1 /* 2 * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <stdbool.h> 9 #include <string.h> 10 11 #include <platform_def.h> 12 13 #include <arch.h> 14 #include <arch_helpers.h> 15 #include <arch_features.h> 16 #include <bl31/interrupt_mgmt.h> 17 #include <common/bl_common.h> 18 #include <context.h> 19 #include <lib/el3_runtime/context_mgmt.h> 20 #include <lib/el3_runtime/pubsub_events.h> 21 #include <lib/extensions/amu.h> 22 #include <lib/extensions/mpam.h> 23 #include <lib/extensions/spe.h> 24 #include <lib/extensions/sve.h> 25 #include <lib/extensions/twed.h> 26 #include <lib/utils.h> 27 28 29 /******************************************************************************* 30 * Context management library initialisation routine. This library is used by 31 * runtime services to share pointers to 'cpu_context' structures for the secure 32 * and non-secure states. Management of the structures and their associated 33 * memory is not done by the context management library e.g. the PSCI service 34 * manages the cpu context used for entry from and exit to the non-secure state. 35 * The Secure payload dispatcher service manages the context(s) corresponding to 36 * the secure state. It also uses this library to get access to the non-secure 37 * state cpu context pointers. 38 * Lastly, this library provides the api to make SP_EL3 point to the cpu context 39 * which will used for programming an entry into a lower EL. The same context 40 * will used to save state upon exception entry from that EL. 41 ******************************************************************************/ 42 void __init cm_init(void) 43 { 44 /* 45 * The context management library has only global data to intialize, but 46 * that will be done when the BSS is zeroed out 47 */ 48 } 49 50 /******************************************************************************* 51 * The following function initializes the cpu_context 'ctx' for 52 * first use, and sets the initial entrypoint state as specified by the 53 * entry_point_info structure. 54 * 55 * The security state to initialize is determined by the SECURE attribute 56 * of the entry_point_info. 57 * 58 * The EE and ST attributes are used to configure the endianness and secure 59 * timer availability for the new execution context. 60 * 61 * To prepare the register state for entry call cm_prepare_el3_exit() and 62 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 63 * cm_e1_sysreg_context_restore(). 64 ******************************************************************************/ 65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 66 { 67 unsigned int security_state; 68 u_register_t scr_el3; 69 el3_state_t *state; 70 gp_regs_t *gp_regs; 71 u_register_t sctlr_elx, actlr_elx; 72 73 assert(ctx != NULL); 74 75 security_state = GET_SECURITY_STATE(ep->h.attr); 76 77 /* Clear any residual register values from the context */ 78 zeromem(ctx, sizeof(*ctx)); 79 80 /* 81 * SCR_EL3 was initialised during reset sequence in macro 82 * el3_arch_init_common. This code modifies the SCR_EL3 fields that 83 * affect the next EL. 84 * 85 * The following fields are initially set to zero and then updated to 86 * the required value depending on the state of the SPSR_EL3 and the 87 * Security state and entrypoint attributes of the next EL. 88 */ 89 scr_el3 = read_scr(); 90 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 91 SCR_ST_BIT | SCR_HCE_BIT); 92 /* 93 * SCR_NS: Set the security state of the next EL. 94 */ 95 if (security_state != SECURE) 96 scr_el3 |= SCR_NS_BIT; 97 /* 98 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 99 * Exception level as specified by SPSR. 100 */ 101 if (GET_RW(ep->spsr) == MODE_RW_64) 102 scr_el3 |= SCR_RW_BIT; 103 /* 104 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 105 * Secure timer registers to EL3, from AArch64 state only, if specified 106 * by the entrypoint attributes. 107 */ 108 if (EP_GET_ST(ep->h.attr) != 0U) 109 scr_el3 |= SCR_ST_BIT; 110 111 #if RAS_TRAP_LOWER_EL_ERR_ACCESS 112 /* 113 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR 114 * and RAS ERX registers from EL1 and EL2 are trapped to EL3. 115 */ 116 scr_el3 |= SCR_TERR_BIT; 117 #endif 118 119 #if !HANDLE_EA_EL3_FIRST 120 /* 121 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 122 * to EL3 when executing at a lower EL. When executing at EL3, External 123 * Aborts are taken to EL3. 124 */ 125 scr_el3 &= ~SCR_EA_BIT; 126 #endif 127 128 #if FAULT_INJECTION_SUPPORT 129 /* Enable fault injection from lower ELs */ 130 scr_el3 |= SCR_FIEN_BIT; 131 #endif 132 133 #if !CTX_INCLUDE_PAUTH_REGS 134 /* 135 * If the pointer authentication registers aren't saved during world 136 * switches the value of the registers can be leaked from the Secure to 137 * the Non-secure world. To prevent this, rather than enabling pointer 138 * authentication everywhere, we only enable it in the Non-secure world. 139 * 140 * If the Secure world wants to use pointer authentication, 141 * CTX_INCLUDE_PAUTH_REGS must be set to 1. 142 */ 143 if (security_state == NON_SECURE) 144 scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 145 #endif /* !CTX_INCLUDE_PAUTH_REGS */ 146 147 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS 148 /* Get Memory Tagging Extension support level */ 149 unsigned int mte = get_armv8_5_mte_support(); 150 #endif 151 /* 152 * Enable MTE support. Support is enabled unilaterally for the normal 153 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is 154 * set. 155 */ 156 #if CTX_INCLUDE_MTE_REGS 157 assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); 158 scr_el3 |= SCR_ATA_BIT; 159 #else 160 /* 161 * When MTE is only implemented at EL0, it can be enabled 162 * across both worlds as no MTE registers are used. 163 */ 164 if ((mte == MTE_IMPLEMENTED_EL0) || 165 /* 166 * When MTE is implemented at all ELs, it can be only enabled 167 * in Non-Secure world without register saving. 168 */ 169 (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) && 170 (security_state == NON_SECURE))) { 171 scr_el3 |= SCR_ATA_BIT; 172 } 173 #endif /* CTX_INCLUDE_MTE_REGS */ 174 175 #ifdef IMAGE_BL31 176 /* 177 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 178 * indicated by the interrupt routing model for BL31. 179 */ 180 scr_el3 |= get_scr_el3_from_routing_model(security_state); 181 #endif 182 183 /* 184 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 185 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 186 * next mode is Hyp. 187 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 188 * same conditions as HVC instructions and when the processor supports 189 * ARMv8.6-FGT. 190 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) 191 * CNTPOFF_EL2 register under the same conditions as HVC instructions 192 * and when the processor supports ECV. 193 */ 194 if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 195 || ((GET_RW(ep->spsr) != MODE_RW_64) 196 && (GET_M32(ep->spsr) == MODE32_hyp))) { 197 scr_el3 |= SCR_HCE_BIT; 198 199 if (is_armv8_6_fgt_present()) { 200 scr_el3 |= SCR_FGTEN_BIT; 201 } 202 203 if (get_armv8_6_ecv_support() 204 == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) { 205 scr_el3 |= SCR_ECVEN_BIT; 206 } 207 } 208 209 /* Enable S-EL2 if the next EL is EL2 and security state is secure */ 210 if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) { 211 if (GET_RW(ep->spsr) != MODE_RW_64) { 212 ERROR("S-EL2 can not be used in AArch32."); 213 panic(); 214 } 215 216 scr_el3 |= SCR_EEL2_BIT; 217 } 218 219 /* 220 * Initialise SCTLR_EL1 to the reset value corresponding to the target 221 * execution state setting all fields rather than relying of the hw. 222 * Some fields have architecturally UNKNOWN reset values and these are 223 * set to zero. 224 * 225 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 226 * 227 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 228 * required by PSCI specification) 229 */ 230 sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U; 231 if (GET_RW(ep->spsr) == MODE_RW_64) 232 sctlr_elx |= SCTLR_EL1_RES1; 233 else { 234 /* 235 * If the target execution state is AArch32 then the following 236 * fields need to be set. 237 * 238 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 239 * instructions are not trapped to EL1. 240 * 241 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 242 * instructions are not trapped to EL1. 243 * 244 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 245 * CP15DMB, CP15DSB, and CP15ISB instructions. 246 */ 247 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 248 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 249 } 250 251 #if ERRATA_A75_764081 252 /* 253 * If workaround of errata 764081 for Cortex-A75 is used then set 254 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 255 */ 256 sctlr_elx |= SCTLR_IESB_BIT; 257 #endif 258 259 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 260 if (is_armv8_6_twed_present()) { 261 uint32_t delay = plat_arm_set_twedel_scr_el3(); 262 263 if (delay != TWED_DISABLED) { 264 /* Make sure delay value fits */ 265 assert((delay & ~SCR_TWEDEL_MASK) == 0U); 266 267 /* Set delay in SCR_EL3 */ 268 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 269 scr_el3 |= ((delay & SCR_TWEDEL_MASK) 270 << SCR_TWEDEL_SHIFT); 271 272 /* Enable WFE delay */ 273 scr_el3 |= SCR_TWEDEn_BIT; 274 } 275 } 276 277 /* 278 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 279 * and other EL2 registers are set up by cm_prepare_ns_entry() as they 280 * are not part of the stored cpu_context. 281 */ 282 write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 283 284 /* 285 * Base the context ACTLR_EL1 on the current value, as it is 286 * implementation defined. The context restore process will write 287 * the value from the context to the actual register and can cause 288 * problems for processor cores that don't expect certain bits to 289 * be zero. 290 */ 291 actlr_elx = read_actlr_el1(); 292 write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 293 294 /* 295 * Populate EL3 state so that we've the right context 296 * before doing ERET 297 */ 298 state = get_el3state_ctx(ctx); 299 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 300 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 301 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 302 303 /* 304 * Store the X0-X7 value from the entrypoint into the context 305 * Use memcpy as we are in control of the layout of the structures 306 */ 307 gp_regs = get_gpregs_ctx(ctx); 308 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 309 } 310 311 /******************************************************************************* 312 * Enable architecture extensions on first entry to Non-secure world. 313 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 314 * it is zero. 315 ******************************************************************************/ 316 static void enable_extensions_nonsecure(bool el2_unused) 317 { 318 #if IMAGE_BL31 319 #if ENABLE_SPE_FOR_LOWER_ELS 320 spe_enable(el2_unused); 321 #endif 322 323 #if ENABLE_AMU 324 amu_enable(el2_unused); 325 #endif 326 327 #if ENABLE_SVE_FOR_NS 328 sve_enable(el2_unused); 329 #endif 330 331 #if ENABLE_MPAM_FOR_LOWER_ELS 332 mpam_enable(el2_unused); 333 #endif 334 #endif 335 } 336 337 /******************************************************************************* 338 * The following function initializes the cpu_context for a CPU specified by 339 * its `cpu_idx` for first use, and sets the initial entrypoint state as 340 * specified by the entry_point_info structure. 341 ******************************************************************************/ 342 void cm_init_context_by_index(unsigned int cpu_idx, 343 const entry_point_info_t *ep) 344 { 345 cpu_context_t *ctx; 346 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 347 cm_setup_context(ctx, ep); 348 } 349 350 /******************************************************************************* 351 * The following function initializes the cpu_context for the current CPU 352 * for first use, and sets the initial entrypoint state as specified by the 353 * entry_point_info structure. 354 ******************************************************************************/ 355 void cm_init_my_context(const entry_point_info_t *ep) 356 { 357 cpu_context_t *ctx; 358 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 359 cm_setup_context(ctx, ep); 360 } 361 362 /******************************************************************************* 363 * Prepare the CPU system registers for first entry into secure or normal world 364 * 365 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 366 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 367 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 368 * For all entries, the EL1 registers are initialized from the cpu_context 369 ******************************************************************************/ 370 void cm_prepare_el3_exit(uint32_t security_state) 371 { 372 u_register_t sctlr_elx, scr_el3, mdcr_el2; 373 cpu_context_t *ctx = cm_get_context(security_state); 374 bool el2_unused = false; 375 uint64_t hcr_el2 = 0U; 376 377 assert(ctx != NULL); 378 379 if (security_state == NON_SECURE) { 380 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 381 CTX_SCR_EL3); 382 if ((scr_el3 & SCR_HCE_BIT) != 0U) { 383 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 384 sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), 385 CTX_SCTLR_EL1); 386 sctlr_elx &= SCTLR_EE_BIT; 387 sctlr_elx |= SCTLR_EL2_RES1; 388 #if ERRATA_A75_764081 389 /* 390 * If workaround of errata 764081 for Cortex-A75 is used 391 * then set SCTLR_EL2.IESB to enable Implicit Error 392 * Synchronization Barrier. 393 */ 394 sctlr_elx |= SCTLR_IESB_BIT; 395 #endif 396 write_sctlr_el2(sctlr_elx); 397 } else if (el_implemented(2) != EL_IMPL_NONE) { 398 el2_unused = true; 399 400 /* 401 * EL2 present but unused, need to disable safely. 402 * SCTLR_EL2 can be ignored in this case. 403 * 404 * Set EL2 register width appropriately: Set HCR_EL2 405 * field to match SCR_EL3.RW. 406 */ 407 if ((scr_el3 & SCR_RW_BIT) != 0U) 408 hcr_el2 |= HCR_RW_BIT; 409 410 /* 411 * For Armv8.3 pointer authentication feature, disable 412 * traps to EL2 when accessing key registers or using 413 * pointer authentication instructions from lower ELs. 414 */ 415 hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 416 417 write_hcr_el2(hcr_el2); 418 419 /* 420 * Initialise CPTR_EL2 setting all fields rather than 421 * relying on the hw. All fields have architecturally 422 * UNKNOWN reset values. 423 * 424 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 425 * accesses to the CPACR_EL1 or CPACR from both 426 * Execution states do not trap to EL2. 427 * 428 * CPTR_EL2.TTA: Set to zero so that Non-secure System 429 * register accesses to the trace registers from both 430 * Execution states do not trap to EL2. 431 * 432 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 433 * to SIMD and floating-point functionality from both 434 * Execution states do not trap to EL2. 435 */ 436 write_cptr_el2(CPTR_EL2_RESET_VAL & 437 ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 438 | CPTR_EL2_TFP_BIT)); 439 440 /* 441 * Initialise CNTHCTL_EL2. All fields are 442 * architecturally UNKNOWN on reset and are set to zero 443 * except for field(s) listed below. 444 * 445 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 446 * Hyp mode of Non-secure EL0 and EL1 accesses to the 447 * physical timer registers. 448 * 449 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 450 * Hyp mode of Non-secure EL0 and EL1 accesses to the 451 * physical counter registers. 452 */ 453 write_cnthctl_el2(CNTHCTL_RESET_VAL | 454 EL1PCEN_BIT | EL1PCTEN_BIT); 455 456 /* 457 * Initialise CNTVOFF_EL2 to zero as it resets to an 458 * architecturally UNKNOWN value. 459 */ 460 write_cntvoff_el2(0); 461 462 /* 463 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 464 * MPIDR_EL1 respectively. 465 */ 466 write_vpidr_el2(read_midr_el1()); 467 write_vmpidr_el2(read_mpidr_el1()); 468 469 /* 470 * Initialise VTTBR_EL2. All fields are architecturally 471 * UNKNOWN on reset. 472 * 473 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 474 * 2 address translation is disabled, cache maintenance 475 * operations depend on the VMID. 476 * 477 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 478 * translation is disabled. 479 */ 480 write_vttbr_el2(VTTBR_RESET_VAL & 481 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 482 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 483 484 /* 485 * Initialise MDCR_EL2, setting all fields rather than 486 * relying on hw. Some fields are architecturally 487 * UNKNOWN on reset. 488 * 489 * MDCR_EL2.HLP: Set to one so that event counter 490 * overflow, that is recorded in PMOVSCLR_EL0[0-30], 491 * occurs on the increment that changes 492 * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is 493 * implemented. This bit is RES0 in versions of the 494 * architecture earlier than ARMv8.5, setting it to 1 495 * doesn't have any effect on them. 496 * 497 * MDCR_EL2.TTRF: Set to zero so that access to Trace 498 * Filter Control register TRFCR_EL1 at EL1 is not 499 * trapped to EL2. This bit is RES0 in versions of 500 * the architecture earlier than ARMv8.4. 501 * 502 * MDCR_EL2.HPMD: Set to one so that event counting is 503 * prohibited at EL2. This bit is RES0 in versions of 504 * the architecture earlier than ARMv8.1, setting it 505 * to 1 doesn't have any effect on them. 506 * 507 * MDCR_EL2.TPMS: Set to zero so that accesses to 508 * Statistical Profiling control registers from EL1 509 * do not trap to EL2. This bit is RES0 when SPE is 510 * not implemented. 511 * 512 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 513 * EL1 System register accesses to the Debug ROM 514 * registers are not trapped to EL2. 515 * 516 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 517 * System register accesses to the powerdown debug 518 * registers are not trapped to EL2. 519 * 520 * MDCR_EL2.TDA: Set to zero so that System register 521 * accesses to the debug registers do not trap to EL2. 522 * 523 * MDCR_EL2.TDE: Set to zero so that debug exceptions 524 * are not routed to EL2. 525 * 526 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 527 * Monitors. 528 * 529 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 530 * EL1 accesses to all Performance Monitors registers 531 * are not trapped to EL2. 532 * 533 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 534 * and EL1 accesses to the PMCR_EL0 or PMCR are not 535 * trapped to EL2. 536 * 537 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 538 * architecturally-defined reset value. 539 */ 540 mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP | 541 MDCR_EL2_HPMD) | 542 ((read_pmcr_el0() & PMCR_EL0_N_BITS) 543 >> PMCR_EL0_N_SHIFT)) & 544 ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS | 545 MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | 546 MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT | 547 MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT | 548 MDCR_EL2_TPMCR_BIT); 549 550 write_mdcr_el2(mdcr_el2); 551 552 /* 553 * Initialise HSTR_EL2. All fields are architecturally 554 * UNKNOWN on reset. 555 * 556 * HSTR_EL2.T<n>: Set all these fields to zero so that 557 * Non-secure EL0 or EL1 accesses to System registers 558 * do not trap to EL2. 559 */ 560 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 561 /* 562 * Initialise CNTHP_CTL_EL2. All fields are 563 * architecturally UNKNOWN on reset. 564 * 565 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 566 * physical timer and prevent timer interrupts. 567 */ 568 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 569 ~(CNTHP_CTL_ENABLE_BIT)); 570 } 571 enable_extensions_nonsecure(el2_unused); 572 } 573 574 cm_el1_sysregs_context_restore(security_state); 575 cm_set_next_eret_context(security_state); 576 } 577 578 #if CTX_INCLUDE_EL2_REGS 579 /******************************************************************************* 580 * Save EL2 sysreg context 581 ******************************************************************************/ 582 void cm_el2_sysregs_context_save(uint32_t security_state) 583 { 584 u_register_t scr_el3 = read_scr(); 585 586 /* 587 * Always save the non-secure EL2 context, only save the 588 * S-EL2 context if S-EL2 is enabled. 589 */ 590 if ((security_state == NON_SECURE) || 591 ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 592 cpu_context_t *ctx; 593 594 ctx = cm_get_context(security_state); 595 assert(ctx != NULL); 596 597 el2_sysregs_context_save(get_el2_sysregs_ctx(ctx)); 598 } 599 } 600 601 /******************************************************************************* 602 * Restore EL2 sysreg context 603 ******************************************************************************/ 604 void cm_el2_sysregs_context_restore(uint32_t security_state) 605 { 606 u_register_t scr_el3 = read_scr(); 607 608 /* 609 * Always restore the non-secure EL2 context, only restore the 610 * S-EL2 context if S-EL2 is enabled. 611 */ 612 if ((security_state == NON_SECURE) || 613 ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 614 cpu_context_t *ctx; 615 616 ctx = cm_get_context(security_state); 617 assert(ctx != NULL); 618 619 el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx)); 620 } 621 } 622 #endif /* CTX_INCLUDE_EL2_REGS */ 623 624 /******************************************************************************* 625 * The next four functions are used by runtime services to save and restore 626 * EL1 context on the 'cpu_context' structure for the specified security 627 * state. 628 ******************************************************************************/ 629 void cm_el1_sysregs_context_save(uint32_t security_state) 630 { 631 cpu_context_t *ctx; 632 633 ctx = cm_get_context(security_state); 634 assert(ctx != NULL); 635 636 el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 637 638 #if IMAGE_BL31 639 if (security_state == SECURE) 640 PUBLISH_EVENT(cm_exited_secure_world); 641 else 642 PUBLISH_EVENT(cm_exited_normal_world); 643 #endif 644 } 645 646 void cm_el1_sysregs_context_restore(uint32_t security_state) 647 { 648 cpu_context_t *ctx; 649 650 ctx = cm_get_context(security_state); 651 assert(ctx != NULL); 652 653 el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 654 655 #if IMAGE_BL31 656 if (security_state == SECURE) 657 PUBLISH_EVENT(cm_entering_secure_world); 658 else 659 PUBLISH_EVENT(cm_entering_normal_world); 660 #endif 661 } 662 663 /******************************************************************************* 664 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 665 * given security state with the given entrypoint 666 ******************************************************************************/ 667 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 668 { 669 cpu_context_t *ctx; 670 el3_state_t *state; 671 672 ctx = cm_get_context(security_state); 673 assert(ctx != NULL); 674 675 /* Populate EL3 state so that ERET jumps to the correct entry */ 676 state = get_el3state_ctx(ctx); 677 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 678 } 679 680 /******************************************************************************* 681 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 682 * pertaining to the given security state 683 ******************************************************************************/ 684 void cm_set_elr_spsr_el3(uint32_t security_state, 685 uintptr_t entrypoint, uint32_t spsr) 686 { 687 cpu_context_t *ctx; 688 el3_state_t *state; 689 690 ctx = cm_get_context(security_state); 691 assert(ctx != NULL); 692 693 /* Populate EL3 state so that ERET jumps to the correct entry */ 694 state = get_el3state_ctx(ctx); 695 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 696 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 697 } 698 699 /******************************************************************************* 700 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 701 * pertaining to the given security state using the value and bit position 702 * specified in the parameters. It preserves all other bits. 703 ******************************************************************************/ 704 void cm_write_scr_el3_bit(uint32_t security_state, 705 uint32_t bit_pos, 706 uint32_t value) 707 { 708 cpu_context_t *ctx; 709 el3_state_t *state; 710 u_register_t scr_el3; 711 712 ctx = cm_get_context(security_state); 713 assert(ctx != NULL); 714 715 /* Ensure that the bit position is a valid one */ 716 assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 717 718 /* Ensure that the 'value' is only a bit wide */ 719 assert(value <= 1U); 720 721 /* 722 * Get the SCR_EL3 value from the cpu context, clear the desired bit 723 * and set it to its new value. 724 */ 725 state = get_el3state_ctx(ctx); 726 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 727 scr_el3 &= ~(1UL << bit_pos); 728 scr_el3 |= (u_register_t)value << bit_pos; 729 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 730 } 731 732 /******************************************************************************* 733 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 734 * given security state. 735 ******************************************************************************/ 736 u_register_t cm_get_scr_el3(uint32_t security_state) 737 { 738 cpu_context_t *ctx; 739 el3_state_t *state; 740 741 ctx = cm_get_context(security_state); 742 assert(ctx != NULL); 743 744 /* Populate EL3 state so that ERET jumps to the correct entry */ 745 state = get_el3state_ctx(ctx); 746 return read_ctx_reg(state, CTX_SCR_EL3); 747 } 748 749 /******************************************************************************* 750 * This function is used to program the context that's used for exception 751 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 752 * the required security state 753 ******************************************************************************/ 754 void cm_set_next_eret_context(uint32_t security_state) 755 { 756 cpu_context_t *ctx; 757 758 ctx = cm_get_context(security_state); 759 assert(ctx != NULL); 760 761 cm_set_next_context(ctx); 762 } 763