xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision d832aee900a92d14a08a6a2a552894188404b6a4)
1532ed618SSoby Mathew /*
232f0d3c6SDouglas Raillard  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3532ed618SSoby Mathew  *
482cb2c1aSdp-arm  * SPDX-License-Identifier: BSD-3-Clause
5532ed618SSoby Mathew  */
6532ed618SSoby Mathew 
7532ed618SSoby Mathew #include <arch.h>
8532ed618SSoby Mathew #include <arch_helpers.h>
9532ed618SSoby Mathew #include <assert.h>
10532ed618SSoby Mathew #include <bl_common.h>
11532ed618SSoby Mathew #include <context.h>
12532ed618SSoby Mathew #include <context_mgmt.h>
13532ed618SSoby Mathew #include <interrupt_mgmt.h>
14532ed618SSoby Mathew #include <platform.h>
15532ed618SSoby Mathew #include <platform_def.h>
16532ed618SSoby Mathew #include <smcc_helpers.h>
17532ed618SSoby Mathew #include <string.h>
1832f0d3c6SDouglas Raillard #include <utils.h>
19532ed618SSoby Mathew 
20532ed618SSoby Mathew 
21532ed618SSoby Mathew /*******************************************************************************
22532ed618SSoby Mathew  * Context management library initialisation routine. This library is used by
23532ed618SSoby Mathew  * runtime services to share pointers to 'cpu_context' structures for the secure
24532ed618SSoby Mathew  * and non-secure states. Management of the structures and their associated
25532ed618SSoby Mathew  * memory is not done by the context management library e.g. the PSCI service
26532ed618SSoby Mathew  * manages the cpu context used for entry from and exit to the non-secure state.
27532ed618SSoby Mathew  * The Secure payload dispatcher service manages the context(s) corresponding to
28532ed618SSoby Mathew  * the secure state. It also uses this library to get access to the non-secure
29532ed618SSoby Mathew  * state cpu context pointers.
30532ed618SSoby Mathew  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
31532ed618SSoby Mathew  * which will used for programming an entry into a lower EL. The same context
32532ed618SSoby Mathew  * will used to save state upon exception entry from that EL.
33532ed618SSoby Mathew  ******************************************************************************/
34532ed618SSoby Mathew void cm_init(void)
35532ed618SSoby Mathew {
36532ed618SSoby Mathew 	/*
37532ed618SSoby Mathew 	 * The context management library has only global data to intialize, but
38532ed618SSoby Mathew 	 * that will be done when the BSS is zeroed out
39532ed618SSoby Mathew 	 */
40532ed618SSoby Mathew }
41532ed618SSoby Mathew 
42532ed618SSoby Mathew /*******************************************************************************
43532ed618SSoby Mathew  * The following function initializes the cpu_context 'ctx' for
44532ed618SSoby Mathew  * first use, and sets the initial entrypoint state as specified by the
45532ed618SSoby Mathew  * entry_point_info structure.
46532ed618SSoby Mathew  *
47532ed618SSoby Mathew  * The security state to initialize is determined by the SECURE attribute
48532ed618SSoby Mathew  * of the entry_point_info. The function returns a pointer to the initialized
49532ed618SSoby Mathew  * context and sets this as the next context to return to.
50532ed618SSoby Mathew  *
51532ed618SSoby Mathew  * The EE and ST attributes are used to configure the endianess and secure
52532ed618SSoby Mathew  * timer availability for the new execution context.
53532ed618SSoby Mathew  *
54532ed618SSoby Mathew  * To prepare the register state for entry call cm_prepare_el3_exit() and
55532ed618SSoby Mathew  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56532ed618SSoby Mathew  * cm_e1_sysreg_context_restore().
57532ed618SSoby Mathew  ******************************************************************************/
58532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59532ed618SSoby Mathew {
60532ed618SSoby Mathew 	unsigned int security_state;
61532ed618SSoby Mathew 	uint32_t scr_el3;
62532ed618SSoby Mathew 	el3_state_t *state;
63532ed618SSoby Mathew 	gp_regs_t *gp_regs;
64532ed618SSoby Mathew 	unsigned long sctlr_elx;
65532ed618SSoby Mathew 
66532ed618SSoby Mathew 	assert(ctx);
67532ed618SSoby Mathew 
68532ed618SSoby Mathew 	security_state = GET_SECURITY_STATE(ep->h.attr);
69532ed618SSoby Mathew 
70532ed618SSoby Mathew 	/* Clear any residual register values from the context */
7132f0d3c6SDouglas Raillard 	zeromem(ctx, sizeof(*ctx));
72532ed618SSoby Mathew 
73532ed618SSoby Mathew 	/*
7418f2efd6SDavid Cunado 	 * SCR_EL3 was initialised during reset sequence in macro
7518f2efd6SDavid Cunado 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
7618f2efd6SDavid Cunado 	 * affect the next EL.
7718f2efd6SDavid Cunado 	 *
7818f2efd6SDavid Cunado 	 * The following fields are initially set to zero and then updated to
7918f2efd6SDavid Cunado 	 * the required value depending on the state of the SPSR_EL3 and the
8018f2efd6SDavid Cunado 	 * Security state and entrypoint attributes of the next EL.
81532ed618SSoby Mathew 	 */
82532ed618SSoby Mathew 	scr_el3 = read_scr();
83532ed618SSoby Mathew 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
84532ed618SSoby Mathew 			SCR_ST_BIT | SCR_HCE_BIT);
8518f2efd6SDavid Cunado 	/*
8618f2efd6SDavid Cunado 	 * SCR_NS: Set the security state of the next EL.
8718f2efd6SDavid Cunado 	 */
88532ed618SSoby Mathew 	if (security_state != SECURE)
89532ed618SSoby Mathew 		scr_el3 |= SCR_NS_BIT;
9018f2efd6SDavid Cunado 	/*
9118f2efd6SDavid Cunado 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
9218f2efd6SDavid Cunado 	 *  Exception level as specified by SPSR.
9318f2efd6SDavid Cunado 	 */
94532ed618SSoby Mathew 	if (GET_RW(ep->spsr) == MODE_RW_64)
95532ed618SSoby Mathew 		scr_el3 |= SCR_RW_BIT;
9618f2efd6SDavid Cunado 	/*
9718f2efd6SDavid Cunado 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
9818f2efd6SDavid Cunado 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
9918f2efd6SDavid Cunado 	 *  by the entrypoint attributes.
10018f2efd6SDavid Cunado 	 */
101532ed618SSoby Mathew 	if (EP_GET_ST(ep->h.attr))
102532ed618SSoby Mathew 		scr_el3 |= SCR_ST_BIT;
103532ed618SSoby Mathew 
104532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST
10518f2efd6SDavid Cunado 	/*
10618f2efd6SDavid Cunado 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
10718f2efd6SDavid Cunado 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
10818f2efd6SDavid Cunado 	 *  Aborts are taken to EL3.
10918f2efd6SDavid Cunado 	 */
110532ed618SSoby Mathew 	scr_el3 &= ~SCR_EA_BIT;
111532ed618SSoby Mathew #endif
112532ed618SSoby Mathew 
1133d8256b2SMasahiro Yamada #ifdef IMAGE_BL31
114532ed618SSoby Mathew 	/*
11518f2efd6SDavid Cunado 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
11618f2efd6SDavid Cunado 	 *  indicated by the interrupt routing model for BL31.
117532ed618SSoby Mathew 	 */
118532ed618SSoby Mathew 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
119532ed618SSoby Mathew #endif
120532ed618SSoby Mathew 
121532ed618SSoby Mathew 	/*
12218f2efd6SDavid Cunado 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
12318f2efd6SDavid Cunado 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
12418f2efd6SDavid Cunado 	 * next mode is Hyp.
125532ed618SSoby Mathew 	 */
126532ed618SSoby Mathew 	if ((GET_RW(ep->spsr) == MODE_RW_64
127532ed618SSoby Mathew 	     && GET_EL(ep->spsr) == MODE_EL2)
128532ed618SSoby Mathew 	    || (GET_RW(ep->spsr) != MODE_RW_64
129532ed618SSoby Mathew 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
130532ed618SSoby Mathew 		scr_el3 |= SCR_HCE_BIT;
131532ed618SSoby Mathew 	}
132532ed618SSoby Mathew 
13318f2efd6SDavid Cunado 	/*
13418f2efd6SDavid Cunado 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
13518f2efd6SDavid Cunado 	 * execution state setting all fields rather than relying of the hw.
13618f2efd6SDavid Cunado 	 * Some fields have architecturally UNKNOWN reset values and these are
13718f2efd6SDavid Cunado 	 * set to zero.
13818f2efd6SDavid Cunado 	 *
13918f2efd6SDavid Cunado 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
14018f2efd6SDavid Cunado 	 *
14118f2efd6SDavid Cunado 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
14218f2efd6SDavid Cunado 	 *  required by PSCI specification)
14318f2efd6SDavid Cunado 	 */
14418f2efd6SDavid Cunado 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
14518f2efd6SDavid Cunado 	if (GET_RW(ep->spsr) == MODE_RW_64)
14618f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_EL1_RES1;
14718f2efd6SDavid Cunado 	else {
14818f2efd6SDavid Cunado 		/*
14918f2efd6SDavid Cunado 		 * If the target execution state is AArch32 then the following
15018f2efd6SDavid Cunado 		 * fields need to be set.
15118f2efd6SDavid Cunado 		 *
15218f2efd6SDavid Cunado 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
15318f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
15418f2efd6SDavid Cunado 		 *
15518f2efd6SDavid Cunado 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
15618f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
15718f2efd6SDavid Cunado 		 *
15818f2efd6SDavid Cunado 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
15918f2efd6SDavid Cunado 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
16018f2efd6SDavid Cunado 		 */
16118f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
16218f2efd6SDavid Cunado 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
16318f2efd6SDavid Cunado 	}
16418f2efd6SDavid Cunado 
16518f2efd6SDavid Cunado 	/*
16618f2efd6SDavid Cunado 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
16718f2efd6SDavid Cunado 	 * and other EL2 resgisters are set up by cm_preapre_ns_entry() as they
16818f2efd6SDavid Cunado 	 * are not part of the stored cpu_context.
16918f2efd6SDavid Cunado 	 */
17018f2efd6SDavid Cunado 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
17118f2efd6SDavid Cunado 
172532ed618SSoby Mathew 	/* Populate EL3 state so that we've the right context before doing ERET */
173532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
174532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
176532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
177532ed618SSoby Mathew 
178532ed618SSoby Mathew 	/*
179532ed618SSoby Mathew 	 * Store the X0-X7 value from the entrypoint into the context
180532ed618SSoby Mathew 	 * Use memcpy as we are in control of the layout of the structures
181532ed618SSoby Mathew 	 */
182532ed618SSoby Mathew 	gp_regs = get_gpregs_ctx(ctx);
183532ed618SSoby Mathew 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
184532ed618SSoby Mathew }
185532ed618SSoby Mathew 
186532ed618SSoby Mathew /*******************************************************************************
187532ed618SSoby Mathew  * The following function initializes the cpu_context for a CPU specified by
188532ed618SSoby Mathew  * its `cpu_idx` for first use, and sets the initial entrypoint state as
189532ed618SSoby Mathew  * specified by the entry_point_info structure.
190532ed618SSoby Mathew  ******************************************************************************/
191532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx,
192532ed618SSoby Mathew 			      const entry_point_info_t *ep)
193532ed618SSoby Mathew {
194532ed618SSoby Mathew 	cpu_context_t *ctx;
195532ed618SSoby Mathew 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
196532ed618SSoby Mathew 	cm_init_context_common(ctx, ep);
197532ed618SSoby Mathew }
198532ed618SSoby Mathew 
199532ed618SSoby Mathew /*******************************************************************************
200532ed618SSoby Mathew  * The following function initializes the cpu_context for the current CPU
201532ed618SSoby Mathew  * for first use, and sets the initial entrypoint state as specified by the
202532ed618SSoby Mathew  * entry_point_info structure.
203532ed618SSoby Mathew  ******************************************************************************/
204532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep)
205532ed618SSoby Mathew {
206532ed618SSoby Mathew 	cpu_context_t *ctx;
207532ed618SSoby Mathew 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
208532ed618SSoby Mathew 	cm_init_context_common(ctx, ep);
209532ed618SSoby Mathew }
210532ed618SSoby Mathew 
211532ed618SSoby Mathew /*******************************************************************************
212532ed618SSoby Mathew  * Prepare the CPU system registers for first entry into secure or normal world
213532ed618SSoby Mathew  *
214532ed618SSoby Mathew  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
215532ed618SSoby Mathew  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
216532ed618SSoby Mathew  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
217532ed618SSoby Mathew  * For all entries, the EL1 registers are initialized from the cpu_context
218532ed618SSoby Mathew  ******************************************************************************/
219532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state)
220532ed618SSoby Mathew {
221*d832aee9Sdp-arm 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
222532ed618SSoby Mathew 	cpu_context_t *ctx = cm_get_context(security_state);
223532ed618SSoby Mathew 
224532ed618SSoby Mathew 	assert(ctx);
225532ed618SSoby Mathew 
226532ed618SSoby Mathew 	if (security_state == NON_SECURE) {
227532ed618SSoby Mathew 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
228532ed618SSoby Mathew 		if (scr_el3 & SCR_HCE_BIT) {
229532ed618SSoby Mathew 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
230532ed618SSoby Mathew 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
231532ed618SSoby Mathew 						 CTX_SCTLR_EL1);
232532ed618SSoby Mathew 			sctlr_elx &= ~SCTLR_EE_BIT;
233532ed618SSoby Mathew 			sctlr_elx |= SCTLR_EL2_RES1;
234532ed618SSoby Mathew 			write_sctlr_el2(sctlr_elx);
235f4c8aa90SJeenu Viswambharan 		} else if (EL_IMPLEMENTED(2)) {
23618f2efd6SDavid Cunado 			/*
23718f2efd6SDavid Cunado 			 * EL2 present but unused, need to disable safely.
23818f2efd6SDavid Cunado 			 * SCTLR_EL2 can be ignored in this case.
23918f2efd6SDavid Cunado 			 *
24018f2efd6SDavid Cunado 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
24118f2efd6SDavid Cunado 			 * to zero so that Non-secure operations do not trap to
24218f2efd6SDavid Cunado 			 * EL2.
24318f2efd6SDavid Cunado 			 *
24418f2efd6SDavid Cunado 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
24518f2efd6SDavid Cunado 			 */
246532ed618SSoby Mathew 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
247532ed618SSoby Mathew 
24818f2efd6SDavid Cunado 			/*
24918f2efd6SDavid Cunado 			 * Initialise CPTR_EL2 setting all fields rather than
25018f2efd6SDavid Cunado 			 * relying on the hw. All fields have architecturally
25118f2efd6SDavid Cunado 			 * UNKNOWN reset values.
25218f2efd6SDavid Cunado 			 *
25318f2efd6SDavid Cunado 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
25418f2efd6SDavid Cunado 			 *  accesses to the CPACR_EL1 or CPACR from both
25518f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
25618f2efd6SDavid Cunado 			 *
25718f2efd6SDavid Cunado 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
25818f2efd6SDavid Cunado 			 *  register accesses to the trace registers from both
25918f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
26018f2efd6SDavid Cunado 			 *
26118f2efd6SDavid Cunado 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
26218f2efd6SDavid Cunado 			 *  to SIMD and floating-point functionality from both
26318f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
26418f2efd6SDavid Cunado 			 */
26518f2efd6SDavid Cunado 			write_cptr_el2(CPTR_EL2_RESET_VAL &
26618f2efd6SDavid Cunado 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
26718f2efd6SDavid Cunado 					| CPTR_EL2_TFP_BIT));
268532ed618SSoby Mathew 
26918f2efd6SDavid Cunado 			/*
27018f2efd6SDavid Cunado 			 * Initiliase CNTHCTL_EL2. All fields are
27118f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset and are set to zero
27218f2efd6SDavid Cunado 			 * except for field(s) listed below.
27318f2efd6SDavid Cunado 			 *
27418f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
27518f2efd6SDavid Cunado 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
27618f2efd6SDavid Cunado 			 *  physical timer registers.
27718f2efd6SDavid Cunado 			 *
27818f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
27918f2efd6SDavid Cunado 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
28018f2efd6SDavid Cunado 			 *  physical counter registers.
28118f2efd6SDavid Cunado 			 */
28218f2efd6SDavid Cunado 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
28318f2efd6SDavid Cunado 						EL1PCEN_BIT | EL1PCTEN_BIT);
284532ed618SSoby Mathew 
28518f2efd6SDavid Cunado 			/*
28618f2efd6SDavid Cunado 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
28718f2efd6SDavid Cunado 			 * architecturally UNKNOWN value.
28818f2efd6SDavid Cunado 			 */
289532ed618SSoby Mathew 			write_cntvoff_el2(0);
290532ed618SSoby Mathew 
29118f2efd6SDavid Cunado 			/*
29218f2efd6SDavid Cunado 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
29318f2efd6SDavid Cunado 			 * MPIDR_EL1 respectively.
29418f2efd6SDavid Cunado 			 */
295532ed618SSoby Mathew 			write_vpidr_el2(read_midr_el1());
296532ed618SSoby Mathew 			write_vmpidr_el2(read_mpidr_el1());
297532ed618SSoby Mathew 
298532ed618SSoby Mathew 			/*
29918f2efd6SDavid Cunado 			 * Initialise VTTBR_EL2. All fields are architecturally
30018f2efd6SDavid Cunado 			 * UNKNOWN on reset.
30118f2efd6SDavid Cunado 			 *
30218f2efd6SDavid Cunado 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
30318f2efd6SDavid Cunado 			 *  2 address translation is disabled, cache maintenance
30418f2efd6SDavid Cunado 			 *  operations depend on the VMID.
30518f2efd6SDavid Cunado 			 *
30618f2efd6SDavid Cunado 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
30718f2efd6SDavid Cunado 			 *  translation is disabled.
308532ed618SSoby Mathew 			 */
30918f2efd6SDavid Cunado 			write_vttbr_el2(VTTBR_RESET_VAL &
31018f2efd6SDavid Cunado 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
31118f2efd6SDavid Cunado 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
31218f2efd6SDavid Cunado 
313495f3d3cSDavid Cunado 			/*
31418f2efd6SDavid Cunado 			 * Initialise MDCR_EL2, setting all fields rather than
31518f2efd6SDavid Cunado 			 * relying on hw. Some fields are architecturally
31618f2efd6SDavid Cunado 			 * UNKNOWN on reset.
31718f2efd6SDavid Cunado 			 *
318*d832aee9Sdp-arm 			 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
319*d832aee9Sdp-arm 			 * profiling controls to EL2.
320*d832aee9Sdp-arm 			 *
321*d832aee9Sdp-arm 			 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
322*d832aee9Sdp-arm 			 * state. Accesses to profiling buffer controls at
323*d832aee9Sdp-arm 			 * non-secure EL1 are not trapped to EL2.
324*d832aee9Sdp-arm 			 *
32518f2efd6SDavid Cunado 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
32618f2efd6SDavid Cunado 			 *  EL1 System register accesses to the Debug ROM
32718f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
32818f2efd6SDavid Cunado 			 *
32918f2efd6SDavid Cunado 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
33018f2efd6SDavid Cunado 			 *  System register accesses to the powerdown debug
33118f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
33218f2efd6SDavid Cunado 			 *
33318f2efd6SDavid Cunado 			 * MDCR_EL2.TDA: Set to zero so that System register
33418f2efd6SDavid Cunado 			 *  accesses to the debug registers do not trap to EL2.
33518f2efd6SDavid Cunado 			 *
33618f2efd6SDavid Cunado 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
33718f2efd6SDavid Cunado 			 *  are not routed to EL2.
33818f2efd6SDavid Cunado 			 *
33918f2efd6SDavid Cunado 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
34018f2efd6SDavid Cunado 			 *  Monitors.
34118f2efd6SDavid Cunado 			 *
34218f2efd6SDavid Cunado 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
34318f2efd6SDavid Cunado 			 *  EL1 accesses to all Performance Monitors registers
34418f2efd6SDavid Cunado 			 *  are not trapped to EL2.
34518f2efd6SDavid Cunado 			 *
34618f2efd6SDavid Cunado 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
34718f2efd6SDavid Cunado 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
34818f2efd6SDavid Cunado 			 *  trapped to EL2.
34918f2efd6SDavid Cunado 			 *
35018f2efd6SDavid Cunado 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
35118f2efd6SDavid Cunado 			 *  architecturally-defined reset value.
352495f3d3cSDavid Cunado 			 */
353*d832aee9Sdp-arm 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
35418f2efd6SDavid Cunado 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
35518f2efd6SDavid Cunado 					>> PMCR_EL0_N_SHIFT)) &
35618f2efd6SDavid Cunado 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
35718f2efd6SDavid Cunado 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
35818f2efd6SDavid Cunado 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
35918f2efd6SDavid Cunado 					| MDCR_EL2_TPMCR_BIT));
360*d832aee9Sdp-arm 
361*d832aee9Sdp-arm #if ENABLE_SPE_FOR_LOWER_ELS
362*d832aee9Sdp-arm 			uint64_t id_aa64dfr0_el1;
363*d832aee9Sdp-arm 
364*d832aee9Sdp-arm 			/* Detect if SPE is implemented */
365*d832aee9Sdp-arm 			id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
366*d832aee9Sdp-arm 				ID_AA64DFR0_PMS_SHIFT;
367*d832aee9Sdp-arm 			if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
368*d832aee9Sdp-arm 				/*
369*d832aee9Sdp-arm 				 * Make sure traps to EL2 are not generated if
370*d832aee9Sdp-arm 				 * EL2 is implemented but not used.
371*d832aee9Sdp-arm 				 */
372*d832aee9Sdp-arm 				mdcr_el2 &= ~MDCR_EL2_TPMS;
373*d832aee9Sdp-arm 				mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
374*d832aee9Sdp-arm 			}
375*d832aee9Sdp-arm #endif
376*d832aee9Sdp-arm 
377*d832aee9Sdp-arm 			write_mdcr_el2(mdcr_el2);
378*d832aee9Sdp-arm 
379939f66d6SDavid Cunado 			/*
38018f2efd6SDavid Cunado 			 * Initialise HSTR_EL2. All fields are architecturally
38118f2efd6SDavid Cunado 			 * UNKNOWN on reset.
38218f2efd6SDavid Cunado 			 *
38318f2efd6SDavid Cunado 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
38418f2efd6SDavid Cunado 			 *  Non-secure EL0 or EL1 accesses to System registers
38518f2efd6SDavid Cunado 			 *  do not trap to EL2.
386939f66d6SDavid Cunado 			 */
38718f2efd6SDavid Cunado 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
388939f66d6SDavid Cunado 			/*
38918f2efd6SDavid Cunado 			 * Initialise CNTHP_CTL_EL2. All fields are
39018f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset.
39118f2efd6SDavid Cunado 			 *
39218f2efd6SDavid Cunado 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
39318f2efd6SDavid Cunado 			 *  physical timer and prevent timer interrupts.
394939f66d6SDavid Cunado 			 */
39518f2efd6SDavid Cunado 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
39618f2efd6SDavid Cunado 						~(CNTHP_CTL_ENABLE_BIT));
397532ed618SSoby Mathew 		}
398532ed618SSoby Mathew 	}
399532ed618SSoby Mathew 
400532ed618SSoby Mathew 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
401532ed618SSoby Mathew 
402532ed618SSoby Mathew 	cm_set_next_context(ctx);
403532ed618SSoby Mathew }
404532ed618SSoby Mathew 
405532ed618SSoby Mathew /*******************************************************************************
406532ed618SSoby Mathew  * The next four functions are used by runtime services to save and restore
407532ed618SSoby Mathew  * EL1 context on the 'cpu_context' structure for the specified security
408532ed618SSoby Mathew  * state.
409532ed618SSoby Mathew  ******************************************************************************/
410532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state)
411532ed618SSoby Mathew {
412532ed618SSoby Mathew 	cpu_context_t *ctx;
413532ed618SSoby Mathew 
414532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
415532ed618SSoby Mathew 	assert(ctx);
416532ed618SSoby Mathew 
417532ed618SSoby Mathew 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
418*d832aee9Sdp-arm 	el1_sysregs_context_save_post_ops();
419532ed618SSoby Mathew }
420532ed618SSoby Mathew 
421532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state)
422532ed618SSoby Mathew {
423532ed618SSoby Mathew 	cpu_context_t *ctx;
424532ed618SSoby Mathew 
425532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
426532ed618SSoby Mathew 	assert(ctx);
427532ed618SSoby Mathew 
428532ed618SSoby Mathew 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
429532ed618SSoby Mathew }
430532ed618SSoby Mathew 
431532ed618SSoby Mathew /*******************************************************************************
432532ed618SSoby Mathew  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
433532ed618SSoby Mathew  * given security state with the given entrypoint
434532ed618SSoby Mathew  ******************************************************************************/
435532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
436532ed618SSoby Mathew {
437532ed618SSoby Mathew 	cpu_context_t *ctx;
438532ed618SSoby Mathew 	el3_state_t *state;
439532ed618SSoby Mathew 
440532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
441532ed618SSoby Mathew 	assert(ctx);
442532ed618SSoby Mathew 
443532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
444532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
445532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
446532ed618SSoby Mathew }
447532ed618SSoby Mathew 
448532ed618SSoby Mathew /*******************************************************************************
449532ed618SSoby Mathew  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
450532ed618SSoby Mathew  * pertaining to the given security state
451532ed618SSoby Mathew  ******************************************************************************/
452532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state,
453532ed618SSoby Mathew 			uintptr_t entrypoint, uint32_t spsr)
454532ed618SSoby Mathew {
455532ed618SSoby Mathew 	cpu_context_t *ctx;
456532ed618SSoby Mathew 	el3_state_t *state;
457532ed618SSoby Mathew 
458532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
459532ed618SSoby Mathew 	assert(ctx);
460532ed618SSoby Mathew 
461532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
462532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
463532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
464532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
465532ed618SSoby Mathew }
466532ed618SSoby Mathew 
467532ed618SSoby Mathew /*******************************************************************************
468532ed618SSoby Mathew  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
469532ed618SSoby Mathew  * pertaining to the given security state using the value and bit position
470532ed618SSoby Mathew  * specified in the parameters. It preserves all other bits.
471532ed618SSoby Mathew  ******************************************************************************/
472532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state,
473532ed618SSoby Mathew 			  uint32_t bit_pos,
474532ed618SSoby Mathew 			  uint32_t value)
475532ed618SSoby Mathew {
476532ed618SSoby Mathew 	cpu_context_t *ctx;
477532ed618SSoby Mathew 	el3_state_t *state;
478532ed618SSoby Mathew 	uint32_t scr_el3;
479532ed618SSoby Mathew 
480532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
481532ed618SSoby Mathew 	assert(ctx);
482532ed618SSoby Mathew 
483532ed618SSoby Mathew 	/* Ensure that the bit position is a valid one */
484532ed618SSoby Mathew 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
485532ed618SSoby Mathew 
486532ed618SSoby Mathew 	/* Ensure that the 'value' is only a bit wide */
487532ed618SSoby Mathew 	assert(value <= 1);
488532ed618SSoby Mathew 
489532ed618SSoby Mathew 	/*
490532ed618SSoby Mathew 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
491532ed618SSoby Mathew 	 * and set it to its new value.
492532ed618SSoby Mathew 	 */
493532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
494532ed618SSoby Mathew 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
495532ed618SSoby Mathew 	scr_el3 &= ~(1 << bit_pos);
496532ed618SSoby Mathew 	scr_el3 |= value << bit_pos;
497532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
498532ed618SSoby Mathew }
499532ed618SSoby Mathew 
500532ed618SSoby Mathew /*******************************************************************************
501532ed618SSoby Mathew  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
502532ed618SSoby Mathew  * given security state.
503532ed618SSoby Mathew  ******************************************************************************/
504532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state)
505532ed618SSoby Mathew {
506532ed618SSoby Mathew 	cpu_context_t *ctx;
507532ed618SSoby Mathew 	el3_state_t *state;
508532ed618SSoby Mathew 
509532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
510532ed618SSoby Mathew 	assert(ctx);
511532ed618SSoby Mathew 
512532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
513532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
514532ed618SSoby Mathew 	return read_ctx_reg(state, CTX_SCR_EL3);
515532ed618SSoby Mathew }
516532ed618SSoby Mathew 
517532ed618SSoby Mathew /*******************************************************************************
518532ed618SSoby Mathew  * This function is used to program the context that's used for exception
519532ed618SSoby Mathew  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
520532ed618SSoby Mathew  * the required security state
521532ed618SSoby Mathew  ******************************************************************************/
522532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state)
523532ed618SSoby Mathew {
524532ed618SSoby Mathew 	cpu_context_t *ctx;
525532ed618SSoby Mathew 
526532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
527532ed618SSoby Mathew 	assert(ctx);
528532ed618SSoby Mathew 
529532ed618SSoby Mathew 	cm_set_next_context(ctx);
530532ed618SSoby Mathew }
531