1532ed618SSoby Mathew /* 2085e80ecSAntonio Nino Diaz * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7380559c1SDimitris Papastamos #include <amu.h> 8532ed618SSoby Mathew #include <arch.h> 9532ed618SSoby Mathew #include <arch_helpers.h> 10532ed618SSoby Mathew #include <assert.h> 11532ed618SSoby Mathew #include <bl_common.h> 12532ed618SSoby Mathew #include <context.h> 13532ed618SSoby Mathew #include <context_mgmt.h> 14532ed618SSoby Mathew #include <interrupt_mgmt.h> 155f835918SJeenu Viswambharan #include <mpam.h> 16532ed618SSoby Mathew #include <platform.h> 17532ed618SSoby Mathew #include <platform_def.h> 1817b4c0ddSDimitris Papastamos #include <pubsub_events.h> 19085e80ecSAntonio Nino Diaz #include <smccc_helpers.h> 20281a08ccSDimitris Papastamos #include <spe.h> 21*40daecc1SAntonio Nino Diaz #include <stdbool.h> 22532ed618SSoby Mathew #include <string.h> 231a853370SDavid Cunado #include <sve.h> 2432f0d3c6SDouglas Raillard #include <utils.h> 25532ed618SSoby Mathew 26532ed618SSoby Mathew 27532ed618SSoby Mathew /******************************************************************************* 28532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 29532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 30532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 31532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 32532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 33532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 34532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 35532ed618SSoby Mathew * state cpu context pointers. 36532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 37532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 38532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 39532ed618SSoby Mathew ******************************************************************************/ 4087c85134SDaniel Boulby void __init cm_init(void) 41532ed618SSoby Mathew { 42532ed618SSoby Mathew /* 43532ed618SSoby Mathew * The context management library has only global data to intialize, but 44532ed618SSoby Mathew * that will be done when the BSS is zeroed out 45532ed618SSoby Mathew */ 46532ed618SSoby Mathew } 47532ed618SSoby Mathew 48532ed618SSoby Mathew /******************************************************************************* 49532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 50532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 51532ed618SSoby Mathew * entry_point_info structure. 52532ed618SSoby Mathew * 53532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 541634cae8SAntonio Nino Diaz * of the entry_point_info. 55532ed618SSoby Mathew * 56532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 57532ed618SSoby Mathew * timer availability for the new execution context. 58532ed618SSoby Mathew * 59532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 60532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 61532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 62532ed618SSoby Mathew ******************************************************************************/ 631634cae8SAntonio Nino Diaz void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 64532ed618SSoby Mathew { 65532ed618SSoby Mathew unsigned int security_state; 663e61b2b5SDavid Cunado uint32_t scr_el3, pmcr_el0; 67532ed618SSoby Mathew el3_state_t *state; 68532ed618SSoby Mathew gp_regs_t *gp_regs; 692ab9617eSVarun Wadekar unsigned long sctlr_elx, actlr_elx; 70532ed618SSoby Mathew 71532ed618SSoby Mathew assert(ctx); 72532ed618SSoby Mathew 73532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 74532ed618SSoby Mathew 75532ed618SSoby Mathew /* Clear any residual register values from the context */ 7632f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 77532ed618SSoby Mathew 78532ed618SSoby Mathew /* 7918f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 8018f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 8118f2efd6SDavid Cunado * affect the next EL. 8218f2efd6SDavid Cunado * 8318f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 8418f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 8518f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 86532ed618SSoby Mathew */ 87532ed618SSoby Mathew scr_el3 = read_scr(); 88532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 89532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 9018f2efd6SDavid Cunado /* 9118f2efd6SDavid Cunado * SCR_NS: Set the security state of the next EL. 9218f2efd6SDavid Cunado */ 93532ed618SSoby Mathew if (security_state != SECURE) 94532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 9518f2efd6SDavid Cunado /* 9618f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 9718f2efd6SDavid Cunado * Exception level as specified by SPSR. 9818f2efd6SDavid Cunado */ 99532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 100532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 10118f2efd6SDavid Cunado /* 10218f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 10318f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 10418f2efd6SDavid Cunado * by the entrypoint attributes. 10518f2efd6SDavid Cunado */ 106532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 107532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 108532ed618SSoby Mathew 10924f671f3SJulius Werner #if !HANDLE_EA_EL3_FIRST 11018f2efd6SDavid Cunado /* 11118f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 11218f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 11318f2efd6SDavid Cunado * Aborts are taken to EL3. 11418f2efd6SDavid Cunado */ 115532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 116532ed618SSoby Mathew #endif 117532ed618SSoby Mathew 1181a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT 1191a7c1cfeSJeenu Viswambharan /* Enable fault injection from lower ELs */ 1201a7c1cfeSJeenu Viswambharan scr_el3 |= SCR_FIEN_BIT; 1211a7c1cfeSJeenu Viswambharan #endif 1221a7c1cfeSJeenu Viswambharan 1233d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 124532ed618SSoby Mathew /* 12518f2efd6SDavid Cunado * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 12618f2efd6SDavid Cunado * indicated by the interrupt routing model for BL31. 127532ed618SSoby Mathew */ 128532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 129532ed618SSoby Mathew #endif 130532ed618SSoby Mathew 131532ed618SSoby Mathew /* 13218f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 13318f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 13418f2efd6SDavid Cunado * next mode is Hyp. 135532ed618SSoby Mathew */ 136532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 137532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 138532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 139532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 140532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 141532ed618SSoby Mathew } 142532ed618SSoby Mathew 14318f2efd6SDavid Cunado /* 14418f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 14518f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 14618f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 14718f2efd6SDavid Cunado * set to zero. 14818f2efd6SDavid Cunado * 14918f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 15018f2efd6SDavid Cunado * 15118f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 15218f2efd6SDavid Cunado * required by PSCI specification) 15318f2efd6SDavid Cunado */ 15418f2efd6SDavid Cunado sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 15518f2efd6SDavid Cunado if (GET_RW(ep->spsr) == MODE_RW_64) 15618f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 15718f2efd6SDavid Cunado else { 15818f2efd6SDavid Cunado /* 15918f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 16018f2efd6SDavid Cunado * fields need to be set. 16118f2efd6SDavid Cunado * 16218f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 16318f2efd6SDavid Cunado * instructions are not trapped to EL1. 16418f2efd6SDavid Cunado * 16518f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 16618f2efd6SDavid Cunado * instructions are not trapped to EL1. 16718f2efd6SDavid Cunado * 16818f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 16918f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 17018f2efd6SDavid Cunado */ 17118f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 17218f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 17318f2efd6SDavid Cunado } 17418f2efd6SDavid Cunado 17518f2efd6SDavid Cunado /* 17618f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 1773e61b2b5SDavid Cunado * and other EL2 registers are set up by cm_preapre_ns_entry() as they 17818f2efd6SDavid Cunado * are not part of the stored cpu_context. 17918f2efd6SDavid Cunado */ 18018f2efd6SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 18118f2efd6SDavid Cunado 1822ab9617eSVarun Wadekar /* 1832ab9617eSVarun Wadekar * Base the context ACTLR_EL1 on the current value, as it is 1842ab9617eSVarun Wadekar * implementation defined. The context restore process will write 1852ab9617eSVarun Wadekar * the value from the context to the actual register and can cause 1862ab9617eSVarun Wadekar * problems for processor cores that don't expect certain bits to 1872ab9617eSVarun Wadekar * be zero. 1882ab9617eSVarun Wadekar */ 1892ab9617eSVarun Wadekar actlr_elx = read_actlr_el1(); 1902ab9617eSVarun Wadekar write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 1912ab9617eSVarun Wadekar 1923e61b2b5SDavid Cunado if (security_state == SECURE) { 1933e61b2b5SDavid Cunado /* 1943e61b2b5SDavid Cunado * Initialise PMCR_EL0 for secure context only, setting all 1953e61b2b5SDavid Cunado * fields rather than relying on hw. Some fields are 1963e61b2b5SDavid Cunado * architecturally UNKNOWN on reset. 1973e61b2b5SDavid Cunado * 1983e61b2b5SDavid Cunado * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 1993e61b2b5SDavid Cunado * is recorded in PMOVSCLR_EL0[31], occurs on the increment 2003e61b2b5SDavid Cunado * that changes PMCCNTR_EL0[63] from 1 to 0. 2013e61b2b5SDavid Cunado * 2023e61b2b5SDavid Cunado * PMCR_EL0.DP: Set to one so that the cycle counter, 2033e61b2b5SDavid Cunado * PMCCNTR_EL0 does not count when event counting is prohibited. 2043e61b2b5SDavid Cunado * 2053e61b2b5SDavid Cunado * PMCR_EL0.X: Set to zero to disable export of events. 2063e61b2b5SDavid Cunado * 2073e61b2b5SDavid Cunado * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 2083e61b2b5SDavid Cunado * counts on every clock cycle. 2093e61b2b5SDavid Cunado */ 2103e61b2b5SDavid Cunado pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 2113e61b2b5SDavid Cunado | PMCR_EL0_DP_BIT) 2123e61b2b5SDavid Cunado & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 2133e61b2b5SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 2143e61b2b5SDavid Cunado } 2153e61b2b5SDavid Cunado 216532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 217532ed618SSoby Mathew state = get_el3state_ctx(ctx); 218532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 219532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 220532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 221532ed618SSoby Mathew 222532ed618SSoby Mathew /* 223532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 224532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 225532ed618SSoby Mathew */ 226532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 227532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 228532ed618SSoby Mathew } 229532ed618SSoby Mathew 230532ed618SSoby Mathew /******************************************************************************* 2310fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 2320fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 2330fd0f222SDimitris Papastamos * it is zero. 2340fd0f222SDimitris Papastamos ******************************************************************************/ 235*40daecc1SAntonio Nino Diaz static void enable_extensions_nonsecure(bool el2_unused) 2360fd0f222SDimitris Papastamos { 2370fd0f222SDimitris Papastamos #if IMAGE_BL31 238281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 239281a08ccSDimitris Papastamos spe_enable(el2_unused); 240281a08ccSDimitris Papastamos #endif 241380559c1SDimitris Papastamos 242380559c1SDimitris Papastamos #if ENABLE_AMU 243380559c1SDimitris Papastamos amu_enable(el2_unused); 244380559c1SDimitris Papastamos #endif 2451a853370SDavid Cunado 2461a853370SDavid Cunado #if ENABLE_SVE_FOR_NS 2471a853370SDavid Cunado sve_enable(el2_unused); 2481a853370SDavid Cunado #endif 2495f835918SJeenu Viswambharan 2505f835918SJeenu Viswambharan #if ENABLE_MPAM_FOR_LOWER_ELS 2515f835918SJeenu Viswambharan mpam_enable(el2_unused); 2525f835918SJeenu Viswambharan #endif 2530fd0f222SDimitris Papastamos #endif 2540fd0f222SDimitris Papastamos } 2550fd0f222SDimitris Papastamos 2560fd0f222SDimitris Papastamos /******************************************************************************* 257532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 258532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 259532ed618SSoby Mathew * specified by the entry_point_info structure. 260532ed618SSoby Mathew ******************************************************************************/ 261532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 262532ed618SSoby Mathew const entry_point_info_t *ep) 263532ed618SSoby Mathew { 264532ed618SSoby Mathew cpu_context_t *ctx; 265532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 2661634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 267532ed618SSoby Mathew } 268532ed618SSoby Mathew 269532ed618SSoby Mathew /******************************************************************************* 270532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 271532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 272532ed618SSoby Mathew * entry_point_info structure. 273532ed618SSoby Mathew ******************************************************************************/ 274532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 275532ed618SSoby Mathew { 276532ed618SSoby Mathew cpu_context_t *ctx; 277532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 2781634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 279532ed618SSoby Mathew } 280532ed618SSoby Mathew 281532ed618SSoby Mathew /******************************************************************************* 282532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 283532ed618SSoby Mathew * 284532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 285532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 286532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 287532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 288532ed618SSoby Mathew ******************************************************************************/ 289532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 290532ed618SSoby Mathew { 291d832aee9Sdp-arm uint32_t sctlr_elx, scr_el3, mdcr_el2; 292532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 293*40daecc1SAntonio Nino Diaz bool el2_unused = false; 2943ff4aaacSJeenu Viswambharan uint64_t hcr_el2 = 0; 295532ed618SSoby Mathew 296532ed618SSoby Mathew assert(ctx); 297532ed618SSoby Mathew 298532ed618SSoby Mathew if (security_state == NON_SECURE) { 299532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 300532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 301532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 302532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 303532ed618SSoby Mathew CTX_SCTLR_EL1); 3042e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 305532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 306532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 307f4c8aa90SJeenu Viswambharan } else if (EL_IMPLEMENTED(2)) { 308*40daecc1SAntonio Nino Diaz el2_unused = true; 3090fd0f222SDimitris Papastamos 31018f2efd6SDavid Cunado /* 31118f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 31218f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 31318f2efd6SDavid Cunado * 3143ff4aaacSJeenu Viswambharan * Set EL2 register width appropriately: Set HCR_EL2 3153ff4aaacSJeenu Viswambharan * field to match SCR_EL3.RW. 31618f2efd6SDavid Cunado */ 3173ff4aaacSJeenu Viswambharan if (scr_el3 & SCR_RW_BIT) 3183ff4aaacSJeenu Viswambharan hcr_el2 |= HCR_RW_BIT; 3193ff4aaacSJeenu Viswambharan 3203ff4aaacSJeenu Viswambharan /* 3213ff4aaacSJeenu Viswambharan * For Armv8.3 pointer authentication feature, disable 3223ff4aaacSJeenu Viswambharan * traps to EL2 when accessing key registers or using 3233ff4aaacSJeenu Viswambharan * pointer authentication instructions from lower ELs. 3243ff4aaacSJeenu Viswambharan */ 3253ff4aaacSJeenu Viswambharan hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 3263ff4aaacSJeenu Viswambharan 3273ff4aaacSJeenu Viswambharan write_hcr_el2(hcr_el2); 328532ed618SSoby Mathew 32918f2efd6SDavid Cunado /* 33018f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 33118f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 33218f2efd6SDavid Cunado * UNKNOWN reset values. 33318f2efd6SDavid Cunado * 33418f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 33518f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 33618f2efd6SDavid Cunado * Execution states do not trap to EL2. 33718f2efd6SDavid Cunado * 33818f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 33918f2efd6SDavid Cunado * register accesses to the trace registers from both 34018f2efd6SDavid Cunado * Execution states do not trap to EL2. 34118f2efd6SDavid Cunado * 34218f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 34318f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 34418f2efd6SDavid Cunado * Execution states do not trap to EL2. 34518f2efd6SDavid Cunado */ 34618f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 34718f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 34818f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 349532ed618SSoby Mathew 35018f2efd6SDavid Cunado /* 35118f2efd6SDavid Cunado * Initiliase CNTHCTL_EL2. All fields are 35218f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 35318f2efd6SDavid Cunado * except for field(s) listed below. 35418f2efd6SDavid Cunado * 35518f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 35618f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 35718f2efd6SDavid Cunado * physical timer registers. 35818f2efd6SDavid Cunado * 35918f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 36018f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 36118f2efd6SDavid Cunado * physical counter registers. 36218f2efd6SDavid Cunado */ 36318f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 36418f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 365532ed618SSoby Mathew 36618f2efd6SDavid Cunado /* 36718f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 36818f2efd6SDavid Cunado * architecturally UNKNOWN value. 36918f2efd6SDavid Cunado */ 370532ed618SSoby Mathew write_cntvoff_el2(0); 371532ed618SSoby Mathew 37218f2efd6SDavid Cunado /* 37318f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 37418f2efd6SDavid Cunado * MPIDR_EL1 respectively. 37518f2efd6SDavid Cunado */ 376532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 377532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 378532ed618SSoby Mathew 379532ed618SSoby Mathew /* 38018f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 38118f2efd6SDavid Cunado * UNKNOWN on reset. 38218f2efd6SDavid Cunado * 38318f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 38418f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 38518f2efd6SDavid Cunado * operations depend on the VMID. 38618f2efd6SDavid Cunado * 38718f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 38818f2efd6SDavid Cunado * translation is disabled. 389532ed618SSoby Mathew */ 39018f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 39118f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 39218f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 39318f2efd6SDavid Cunado 394495f3d3cSDavid Cunado /* 39518f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 39618f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 39718f2efd6SDavid Cunado * UNKNOWN on reset. 39818f2efd6SDavid Cunado * 39918f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 40018f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 40118f2efd6SDavid Cunado * registers are not trapped to EL2. 40218f2efd6SDavid Cunado * 40318f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 40418f2efd6SDavid Cunado * System register accesses to the powerdown debug 40518f2efd6SDavid Cunado * registers are not trapped to EL2. 40618f2efd6SDavid Cunado * 40718f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 40818f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 40918f2efd6SDavid Cunado * 41018f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 41118f2efd6SDavid Cunado * are not routed to EL2. 41218f2efd6SDavid Cunado * 41318f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 41418f2efd6SDavid Cunado * Monitors. 41518f2efd6SDavid Cunado * 41618f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 41718f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 41818f2efd6SDavid Cunado * are not trapped to EL2. 41918f2efd6SDavid Cunado * 42018f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 42118f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 42218f2efd6SDavid Cunado * trapped to EL2. 42318f2efd6SDavid Cunado * 42418f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 42518f2efd6SDavid Cunado * architecturally-defined reset value. 426495f3d3cSDavid Cunado */ 427d832aee9Sdp-arm mdcr_el2 = ((MDCR_EL2_RESET_VAL | 42818f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 42918f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 43018f2efd6SDavid Cunado ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 43118f2efd6SDavid Cunado | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 43218f2efd6SDavid Cunado | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 43318f2efd6SDavid Cunado | MDCR_EL2_TPMCR_BIT)); 434d832aee9Sdp-arm 435d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 436d832aee9Sdp-arm 437939f66d6SDavid Cunado /* 43818f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 43918f2efd6SDavid Cunado * UNKNOWN on reset. 44018f2efd6SDavid Cunado * 44118f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 44218f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 44318f2efd6SDavid Cunado * do not trap to EL2. 444939f66d6SDavid Cunado */ 44518f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 446939f66d6SDavid Cunado /* 44718f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 44818f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 44918f2efd6SDavid Cunado * 45018f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 45118f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 452939f66d6SDavid Cunado */ 45318f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 45418f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 455532ed618SSoby Mathew } 4560fd0f222SDimitris Papastamos enable_extensions_nonsecure(el2_unused); 457532ed618SSoby Mathew } 458532ed618SSoby Mathew 45917b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 46017b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 461532ed618SSoby Mathew } 462532ed618SSoby Mathew 463532ed618SSoby Mathew /******************************************************************************* 464532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 465532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 466532ed618SSoby Mathew * state. 467532ed618SSoby Mathew ******************************************************************************/ 468532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 469532ed618SSoby Mathew { 470532ed618SSoby Mathew cpu_context_t *ctx; 471532ed618SSoby Mathew 472532ed618SSoby Mathew ctx = cm_get_context(security_state); 473532ed618SSoby Mathew assert(ctx); 474532ed618SSoby Mathew 475532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 47617b4c0ddSDimitris Papastamos 47717b4c0ddSDimitris Papastamos #if IMAGE_BL31 47817b4c0ddSDimitris Papastamos if (security_state == SECURE) 47917b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 48017b4c0ddSDimitris Papastamos else 48117b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 48217b4c0ddSDimitris Papastamos #endif 483532ed618SSoby Mathew } 484532ed618SSoby Mathew 485532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 486532ed618SSoby Mathew { 487532ed618SSoby Mathew cpu_context_t *ctx; 488532ed618SSoby Mathew 489532ed618SSoby Mathew ctx = cm_get_context(security_state); 490532ed618SSoby Mathew assert(ctx); 491532ed618SSoby Mathew 492532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 49317b4c0ddSDimitris Papastamos 49417b4c0ddSDimitris Papastamos #if IMAGE_BL31 49517b4c0ddSDimitris Papastamos if (security_state == SECURE) 49617b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 49717b4c0ddSDimitris Papastamos else 49817b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 49917b4c0ddSDimitris Papastamos #endif 500532ed618SSoby Mathew } 501532ed618SSoby Mathew 502532ed618SSoby Mathew /******************************************************************************* 503532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 504532ed618SSoby Mathew * given security state with the given entrypoint 505532ed618SSoby Mathew ******************************************************************************/ 506532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 507532ed618SSoby Mathew { 508532ed618SSoby Mathew cpu_context_t *ctx; 509532ed618SSoby Mathew el3_state_t *state; 510532ed618SSoby Mathew 511532ed618SSoby Mathew ctx = cm_get_context(security_state); 512532ed618SSoby Mathew assert(ctx); 513532ed618SSoby Mathew 514532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 515532ed618SSoby Mathew state = get_el3state_ctx(ctx); 516532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 517532ed618SSoby Mathew } 518532ed618SSoby Mathew 519532ed618SSoby Mathew /******************************************************************************* 520532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 521532ed618SSoby Mathew * pertaining to the given security state 522532ed618SSoby Mathew ******************************************************************************/ 523532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 524532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 525532ed618SSoby Mathew { 526532ed618SSoby Mathew cpu_context_t *ctx; 527532ed618SSoby Mathew el3_state_t *state; 528532ed618SSoby Mathew 529532ed618SSoby Mathew ctx = cm_get_context(security_state); 530532ed618SSoby Mathew assert(ctx); 531532ed618SSoby Mathew 532532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 533532ed618SSoby Mathew state = get_el3state_ctx(ctx); 534532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 535532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 536532ed618SSoby Mathew } 537532ed618SSoby Mathew 538532ed618SSoby Mathew /******************************************************************************* 539532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 540532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 541532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 542532ed618SSoby Mathew ******************************************************************************/ 543532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 544532ed618SSoby Mathew uint32_t bit_pos, 545532ed618SSoby Mathew uint32_t value) 546532ed618SSoby Mathew { 547532ed618SSoby Mathew cpu_context_t *ctx; 548532ed618SSoby Mathew el3_state_t *state; 549532ed618SSoby Mathew uint32_t scr_el3; 550532ed618SSoby Mathew 551532ed618SSoby Mathew ctx = cm_get_context(security_state); 552532ed618SSoby Mathew assert(ctx); 553532ed618SSoby Mathew 554532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 555532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 556532ed618SSoby Mathew 557532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 558532ed618SSoby Mathew assert(value <= 1); 559532ed618SSoby Mathew 560532ed618SSoby Mathew /* 561532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 562532ed618SSoby Mathew * and set it to its new value. 563532ed618SSoby Mathew */ 564532ed618SSoby Mathew state = get_el3state_ctx(ctx); 565532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 566532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 567532ed618SSoby Mathew scr_el3 |= value << bit_pos; 568532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 569532ed618SSoby Mathew } 570532ed618SSoby Mathew 571532ed618SSoby Mathew /******************************************************************************* 572532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 573532ed618SSoby Mathew * given security state. 574532ed618SSoby Mathew ******************************************************************************/ 575532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 576532ed618SSoby Mathew { 577532ed618SSoby Mathew cpu_context_t *ctx; 578532ed618SSoby Mathew el3_state_t *state; 579532ed618SSoby Mathew 580532ed618SSoby Mathew ctx = cm_get_context(security_state); 581532ed618SSoby Mathew assert(ctx); 582532ed618SSoby Mathew 583532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 584532ed618SSoby Mathew state = get_el3state_ctx(ctx); 585532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 586532ed618SSoby Mathew } 587532ed618SSoby Mathew 588532ed618SSoby Mathew /******************************************************************************* 589532ed618SSoby Mathew * This function is used to program the context that's used for exception 590532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 591532ed618SSoby Mathew * the required security state 592532ed618SSoby Mathew ******************************************************************************/ 593532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 594532ed618SSoby Mathew { 595532ed618SSoby Mathew cpu_context_t *ctx; 596532ed618SSoby Mathew 597532ed618SSoby Mathew ctx = cm_get_context(security_state); 598532ed618SSoby Mathew assert(ctx); 599532ed618SSoby Mathew 600532ed618SSoby Mathew cm_set_next_context(ctx); 601532ed618SSoby Mathew } 602