1532ed618SSoby Mathew /* 2085e80ecSAntonio Nino Diaz * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7380559c1SDimitris Papastamos #include <amu.h> 8532ed618SSoby Mathew #include <arch.h> 9532ed618SSoby Mathew #include <arch_helpers.h> 10532ed618SSoby Mathew #include <assert.h> 11532ed618SSoby Mathew #include <bl_common.h> 12532ed618SSoby Mathew #include <context.h> 13532ed618SSoby Mathew #include <context_mgmt.h> 14532ed618SSoby Mathew #include <interrupt_mgmt.h> 155f835918SJeenu Viswambharan #include <mpam.h> 16532ed618SSoby Mathew #include <platform.h> 17532ed618SSoby Mathew #include <platform_def.h> 1817b4c0ddSDimitris Papastamos #include <pubsub_events.h> 19085e80ecSAntonio Nino Diaz #include <smccc_helpers.h> 20281a08ccSDimitris Papastamos #include <spe.h> 21532ed618SSoby Mathew #include <string.h> 221a853370SDavid Cunado #include <sve.h> 2332f0d3c6SDouglas Raillard #include <utils.h> 24532ed618SSoby Mathew 25532ed618SSoby Mathew 26532ed618SSoby Mathew /******************************************************************************* 27532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 28532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 29532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 30532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 31532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 32532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 33532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 34532ed618SSoby Mathew * state cpu context pointers. 35532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 36532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 37532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 38532ed618SSoby Mathew ******************************************************************************/ 3987c85134SDaniel Boulby void __init cm_init(void) 40532ed618SSoby Mathew { 41532ed618SSoby Mathew /* 42532ed618SSoby Mathew * The context management library has only global data to intialize, but 43532ed618SSoby Mathew * that will be done when the BSS is zeroed out 44532ed618SSoby Mathew */ 45532ed618SSoby Mathew } 46532ed618SSoby Mathew 47532ed618SSoby Mathew /******************************************************************************* 48532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 49532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 50532ed618SSoby Mathew * entry_point_info structure. 51532ed618SSoby Mathew * 52532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 531634cae8SAntonio Nino Diaz * of the entry_point_info. 54532ed618SSoby Mathew * 55532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 56532ed618SSoby Mathew * timer availability for the new execution context. 57532ed618SSoby Mathew * 58532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 59532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 60532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 61532ed618SSoby Mathew ******************************************************************************/ 621634cae8SAntonio Nino Diaz void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 63532ed618SSoby Mathew { 64532ed618SSoby Mathew unsigned int security_state; 653e61b2b5SDavid Cunado uint32_t scr_el3, pmcr_el0; 66532ed618SSoby Mathew el3_state_t *state; 67532ed618SSoby Mathew gp_regs_t *gp_regs; 682ab9617eSVarun Wadekar unsigned long sctlr_elx, actlr_elx; 69532ed618SSoby Mathew 70532ed618SSoby Mathew assert(ctx); 71532ed618SSoby Mathew 72532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 73532ed618SSoby Mathew 74532ed618SSoby Mathew /* Clear any residual register values from the context */ 7532f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 76532ed618SSoby Mathew 77532ed618SSoby Mathew /* 7818f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 7918f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 8018f2efd6SDavid Cunado * affect the next EL. 8118f2efd6SDavid Cunado * 8218f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 8318f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 8418f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 85532ed618SSoby Mathew */ 86532ed618SSoby Mathew scr_el3 = read_scr(); 87532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 88532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 8918f2efd6SDavid Cunado /* 9018f2efd6SDavid Cunado * SCR_NS: Set the security state of the next EL. 9118f2efd6SDavid Cunado */ 92532ed618SSoby Mathew if (security_state != SECURE) 93532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 9418f2efd6SDavid Cunado /* 9518f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 9618f2efd6SDavid Cunado * Exception level as specified by SPSR. 9718f2efd6SDavid Cunado */ 98532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 99532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 10018f2efd6SDavid Cunado /* 10118f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 10218f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 10318f2efd6SDavid Cunado * by the entrypoint attributes. 10418f2efd6SDavid Cunado */ 105532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 106532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 107532ed618SSoby Mathew 10824f671f3SJulius Werner #if !HANDLE_EA_EL3_FIRST 10918f2efd6SDavid Cunado /* 11018f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 11118f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 11218f2efd6SDavid Cunado * Aborts are taken to EL3. 11318f2efd6SDavid Cunado */ 114532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 115532ed618SSoby Mathew #endif 116532ed618SSoby Mathew 1171a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT 1181a7c1cfeSJeenu Viswambharan /* Enable fault injection from lower ELs */ 1191a7c1cfeSJeenu Viswambharan scr_el3 |= SCR_FIEN_BIT; 1201a7c1cfeSJeenu Viswambharan #endif 1211a7c1cfeSJeenu Viswambharan 1223d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 123532ed618SSoby Mathew /* 12418f2efd6SDavid Cunado * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 12518f2efd6SDavid Cunado * indicated by the interrupt routing model for BL31. 126532ed618SSoby Mathew */ 127532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 128532ed618SSoby Mathew #endif 129532ed618SSoby Mathew 130532ed618SSoby Mathew /* 13118f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 13218f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 13318f2efd6SDavid Cunado * next mode is Hyp. 134532ed618SSoby Mathew */ 135532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 136532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 137532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 138532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 139532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 140532ed618SSoby Mathew } 141532ed618SSoby Mathew 14218f2efd6SDavid Cunado /* 14318f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 14418f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 14518f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 14618f2efd6SDavid Cunado * set to zero. 14718f2efd6SDavid Cunado * 14818f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 14918f2efd6SDavid Cunado * 15018f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 15118f2efd6SDavid Cunado * required by PSCI specification) 15218f2efd6SDavid Cunado */ 15318f2efd6SDavid Cunado sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 15418f2efd6SDavid Cunado if (GET_RW(ep->spsr) == MODE_RW_64) 15518f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 15618f2efd6SDavid Cunado else { 15718f2efd6SDavid Cunado /* 15818f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 15918f2efd6SDavid Cunado * fields need to be set. 16018f2efd6SDavid Cunado * 16118f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 16218f2efd6SDavid Cunado * instructions are not trapped to EL1. 16318f2efd6SDavid Cunado * 16418f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 16518f2efd6SDavid Cunado * instructions are not trapped to EL1. 16618f2efd6SDavid Cunado * 16718f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 16818f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 16918f2efd6SDavid Cunado */ 17018f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 17118f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 17218f2efd6SDavid Cunado } 17318f2efd6SDavid Cunado 17418f2efd6SDavid Cunado /* 17518f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 1763e61b2b5SDavid Cunado * and other EL2 registers are set up by cm_preapre_ns_entry() as they 17718f2efd6SDavid Cunado * are not part of the stored cpu_context. 17818f2efd6SDavid Cunado */ 17918f2efd6SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 18018f2efd6SDavid Cunado 1812ab9617eSVarun Wadekar /* 1822ab9617eSVarun Wadekar * Base the context ACTLR_EL1 on the current value, as it is 1832ab9617eSVarun Wadekar * implementation defined. The context restore process will write 1842ab9617eSVarun Wadekar * the value from the context to the actual register and can cause 1852ab9617eSVarun Wadekar * problems for processor cores that don't expect certain bits to 1862ab9617eSVarun Wadekar * be zero. 1872ab9617eSVarun Wadekar */ 1882ab9617eSVarun Wadekar actlr_elx = read_actlr_el1(); 1892ab9617eSVarun Wadekar write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 1902ab9617eSVarun Wadekar 1913e61b2b5SDavid Cunado if (security_state == SECURE) { 1923e61b2b5SDavid Cunado /* 1933e61b2b5SDavid Cunado * Initialise PMCR_EL0 for secure context only, setting all 1943e61b2b5SDavid Cunado * fields rather than relying on hw. Some fields are 1953e61b2b5SDavid Cunado * architecturally UNKNOWN on reset. 1963e61b2b5SDavid Cunado * 1973e61b2b5SDavid Cunado * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 1983e61b2b5SDavid Cunado * is recorded in PMOVSCLR_EL0[31], occurs on the increment 1993e61b2b5SDavid Cunado * that changes PMCCNTR_EL0[63] from 1 to 0. 2003e61b2b5SDavid Cunado * 2013e61b2b5SDavid Cunado * PMCR_EL0.DP: Set to one so that the cycle counter, 2023e61b2b5SDavid Cunado * PMCCNTR_EL0 does not count when event counting is prohibited. 2033e61b2b5SDavid Cunado * 2043e61b2b5SDavid Cunado * PMCR_EL0.X: Set to zero to disable export of events. 2053e61b2b5SDavid Cunado * 2063e61b2b5SDavid Cunado * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 2073e61b2b5SDavid Cunado * counts on every clock cycle. 2083e61b2b5SDavid Cunado */ 2093e61b2b5SDavid Cunado pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 2103e61b2b5SDavid Cunado | PMCR_EL0_DP_BIT) 2113e61b2b5SDavid Cunado & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 2123e61b2b5SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 2133e61b2b5SDavid Cunado } 2143e61b2b5SDavid Cunado 215532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 216532ed618SSoby Mathew state = get_el3state_ctx(ctx); 217532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 218532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 219532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 220532ed618SSoby Mathew 221532ed618SSoby Mathew /* 222532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 223532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 224532ed618SSoby Mathew */ 225532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 226532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 227532ed618SSoby Mathew } 228532ed618SSoby Mathew 229532ed618SSoby Mathew /******************************************************************************* 2300fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 2310fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 2320fd0f222SDimitris Papastamos * it is zero. 2330fd0f222SDimitris Papastamos ******************************************************************************/ 2340fd0f222SDimitris Papastamos static void enable_extensions_nonsecure(int el2_unused) 2350fd0f222SDimitris Papastamos { 2360fd0f222SDimitris Papastamos #if IMAGE_BL31 237281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 238281a08ccSDimitris Papastamos spe_enable(el2_unused); 239281a08ccSDimitris Papastamos #endif 240380559c1SDimitris Papastamos 241380559c1SDimitris Papastamos #if ENABLE_AMU 242380559c1SDimitris Papastamos amu_enable(el2_unused); 243380559c1SDimitris Papastamos #endif 2441a853370SDavid Cunado 2451a853370SDavid Cunado #if ENABLE_SVE_FOR_NS 2461a853370SDavid Cunado sve_enable(el2_unused); 2471a853370SDavid Cunado #endif 2485f835918SJeenu Viswambharan 2495f835918SJeenu Viswambharan #if ENABLE_MPAM_FOR_LOWER_ELS 2505f835918SJeenu Viswambharan mpam_enable(el2_unused); 2515f835918SJeenu Viswambharan #endif 2520fd0f222SDimitris Papastamos #endif 2530fd0f222SDimitris Papastamos } 2540fd0f222SDimitris Papastamos 2550fd0f222SDimitris Papastamos /******************************************************************************* 256532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 257532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 258532ed618SSoby Mathew * specified by the entry_point_info structure. 259532ed618SSoby Mathew ******************************************************************************/ 260532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 261532ed618SSoby Mathew const entry_point_info_t *ep) 262532ed618SSoby Mathew { 263532ed618SSoby Mathew cpu_context_t *ctx; 264532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 2651634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 266532ed618SSoby Mathew } 267532ed618SSoby Mathew 268532ed618SSoby Mathew /******************************************************************************* 269532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 270532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 271532ed618SSoby Mathew * entry_point_info structure. 272532ed618SSoby Mathew ******************************************************************************/ 273532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 274532ed618SSoby Mathew { 275532ed618SSoby Mathew cpu_context_t *ctx; 276532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 2771634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 278532ed618SSoby Mathew } 279532ed618SSoby Mathew 280532ed618SSoby Mathew /******************************************************************************* 281532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 282532ed618SSoby Mathew * 283532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 284532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 285532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 286532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 287532ed618SSoby Mathew ******************************************************************************/ 288532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 289532ed618SSoby Mathew { 290d832aee9Sdp-arm uint32_t sctlr_elx, scr_el3, mdcr_el2; 291532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 2920fd0f222SDimitris Papastamos int el2_unused = 0; 293*3ff4aaacSJeenu Viswambharan uint64_t hcr_el2 = 0; 294532ed618SSoby Mathew 295532ed618SSoby Mathew assert(ctx); 296532ed618SSoby Mathew 297532ed618SSoby Mathew if (security_state == NON_SECURE) { 298532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 299532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 300532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 301532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 302532ed618SSoby Mathew CTX_SCTLR_EL1); 3032e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 304532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 305532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 306f4c8aa90SJeenu Viswambharan } else if (EL_IMPLEMENTED(2)) { 3070fd0f222SDimitris Papastamos el2_unused = 1; 3080fd0f222SDimitris Papastamos 30918f2efd6SDavid Cunado /* 31018f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 31118f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 31218f2efd6SDavid Cunado * 313*3ff4aaacSJeenu Viswambharan * Set EL2 register width appropriately: Set HCR_EL2 314*3ff4aaacSJeenu Viswambharan * field to match SCR_EL3.RW. 31518f2efd6SDavid Cunado */ 316*3ff4aaacSJeenu Viswambharan if (scr_el3 & SCR_RW_BIT) 317*3ff4aaacSJeenu Viswambharan hcr_el2 |= HCR_RW_BIT; 318*3ff4aaacSJeenu Viswambharan 319*3ff4aaacSJeenu Viswambharan /* 320*3ff4aaacSJeenu Viswambharan * For Armv8.3 pointer authentication feature, disable 321*3ff4aaacSJeenu Viswambharan * traps to EL2 when accessing key registers or using 322*3ff4aaacSJeenu Viswambharan * pointer authentication instructions from lower ELs. 323*3ff4aaacSJeenu Viswambharan */ 324*3ff4aaacSJeenu Viswambharan hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 325*3ff4aaacSJeenu Viswambharan 326*3ff4aaacSJeenu Viswambharan write_hcr_el2(hcr_el2); 327532ed618SSoby Mathew 32818f2efd6SDavid Cunado /* 32918f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 33018f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 33118f2efd6SDavid Cunado * UNKNOWN reset values. 33218f2efd6SDavid Cunado * 33318f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 33418f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 33518f2efd6SDavid Cunado * Execution states do not trap to EL2. 33618f2efd6SDavid Cunado * 33718f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 33818f2efd6SDavid Cunado * register accesses to the trace registers from both 33918f2efd6SDavid Cunado * Execution states do not trap to EL2. 34018f2efd6SDavid Cunado * 34118f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 34218f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 34318f2efd6SDavid Cunado * Execution states do not trap to EL2. 34418f2efd6SDavid Cunado */ 34518f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 34618f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 34718f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 348532ed618SSoby Mathew 34918f2efd6SDavid Cunado /* 35018f2efd6SDavid Cunado * Initiliase CNTHCTL_EL2. All fields are 35118f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 35218f2efd6SDavid Cunado * except for field(s) listed below. 35318f2efd6SDavid Cunado * 35418f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 35518f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 35618f2efd6SDavid Cunado * physical timer registers. 35718f2efd6SDavid Cunado * 35818f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 35918f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 36018f2efd6SDavid Cunado * physical counter registers. 36118f2efd6SDavid Cunado */ 36218f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 36318f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 364532ed618SSoby Mathew 36518f2efd6SDavid Cunado /* 36618f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 36718f2efd6SDavid Cunado * architecturally UNKNOWN value. 36818f2efd6SDavid Cunado */ 369532ed618SSoby Mathew write_cntvoff_el2(0); 370532ed618SSoby Mathew 37118f2efd6SDavid Cunado /* 37218f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 37318f2efd6SDavid Cunado * MPIDR_EL1 respectively. 37418f2efd6SDavid Cunado */ 375532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 376532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 377532ed618SSoby Mathew 378532ed618SSoby Mathew /* 37918f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 38018f2efd6SDavid Cunado * UNKNOWN on reset. 38118f2efd6SDavid Cunado * 38218f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 38318f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 38418f2efd6SDavid Cunado * operations depend on the VMID. 38518f2efd6SDavid Cunado * 38618f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 38718f2efd6SDavid Cunado * translation is disabled. 388532ed618SSoby Mathew */ 38918f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 39018f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 39118f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 39218f2efd6SDavid Cunado 393495f3d3cSDavid Cunado /* 39418f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 39518f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 39618f2efd6SDavid Cunado * UNKNOWN on reset. 39718f2efd6SDavid Cunado * 39818f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 39918f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 40018f2efd6SDavid Cunado * registers are not trapped to EL2. 40118f2efd6SDavid Cunado * 40218f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 40318f2efd6SDavid Cunado * System register accesses to the powerdown debug 40418f2efd6SDavid Cunado * registers are not trapped to EL2. 40518f2efd6SDavid Cunado * 40618f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 40718f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 40818f2efd6SDavid Cunado * 40918f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 41018f2efd6SDavid Cunado * are not routed to EL2. 41118f2efd6SDavid Cunado * 41218f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 41318f2efd6SDavid Cunado * Monitors. 41418f2efd6SDavid Cunado * 41518f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 41618f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 41718f2efd6SDavid Cunado * are not trapped to EL2. 41818f2efd6SDavid Cunado * 41918f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 42018f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 42118f2efd6SDavid Cunado * trapped to EL2. 42218f2efd6SDavid Cunado * 42318f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 42418f2efd6SDavid Cunado * architecturally-defined reset value. 425495f3d3cSDavid Cunado */ 426d832aee9Sdp-arm mdcr_el2 = ((MDCR_EL2_RESET_VAL | 42718f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 42818f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 42918f2efd6SDavid Cunado ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 43018f2efd6SDavid Cunado | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 43118f2efd6SDavid Cunado | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 43218f2efd6SDavid Cunado | MDCR_EL2_TPMCR_BIT)); 433d832aee9Sdp-arm 434d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 435d832aee9Sdp-arm 436939f66d6SDavid Cunado /* 43718f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 43818f2efd6SDavid Cunado * UNKNOWN on reset. 43918f2efd6SDavid Cunado * 44018f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 44118f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 44218f2efd6SDavid Cunado * do not trap to EL2. 443939f66d6SDavid Cunado */ 44418f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 445939f66d6SDavid Cunado /* 44618f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 44718f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 44818f2efd6SDavid Cunado * 44918f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 45018f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 451939f66d6SDavid Cunado */ 45218f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 45318f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 454532ed618SSoby Mathew } 4550fd0f222SDimitris Papastamos enable_extensions_nonsecure(el2_unused); 456532ed618SSoby Mathew } 457532ed618SSoby Mathew 45817b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 45917b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 460532ed618SSoby Mathew } 461532ed618SSoby Mathew 462532ed618SSoby Mathew /******************************************************************************* 463532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 464532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 465532ed618SSoby Mathew * state. 466532ed618SSoby Mathew ******************************************************************************/ 467532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 468532ed618SSoby Mathew { 469532ed618SSoby Mathew cpu_context_t *ctx; 470532ed618SSoby Mathew 471532ed618SSoby Mathew ctx = cm_get_context(security_state); 472532ed618SSoby Mathew assert(ctx); 473532ed618SSoby Mathew 474532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 47517b4c0ddSDimitris Papastamos 47617b4c0ddSDimitris Papastamos #if IMAGE_BL31 47717b4c0ddSDimitris Papastamos if (security_state == SECURE) 47817b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 47917b4c0ddSDimitris Papastamos else 48017b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 48117b4c0ddSDimitris Papastamos #endif 482532ed618SSoby Mathew } 483532ed618SSoby Mathew 484532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 485532ed618SSoby Mathew { 486532ed618SSoby Mathew cpu_context_t *ctx; 487532ed618SSoby Mathew 488532ed618SSoby Mathew ctx = cm_get_context(security_state); 489532ed618SSoby Mathew assert(ctx); 490532ed618SSoby Mathew 491532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 49217b4c0ddSDimitris Papastamos 49317b4c0ddSDimitris Papastamos #if IMAGE_BL31 49417b4c0ddSDimitris Papastamos if (security_state == SECURE) 49517b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 49617b4c0ddSDimitris Papastamos else 49717b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 49817b4c0ddSDimitris Papastamos #endif 499532ed618SSoby Mathew } 500532ed618SSoby Mathew 501532ed618SSoby Mathew /******************************************************************************* 502532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 503532ed618SSoby Mathew * given security state with the given entrypoint 504532ed618SSoby Mathew ******************************************************************************/ 505532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 506532ed618SSoby Mathew { 507532ed618SSoby Mathew cpu_context_t *ctx; 508532ed618SSoby Mathew el3_state_t *state; 509532ed618SSoby Mathew 510532ed618SSoby Mathew ctx = cm_get_context(security_state); 511532ed618SSoby Mathew assert(ctx); 512532ed618SSoby Mathew 513532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 514532ed618SSoby Mathew state = get_el3state_ctx(ctx); 515532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 516532ed618SSoby Mathew } 517532ed618SSoby Mathew 518532ed618SSoby Mathew /******************************************************************************* 519532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 520532ed618SSoby Mathew * pertaining to the given security state 521532ed618SSoby Mathew ******************************************************************************/ 522532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 523532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 524532ed618SSoby Mathew { 525532ed618SSoby Mathew cpu_context_t *ctx; 526532ed618SSoby Mathew el3_state_t *state; 527532ed618SSoby Mathew 528532ed618SSoby Mathew ctx = cm_get_context(security_state); 529532ed618SSoby Mathew assert(ctx); 530532ed618SSoby Mathew 531532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 532532ed618SSoby Mathew state = get_el3state_ctx(ctx); 533532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 534532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 535532ed618SSoby Mathew } 536532ed618SSoby Mathew 537532ed618SSoby Mathew /******************************************************************************* 538532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 539532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 540532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 541532ed618SSoby Mathew ******************************************************************************/ 542532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 543532ed618SSoby Mathew uint32_t bit_pos, 544532ed618SSoby Mathew uint32_t value) 545532ed618SSoby Mathew { 546532ed618SSoby Mathew cpu_context_t *ctx; 547532ed618SSoby Mathew el3_state_t *state; 548532ed618SSoby Mathew uint32_t scr_el3; 549532ed618SSoby Mathew 550532ed618SSoby Mathew ctx = cm_get_context(security_state); 551532ed618SSoby Mathew assert(ctx); 552532ed618SSoby Mathew 553532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 554532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 555532ed618SSoby Mathew 556532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 557532ed618SSoby Mathew assert(value <= 1); 558532ed618SSoby Mathew 559532ed618SSoby Mathew /* 560532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 561532ed618SSoby Mathew * and set it to its new value. 562532ed618SSoby Mathew */ 563532ed618SSoby Mathew state = get_el3state_ctx(ctx); 564532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 565532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 566532ed618SSoby Mathew scr_el3 |= value << bit_pos; 567532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 568532ed618SSoby Mathew } 569532ed618SSoby Mathew 570532ed618SSoby Mathew /******************************************************************************* 571532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 572532ed618SSoby Mathew * given security state. 573532ed618SSoby Mathew ******************************************************************************/ 574532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 575532ed618SSoby Mathew { 576532ed618SSoby Mathew cpu_context_t *ctx; 577532ed618SSoby Mathew el3_state_t *state; 578532ed618SSoby Mathew 579532ed618SSoby Mathew ctx = cm_get_context(security_state); 580532ed618SSoby Mathew assert(ctx); 581532ed618SSoby Mathew 582532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 583532ed618SSoby Mathew state = get_el3state_ctx(ctx); 584532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 585532ed618SSoby Mathew } 586532ed618SSoby Mathew 587532ed618SSoby Mathew /******************************************************************************* 588532ed618SSoby Mathew * This function is used to program the context that's used for exception 589532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 590532ed618SSoby Mathew * the required security state 591532ed618SSoby Mathew ******************************************************************************/ 592532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 593532ed618SSoby Mathew { 594532ed618SSoby Mathew cpu_context_t *ctx; 595532ed618SSoby Mathew 596532ed618SSoby Mathew ctx = cm_get_context(security_state); 597532ed618SSoby Mathew assert(ctx); 598532ed618SSoby Mathew 599532ed618SSoby Mathew cm_set_next_context(ctx); 600532ed618SSoby Mathew } 601