/*
492 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
493 	 * safely use the associated registers.
494 	 */
495 	sme_disable(ctx);
496   #endif /* ENABLE_SME_FOR_SWD */
497  #elif ENABLE_SVE_FOR_NS
498   #if ENABLE_SVE_FOR_SWD
499 	/*
500 	 * Enable SVE and FPU in secure context, secure manager must ensure that
501 	 * the SVE and FPU register contexts are properly managed.
502 	 */
503 	sve_enable(ctx);
504  #else /* ENABLE_SVE_FOR_SWD */
505 	/*
506 	 * Disable SVE and FPU in secure context so non-secure world can safely
507 	 * use them.
508 	 */
509 	sve_disable(ctx);
510   #endif /* ENABLE_SVE_FOR_SWD */
511  #endif /* ENABLE_SVE_FOR_NS */
512 #endif /* IMAGE_BL31 */
513 }
514 
515 /*******************************************************************************
516  * The following function initializes the cpu_context for a CPU specified by
517  * its `cpu_idx` for first use, and sets the initial entrypoint state as
518  * specified by the entry_point_info structure.
519  ******************************************************************************/
520 void cm_init_context_by_index(unsigned int cpu_idx,
521 			      const entry_point_info_t *ep)
522 {
523 	cpu_context_t *ctx;
524 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
525 	cm_setup_context(ctx, ep);
526 }
527 
528 /*******************************************************************************
529  * The following function initializes the cpu_context for the current CPU
530  * for first use, and sets the initial entrypoint state as specified by the
531  * entry_point_info structure.
532  ******************************************************************************/
533 void cm_init_my_context(const entry_point_info_t *ep)
534 {
535 	cpu_context_t *ctx;
536 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
537 	cm_setup_context(ctx, ep);
538 }
539 
540 /*******************************************************************************
541  * Prepare the CPU system registers for first entry into realm, secure, or
542  * normal world.
543  *
544  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
545  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
546  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
547  * For all entries, the EL1 registers are initialized from the cpu_context
548  ******************************************************************************/
549 void cm_prepare_el3_exit(uint32_t security_state)
550 {
551 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
552 	cpu_context_t *ctx = cm_get_context(security_state);
553 	bool el2_unused = false;
554 	uint64_t hcr_el2 = 0U;
555 
556 	assert(ctx != NULL);
557 
558 	if (security_state == NON_SECURE) {
559 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
560 						 CTX_SCR_EL3);
561 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
562 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
563 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
564 							   CTX_SCTLR_EL1);
565 			sctlr_elx &= SCTLR_EE_BIT;
566 			sctlr_elx |= SCTLR_EL2_RES1;
567 #if ERRATA_A75_764081
568 			/*
569 			 * If workaround of errata 764081 for Cortex-A75 is used
570 			 * then set SCTLR_EL2.IESB to enable Implicit Error
571 			 * Synchronization Barrier.
572 			 */
573 			sctlr_elx |= SCTLR_IESB_BIT;
574 #endif
575 			write_sctlr_el2(sctlr_elx);
576 		} else if (el_implemented(2) != EL_IMPL_NONE) {
577 			el2_unused = true;
578 
579 			/*
580 			 * EL2 present but unused, need to disable safely.
581 			 * SCTLR_EL2 can be ignored in this case.
582 			 *
583 			 * Set EL2 register width appropriately: Set HCR_EL2
584 			 * field to match SCR_EL3.RW.
585 			 */
586 			if ((scr_el3 & SCR_RW_BIT) != 0U)
587 				hcr_el2 |= HCR_RW_BIT;
588 
589 			/*
590 			 * For Armv8.3 pointer authentication feature, disable
591 			 * traps to EL2 when accessing key registers or using
592 			 * pointer authentication instructions from lower ELs.
593 			 */
594 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
595 
596 			write_hcr_el2(hcr_el2);
597 
598 			/*
599 			 * Initialise CPTR_EL2 setting all fields rather than
600 			 * relying on the hw. All fields have architecturally
601 			 * UNKNOWN reset values.
602 			 *
603 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
604 			 *  accesses to the CPACR_EL1 or CPACR from both
605 			 *  Execution states do not trap to EL2.
606 			 *
607 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
608 			 *  register accesses to the trace registers from both
609 			 *  Execution states do not trap to EL2.
610 			 *  If PE trace unit System registers are not implemented
611 			 *  then this bit is reserved, and must be set to zero.
612 			 *
613 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
614 			 *  to SIMD and floating-point functionality from both
615 			 *  Execution states do not trap to EL2.
616 			 */
617 			write_cptr_el2(CPTR_EL2_RESET_VAL &
618 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
619 					| CPTR_EL2_TFP_BIT));
620 
621 			/*
622 			 * Initialise CNTHCTL_EL2. All fields are
623 			 * architecturally UNKNOWN on reset and are set to zero
624 			 * except for field(s) listed below.
625 			 *
626 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
627 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
628 			 *  physical timer registers.
629 			 *
630 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
631 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
632 			 *  physical counter registers.
633 			 */
634 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
635 						EL1PCEN_BIT | EL1PCTEN_BIT);
636 
637 			/*
638 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
639 			 * architecturally UNKNOWN value.
640 			 */
641 			write_cntvoff_el2(0);
642 
643 			/*
644 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
645 			 * MPIDR_EL1 respectively.
646 			 */
647 			write_vpidr_el2(read_midr_el1());
648 			write_vmpidr_el2(read_mpidr_el1());
649 
650 			/*
651 			 * Initialise VTTBR_EL2. All fields are architecturally
652 			 * UNKNOWN on reset.
653 			 *
654 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
655 			 *  2 address translation is disabled, cache maintenance
656 			 *  operations depend on the VMID.
657 			 *
658 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
659 			 *  translation is disabled.
660 			 */
661 			write_vttbr_el2(VTTBR_RESET_VAL &
662 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
663 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
664 
665 			/*
666 			 * Initialise MDCR_EL2, setting all fields rather than
667 			 * relying on hw. Some fields are architecturally
668 			 * UNKNOWN on reset.
669 			 *
670 			 * MDCR_EL2.HLP: Set to one so that event counter
671 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
672 			 *  occurs on the increment that changes
673 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
674 			 *  implemented. This bit is RES0 in versions of the
675 			 *  architecture earlier than ARMv8.5, setting it to 1
676 			 *  doesn't have any effect on them.
677 			 *
678 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
679 			 *  Filter Control register TRFCR_EL1 at EL1 is not
680 			 *  trapped to EL2. This bit is RES0 in versions of
681 			 *  the architecture earlier than ARMv8.4.
682 			 *
683 			 * MDCR_EL2.HPMD: Set to one so that event counting is
684 			 *  prohibited at EL2. This bit is RES0 in versions of
685 			 *  the architecture earlier than ARMv8.1, setting it
686 			 *  to 1 doesn't have any effect on them.
687 			 *
688 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
689 			 *  Statistical Profiling control registers from EL1
690 			 *  do not trap to EL2. This bit is RES0 when SPE is
691 			 *  not implemented.
692 			 *
693 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
694 			 *  EL1 System register accesses to the Debug ROM
695 			 *  registers are not trapped to EL2.
696 			 *
697 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
698 			 *  System register accesses to the powerdown debug
699 			 *  registers are not trapped to EL2.
700 			 *
701 			 * MDCR_EL2.TDA: Set to zero so that System register
702 			 *  accesses to the debug registers do not trap to EL2.
703 			 *
704 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
705 			 *  are not routed to EL2.
706 			 *
707 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
708 			 *  Monitors.
709 			 *
710 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
711 			 *  EL1 accesses to all Performance Monitors registers
712 			 *  are not trapped to EL2.
713 			 *
714 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
715 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
716 			 *  trapped to EL2.
717 			 *
718 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
719 			 *  architecturally-defined reset value.
720 			 *
721 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
722 			 *  owning exception level is NS-EL1 and, tracing is
723 			 *  prohibited at NS-EL2. These bits are RES0 when
724 			 *  FEAT_TRBE is not implemented.
725 			 */
726 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
727 				     MDCR_EL2_HPMD) |
728 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
729 				   >> PMCR_EL0_N_SHIFT)) &
730 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
731 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
732 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
733 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
734 				     MDCR_EL2_TPMCR_BIT |
735 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
736 
737 			write_mdcr_el2(mdcr_el2);
738 
739 			/*
740 			 * Initialise HSTR_EL2. All fields are architecturally
741 			 * UNKNOWN on reset.
742 			 *
743 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
744 			 *  Non-secure EL0 or EL1 accesses to System registers
745 			 *  do not trap to EL2.
746 			 */
747 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
748 			/*
749 			 * Initialise CNTHP_CTL_EL2. All fields are
750 			 * architecturally UNKNOWN on reset.
751 			 *
752 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
753 			 *  physical timer and prevent timer interrupts.
754 			 */
755 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
756 						~(CNTHP_CTL_ENABLE_BIT));
757 		}
758 		manage_extensions_nonsecure(el2_unused, ctx);
759 	}
760 
761 	cm_el1_sysregs_context_restore(security_state);
762 	cm_set_next_eret_context(security_state);
763 }
764 
765 #if CTX_INCLUDE_EL2_REGS
766 /*******************************************************************************
767  * Save EL2 sysreg context
768  ******************************************************************************/
769 void cm_el2_sysregs_context_save(uint32_t security_state)
770 {
771 	u_register_t scr_el3 = read_scr();
772 
773 	/*
774 	 * Always save the non-secure and realm EL2 context, only save the
775 	 * S-EL2 context if S-EL2 is enabled.
776 	 */
777 	if ((security_state != SECURE) ||
778 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
779 		cpu_context_t *ctx;
780 
781 		ctx = cm_get_context(security_state);
782 		assert(ctx != NULL);
783 
784 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
785 	}
786 }
787 
788 /*******************************************************************************
789  * Restore EL2 sysreg context
790  ******************************************************************************/
791 void cm_el2_sysregs_context_restore(uint32_t security_state)
792 {
793 	u_register_t scr_el3 = read_scr();
794 
795 	/*
796 	 * Always restore the non-secure and realm EL2 context, only restore the
797 	 * S-EL2 context if S-EL2 is enabled.
798 	 */
799 	if ((security_state != SECURE) ||
800 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
801 		cpu_context_t *ctx;
802 
803 		ctx = cm_get_context(security_state);
804 		assert(ctx != NULL);
805 
806 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
807 	}
808 }
809 #endif /* CTX_INCLUDE_EL2_REGS */
810 
811 /*******************************************************************************
812  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
813  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
814  * updating EL1 and EL2 registers. Otherwise, it calls the generic
815  * cm_prepare_el3_exit function.
816  ******************************************************************************/
817 void cm_prepare_el3_exit_ns(void)
818 {
819 #if CTX_INCLUDE_EL2_REGS
820 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
821 	assert(ctx != NULL);
822 
823 	/*
824 	 * Currently some extensions are configured using
825 	 * direct register updates. Therefore, do this here
826 	 * instead of when setting up context.
827 	 */
828 	manage_extensions_nonsecure(0, ctx);
829 
830 	/*
831 	 * Set the NS bit to be able to access the ICC_SRE_EL2
832 	 * register when restoring context.
833 	 */
834 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
835 
836 	/*
837 	 * Ensure the NS bit change is committed before the EL2/EL1
838 	 * state restoration.
839 	 */
840 	isb();
841 
842 	/* Restore EL2 and EL1 sysreg contexts */
843 	cm_el2_sysregs_context_restore(NON_SECURE);
844 	cm_el1_sysregs_context_restore(NON_SECURE);
845 	cm_set_next_eret_context(NON_SECURE);
846 #else
847 	cm_prepare_el3_exit(NON_SECURE);
848 #endif /* CTX_INCLUDE_EL2_REGS */
849 }
850 
851 /*******************************************************************************
852  * The next four functions are used by runtime services to save and restore
853  * EL1 context on the 'cpu_context' structure for the specified security
854  * state.
855  ******************************************************************************/
856 void cm_el1_sysregs_context_save(uint32_t security_state)
857 {
858 	cpu_context_t *ctx;
859 
860 	ctx = cm_get_context(security_state);
861 	assert(ctx != NULL);
862 
863 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
864 
865 #if IMAGE_BL31
866 	if (security_state == SECURE)
867 		PUBLISH_EVENT(cm_exited_secure_world);
868 	else
869 		PUBLISH_EVENT(cm_exited_normal_world);
870 #endif
871 }
872 
873 void cm_el1_sysregs_context_restore(uint32_t security_state)
874 {
875 	cpu_context_t *ctx;
876 
877 	ctx = cm_get_context(security_state);
878 	assert(ctx != NULL);
879 
880 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
881 
882 #if IMAGE_BL31
883 	if (security_state == SECURE)
884 		PUBLISH_EVENT(cm_entering_secure_world);
885 	else
886 		PUBLISH_EVENT(cm_entering_normal_world);
887 #endif
888 }
889 
890 /*******************************************************************************
891  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
892  * given security state with the given entrypoint
893  ******************************************************************************/
894 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
895 {
896 	cpu_context_t *ctx;
897 	el3_state_t *state;
898 
899 	ctx = cm_get_context(security_state);
900 	assert(ctx != NULL);
901 
902 	/* Populate EL3 state so that ERET jumps to the correct entry */
903 	state = get_el3state_ctx(ctx);
904 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
905 }
906 
907 /*******************************************************************************
908  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
909  * pertaining to the given security state
910  ******************************************************************************/
911 void cm_set_elr_spsr_el3(uint32_t security_state,
912 			uintptr_t entrypoint, uint32_t spsr)
913 {
914 	cpu_context_t *ctx;
915 	el3_state_t *state;
916 
917 	ctx = cm_get_context(security_state);
918 	assert(ctx != NULL);
919 
920 	/* Populate EL3 state so that ERET jumps to the correct entry */
921 	state = get_el3state_ctx(ctx);
922 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
923 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
924 }
925 
926 /*******************************************************************************
927  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
928  * pertaining to the given security state using the value and bit position
929  * specified in the parameters. It preserves all other bits.
930  ******************************************************************************/
931 void cm_write_scr_el3_bit(uint32_t security_state,
932 			  uint32_t bit_pos,
933 			  uint32_t value)
934 {
935 	cpu_context_t *ctx;
936 	el3_state_t *state;
937 	u_register_t scr_el3;
938 
939 	ctx = cm_get_context(security_state);
940 	assert(ctx != NULL);
941 
942 	/* Ensure that the bit position is a valid one */
943 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
944 
945 	/* Ensure that the 'value' is only a bit wide */
946 	assert(value <= 1U);
947 
948 	/*
949 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
950 	 * and set it to its new value.
951 	 */
952 	state = get_el3state_ctx(ctx);
953 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
954 	scr_el3 &= ~(1UL << bit_pos);
955 	scr_el3 |= (u_register_t)value << bit_pos;
956 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
957 }
958 
959 /*******************************************************************************
960  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
961  * given security state.
962  ******************************************************************************/
963 u_register_t cm_get_scr_el3(uint32_t security_state)
964 {
965 	cpu_context_t *ctx;
966 	el3_state_t *state;
967 
968 	ctx = cm_get_context(security_state);
969 	assert(ctx != NULL);
970 
971 	/* Populate EL3 state so that ERET jumps to the correct entry */
972 	state = get_el3state_ctx(ctx);
973 	return read_ctx_reg(state, CTX_SCR_EL3);
974 }
975 
976 /*******************************************************************************
977  * This function is used to program the context that's used for exception
978  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
979  * the required security state
980  ******************************************************************************/
981 void cm_set_next_eret_context(uint32_t security_state)
982 {
983 	cpu_context_t *ctx;
984 
985 	ctx = cm_get_context(security_state);
986 	assert(ctx != NULL);
987 
988 	cm_set_next_context(ctx);
989 }
990