xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 3e61b2b54336510475fbab83b7d97538f3ac5460)
1532ed618SSoby Mathew /*
232f0d3c6SDouglas Raillard  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3532ed618SSoby Mathew  *
482cb2c1aSdp-arm  * SPDX-License-Identifier: BSD-3-Clause
5532ed618SSoby Mathew  */
6532ed618SSoby Mathew 
7532ed618SSoby Mathew #include <arch.h>
8532ed618SSoby Mathew #include <arch_helpers.h>
9532ed618SSoby Mathew #include <assert.h>
10532ed618SSoby Mathew #include <bl_common.h>
11532ed618SSoby Mathew #include <context.h>
12532ed618SSoby Mathew #include <context_mgmt.h>
13532ed618SSoby Mathew #include <interrupt_mgmt.h>
14532ed618SSoby Mathew #include <platform.h>
15532ed618SSoby Mathew #include <platform_def.h>
16532ed618SSoby Mathew #include <smcc_helpers.h>
17532ed618SSoby Mathew #include <string.h>
1832f0d3c6SDouglas Raillard #include <utils.h>
19532ed618SSoby Mathew 
20532ed618SSoby Mathew 
21532ed618SSoby Mathew /*******************************************************************************
22532ed618SSoby Mathew  * Context management library initialisation routine. This library is used by
23532ed618SSoby Mathew  * runtime services to share pointers to 'cpu_context' structures for the secure
24532ed618SSoby Mathew  * and non-secure states. Management of the structures and their associated
25532ed618SSoby Mathew  * memory is not done by the context management library e.g. the PSCI service
26532ed618SSoby Mathew  * manages the cpu context used for entry from and exit to the non-secure state.
27532ed618SSoby Mathew  * The Secure payload dispatcher service manages the context(s) corresponding to
28532ed618SSoby Mathew  * the secure state. It also uses this library to get access to the non-secure
29532ed618SSoby Mathew  * state cpu context pointers.
30532ed618SSoby Mathew  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
31532ed618SSoby Mathew  * which will used for programming an entry into a lower EL. The same context
32532ed618SSoby Mathew  * will used to save state upon exception entry from that EL.
33532ed618SSoby Mathew  ******************************************************************************/
34532ed618SSoby Mathew void cm_init(void)
35532ed618SSoby Mathew {
36532ed618SSoby Mathew 	/*
37532ed618SSoby Mathew 	 * The context management library has only global data to intialize, but
38532ed618SSoby Mathew 	 * that will be done when the BSS is zeroed out
39532ed618SSoby Mathew 	 */
40532ed618SSoby Mathew }
41532ed618SSoby Mathew 
42532ed618SSoby Mathew /*******************************************************************************
43532ed618SSoby Mathew  * The following function initializes the cpu_context 'ctx' for
44532ed618SSoby Mathew  * first use, and sets the initial entrypoint state as specified by the
45532ed618SSoby Mathew  * entry_point_info structure.
46532ed618SSoby Mathew  *
47532ed618SSoby Mathew  * The security state to initialize is determined by the SECURE attribute
48532ed618SSoby Mathew  * of the entry_point_info. The function returns a pointer to the initialized
49532ed618SSoby Mathew  * context and sets this as the next context to return to.
50532ed618SSoby Mathew  *
51532ed618SSoby Mathew  * The EE and ST attributes are used to configure the endianess and secure
52532ed618SSoby Mathew  * timer availability for the new execution context.
53532ed618SSoby Mathew  *
54532ed618SSoby Mathew  * To prepare the register state for entry call cm_prepare_el3_exit() and
55532ed618SSoby Mathew  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56532ed618SSoby Mathew  * cm_e1_sysreg_context_restore().
57532ed618SSoby Mathew  ******************************************************************************/
58532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59532ed618SSoby Mathew {
60532ed618SSoby Mathew 	unsigned int security_state;
61*3e61b2b5SDavid Cunado 	uint32_t scr_el3, pmcr_el0;
62532ed618SSoby Mathew 	el3_state_t *state;
63532ed618SSoby Mathew 	gp_regs_t *gp_regs;
64532ed618SSoby Mathew 	unsigned long sctlr_elx;
65532ed618SSoby Mathew 
66532ed618SSoby Mathew 	assert(ctx);
67532ed618SSoby Mathew 
68532ed618SSoby Mathew 	security_state = GET_SECURITY_STATE(ep->h.attr);
69532ed618SSoby Mathew 
70532ed618SSoby Mathew 	/* Clear any residual register values from the context */
7132f0d3c6SDouglas Raillard 	zeromem(ctx, sizeof(*ctx));
72532ed618SSoby Mathew 
73532ed618SSoby Mathew 	/*
7418f2efd6SDavid Cunado 	 * SCR_EL3 was initialised during reset sequence in macro
7518f2efd6SDavid Cunado 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
7618f2efd6SDavid Cunado 	 * affect the next EL.
7718f2efd6SDavid Cunado 	 *
7818f2efd6SDavid Cunado 	 * The following fields are initially set to zero and then updated to
7918f2efd6SDavid Cunado 	 * the required value depending on the state of the SPSR_EL3 and the
8018f2efd6SDavid Cunado 	 * Security state and entrypoint attributes of the next EL.
81532ed618SSoby Mathew 	 */
82532ed618SSoby Mathew 	scr_el3 = read_scr();
83532ed618SSoby Mathew 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
84532ed618SSoby Mathew 			SCR_ST_BIT | SCR_HCE_BIT);
8518f2efd6SDavid Cunado 	/*
8618f2efd6SDavid Cunado 	 * SCR_NS: Set the security state of the next EL.
8718f2efd6SDavid Cunado 	 */
88532ed618SSoby Mathew 	if (security_state != SECURE)
89532ed618SSoby Mathew 		scr_el3 |= SCR_NS_BIT;
9018f2efd6SDavid Cunado 	/*
9118f2efd6SDavid Cunado 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
9218f2efd6SDavid Cunado 	 *  Exception level as specified by SPSR.
9318f2efd6SDavid Cunado 	 */
94532ed618SSoby Mathew 	if (GET_RW(ep->spsr) == MODE_RW_64)
95532ed618SSoby Mathew 		scr_el3 |= SCR_RW_BIT;
9618f2efd6SDavid Cunado 	/*
9718f2efd6SDavid Cunado 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
9818f2efd6SDavid Cunado 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
9918f2efd6SDavid Cunado 	 *  by the entrypoint attributes.
10018f2efd6SDavid Cunado 	 */
101532ed618SSoby Mathew 	if (EP_GET_ST(ep->h.attr))
102532ed618SSoby Mathew 		scr_el3 |= SCR_ST_BIT;
103532ed618SSoby Mathew 
104532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST
10518f2efd6SDavid Cunado 	/*
10618f2efd6SDavid Cunado 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
10718f2efd6SDavid Cunado 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
10818f2efd6SDavid Cunado 	 *  Aborts are taken to EL3.
10918f2efd6SDavid Cunado 	 */
110532ed618SSoby Mathew 	scr_el3 &= ~SCR_EA_BIT;
111532ed618SSoby Mathew #endif
112532ed618SSoby Mathew 
1133d8256b2SMasahiro Yamada #ifdef IMAGE_BL31
114532ed618SSoby Mathew 	/*
11518f2efd6SDavid Cunado 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
11618f2efd6SDavid Cunado 	 *  indicated by the interrupt routing model for BL31.
117532ed618SSoby Mathew 	 */
118532ed618SSoby Mathew 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
119532ed618SSoby Mathew #endif
120532ed618SSoby Mathew 
121532ed618SSoby Mathew 	/*
12218f2efd6SDavid Cunado 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
12318f2efd6SDavid Cunado 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
12418f2efd6SDavid Cunado 	 * next mode is Hyp.
125532ed618SSoby Mathew 	 */
126532ed618SSoby Mathew 	if ((GET_RW(ep->spsr) == MODE_RW_64
127532ed618SSoby Mathew 	     && GET_EL(ep->spsr) == MODE_EL2)
128532ed618SSoby Mathew 	    || (GET_RW(ep->spsr) != MODE_RW_64
129532ed618SSoby Mathew 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
130532ed618SSoby Mathew 		scr_el3 |= SCR_HCE_BIT;
131532ed618SSoby Mathew 	}
132532ed618SSoby Mathew 
13318f2efd6SDavid Cunado 	/*
13418f2efd6SDavid Cunado 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
13518f2efd6SDavid Cunado 	 * execution state setting all fields rather than relying of the hw.
13618f2efd6SDavid Cunado 	 * Some fields have architecturally UNKNOWN reset values and these are
13718f2efd6SDavid Cunado 	 * set to zero.
13818f2efd6SDavid Cunado 	 *
13918f2efd6SDavid Cunado 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
14018f2efd6SDavid Cunado 	 *
14118f2efd6SDavid Cunado 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
14218f2efd6SDavid Cunado 	 *  required by PSCI specification)
14318f2efd6SDavid Cunado 	 */
14418f2efd6SDavid Cunado 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
14518f2efd6SDavid Cunado 	if (GET_RW(ep->spsr) == MODE_RW_64)
14618f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_EL1_RES1;
14718f2efd6SDavid Cunado 	else {
14818f2efd6SDavid Cunado 		/*
14918f2efd6SDavid Cunado 		 * If the target execution state is AArch32 then the following
15018f2efd6SDavid Cunado 		 * fields need to be set.
15118f2efd6SDavid Cunado 		 *
15218f2efd6SDavid Cunado 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
15318f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
15418f2efd6SDavid Cunado 		 *
15518f2efd6SDavid Cunado 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
15618f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
15718f2efd6SDavid Cunado 		 *
15818f2efd6SDavid Cunado 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
15918f2efd6SDavid Cunado 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
16018f2efd6SDavid Cunado 		 */
16118f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
16218f2efd6SDavid Cunado 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
16318f2efd6SDavid Cunado 	}
16418f2efd6SDavid Cunado 
16518f2efd6SDavid Cunado 	/*
16618f2efd6SDavid Cunado 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
167*3e61b2b5SDavid Cunado 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
16818f2efd6SDavid Cunado 	 * are not part of the stored cpu_context.
16918f2efd6SDavid Cunado 	 */
17018f2efd6SDavid Cunado 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
17118f2efd6SDavid Cunado 
172*3e61b2b5SDavid Cunado 	if (security_state == SECURE) {
173*3e61b2b5SDavid Cunado 		/*
174*3e61b2b5SDavid Cunado 		 * Initialise PMCR_EL0 for secure context only, setting all
175*3e61b2b5SDavid Cunado 		 * fields rather than relying on hw. Some fields are
176*3e61b2b5SDavid Cunado 		 * architecturally UNKNOWN on reset.
177*3e61b2b5SDavid Cunado 		 *
178*3e61b2b5SDavid Cunado 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
179*3e61b2b5SDavid Cunado 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
180*3e61b2b5SDavid Cunado 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
181*3e61b2b5SDavid Cunado 		 *
182*3e61b2b5SDavid Cunado 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
183*3e61b2b5SDavid Cunado 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
184*3e61b2b5SDavid Cunado 		 *
185*3e61b2b5SDavid Cunado 		 * PMCR_EL0.X: Set to zero to disable export of events.
186*3e61b2b5SDavid Cunado 		 *
187*3e61b2b5SDavid Cunado 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
188*3e61b2b5SDavid Cunado 		 *  counts on every clock cycle.
189*3e61b2b5SDavid Cunado 		 */
190*3e61b2b5SDavid Cunado 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
191*3e61b2b5SDavid Cunado 				| PMCR_EL0_DP_BIT)
192*3e61b2b5SDavid Cunado 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
193*3e61b2b5SDavid Cunado 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
194*3e61b2b5SDavid Cunado 	}
195*3e61b2b5SDavid Cunado 
196532ed618SSoby Mathew 	/* Populate EL3 state so that we've the right context before doing ERET */
197532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
198532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
199532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
200532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
201532ed618SSoby Mathew 
202532ed618SSoby Mathew 	/*
203532ed618SSoby Mathew 	 * Store the X0-X7 value from the entrypoint into the context
204532ed618SSoby Mathew 	 * Use memcpy as we are in control of the layout of the structures
205532ed618SSoby Mathew 	 */
206532ed618SSoby Mathew 	gp_regs = get_gpregs_ctx(ctx);
207532ed618SSoby Mathew 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
208532ed618SSoby Mathew }
209532ed618SSoby Mathew 
210532ed618SSoby Mathew /*******************************************************************************
211532ed618SSoby Mathew  * The following function initializes the cpu_context for a CPU specified by
212532ed618SSoby Mathew  * its `cpu_idx` for first use, and sets the initial entrypoint state as
213532ed618SSoby Mathew  * specified by the entry_point_info structure.
214532ed618SSoby Mathew  ******************************************************************************/
215532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx,
216532ed618SSoby Mathew 			      const entry_point_info_t *ep)
217532ed618SSoby Mathew {
218532ed618SSoby Mathew 	cpu_context_t *ctx;
219532ed618SSoby Mathew 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
220532ed618SSoby Mathew 	cm_init_context_common(ctx, ep);
221532ed618SSoby Mathew }
222532ed618SSoby Mathew 
223532ed618SSoby Mathew /*******************************************************************************
224532ed618SSoby Mathew  * The following function initializes the cpu_context for the current CPU
225532ed618SSoby Mathew  * for first use, and sets the initial entrypoint state as specified by the
226532ed618SSoby Mathew  * entry_point_info structure.
227532ed618SSoby Mathew  ******************************************************************************/
228532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep)
229532ed618SSoby Mathew {
230532ed618SSoby Mathew 	cpu_context_t *ctx;
231532ed618SSoby Mathew 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
232532ed618SSoby Mathew 	cm_init_context_common(ctx, ep);
233532ed618SSoby Mathew }
234532ed618SSoby Mathew 
235532ed618SSoby Mathew /*******************************************************************************
236532ed618SSoby Mathew  * Prepare the CPU system registers for first entry into secure or normal world
237532ed618SSoby Mathew  *
238532ed618SSoby Mathew  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
239532ed618SSoby Mathew  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
240532ed618SSoby Mathew  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
241532ed618SSoby Mathew  * For all entries, the EL1 registers are initialized from the cpu_context
242532ed618SSoby Mathew  ******************************************************************************/
243532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state)
244532ed618SSoby Mathew {
245d832aee9Sdp-arm 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
246532ed618SSoby Mathew 	cpu_context_t *ctx = cm_get_context(security_state);
247532ed618SSoby Mathew 
248532ed618SSoby Mathew 	assert(ctx);
249532ed618SSoby Mathew 
250532ed618SSoby Mathew 	if (security_state == NON_SECURE) {
251532ed618SSoby Mathew 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
252532ed618SSoby Mathew 		if (scr_el3 & SCR_HCE_BIT) {
253532ed618SSoby Mathew 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
254532ed618SSoby Mathew 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
255532ed618SSoby Mathew 						 CTX_SCTLR_EL1);
2562e09d4f8SKen Kuang 			sctlr_elx &= SCTLR_EE_BIT;
257532ed618SSoby Mathew 			sctlr_elx |= SCTLR_EL2_RES1;
258532ed618SSoby Mathew 			write_sctlr_el2(sctlr_elx);
259f4c8aa90SJeenu Viswambharan 		} else if (EL_IMPLEMENTED(2)) {
26018f2efd6SDavid Cunado 			/*
26118f2efd6SDavid Cunado 			 * EL2 present but unused, need to disable safely.
26218f2efd6SDavid Cunado 			 * SCTLR_EL2 can be ignored in this case.
26318f2efd6SDavid Cunado 			 *
26418f2efd6SDavid Cunado 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
26518f2efd6SDavid Cunado 			 * to zero so that Non-secure operations do not trap to
26618f2efd6SDavid Cunado 			 * EL2.
26718f2efd6SDavid Cunado 			 *
26818f2efd6SDavid Cunado 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
26918f2efd6SDavid Cunado 			 */
270532ed618SSoby Mathew 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
271532ed618SSoby Mathew 
27218f2efd6SDavid Cunado 			/*
27318f2efd6SDavid Cunado 			 * Initialise CPTR_EL2 setting all fields rather than
27418f2efd6SDavid Cunado 			 * relying on the hw. All fields have architecturally
27518f2efd6SDavid Cunado 			 * UNKNOWN reset values.
27618f2efd6SDavid Cunado 			 *
27718f2efd6SDavid Cunado 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
27818f2efd6SDavid Cunado 			 *  accesses to the CPACR_EL1 or CPACR from both
27918f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
28018f2efd6SDavid Cunado 			 *
28118f2efd6SDavid Cunado 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
28218f2efd6SDavid Cunado 			 *  register accesses to the trace registers from both
28318f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
28418f2efd6SDavid Cunado 			 *
28518f2efd6SDavid Cunado 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
28618f2efd6SDavid Cunado 			 *  to SIMD and floating-point functionality from both
28718f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
28818f2efd6SDavid Cunado 			 */
28918f2efd6SDavid Cunado 			write_cptr_el2(CPTR_EL2_RESET_VAL &
29018f2efd6SDavid Cunado 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
29118f2efd6SDavid Cunado 					| CPTR_EL2_TFP_BIT));
292532ed618SSoby Mathew 
29318f2efd6SDavid Cunado 			/*
29418f2efd6SDavid Cunado 			 * Initiliase CNTHCTL_EL2. All fields are
29518f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset and are set to zero
29618f2efd6SDavid Cunado 			 * except for field(s) listed below.
29718f2efd6SDavid Cunado 			 *
29818f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
29918f2efd6SDavid Cunado 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
30018f2efd6SDavid Cunado 			 *  physical timer registers.
30118f2efd6SDavid Cunado 			 *
30218f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
30318f2efd6SDavid Cunado 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
30418f2efd6SDavid Cunado 			 *  physical counter registers.
30518f2efd6SDavid Cunado 			 */
30618f2efd6SDavid Cunado 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
30718f2efd6SDavid Cunado 						EL1PCEN_BIT | EL1PCTEN_BIT);
308532ed618SSoby Mathew 
30918f2efd6SDavid Cunado 			/*
31018f2efd6SDavid Cunado 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
31118f2efd6SDavid Cunado 			 * architecturally UNKNOWN value.
31218f2efd6SDavid Cunado 			 */
313532ed618SSoby Mathew 			write_cntvoff_el2(0);
314532ed618SSoby Mathew 
31518f2efd6SDavid Cunado 			/*
31618f2efd6SDavid Cunado 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
31718f2efd6SDavid Cunado 			 * MPIDR_EL1 respectively.
31818f2efd6SDavid Cunado 			 */
319532ed618SSoby Mathew 			write_vpidr_el2(read_midr_el1());
320532ed618SSoby Mathew 			write_vmpidr_el2(read_mpidr_el1());
321532ed618SSoby Mathew 
322532ed618SSoby Mathew 			/*
32318f2efd6SDavid Cunado 			 * Initialise VTTBR_EL2. All fields are architecturally
32418f2efd6SDavid Cunado 			 * UNKNOWN on reset.
32518f2efd6SDavid Cunado 			 *
32618f2efd6SDavid Cunado 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
32718f2efd6SDavid Cunado 			 *  2 address translation is disabled, cache maintenance
32818f2efd6SDavid Cunado 			 *  operations depend on the VMID.
32918f2efd6SDavid Cunado 			 *
33018f2efd6SDavid Cunado 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
33118f2efd6SDavid Cunado 			 *  translation is disabled.
332532ed618SSoby Mathew 			 */
33318f2efd6SDavid Cunado 			write_vttbr_el2(VTTBR_RESET_VAL &
33418f2efd6SDavid Cunado 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
33518f2efd6SDavid Cunado 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
33618f2efd6SDavid Cunado 
337495f3d3cSDavid Cunado 			/*
33818f2efd6SDavid Cunado 			 * Initialise MDCR_EL2, setting all fields rather than
33918f2efd6SDavid Cunado 			 * relying on hw. Some fields are architecturally
34018f2efd6SDavid Cunado 			 * UNKNOWN on reset.
34118f2efd6SDavid Cunado 			 *
342d832aee9Sdp-arm 			 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
343d832aee9Sdp-arm 			 * profiling controls to EL2.
344d832aee9Sdp-arm 			 *
345d832aee9Sdp-arm 			 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
346d832aee9Sdp-arm 			 * state. Accesses to profiling buffer controls at
347d832aee9Sdp-arm 			 * non-secure EL1 are not trapped to EL2.
348d832aee9Sdp-arm 			 *
34918f2efd6SDavid Cunado 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
35018f2efd6SDavid Cunado 			 *  EL1 System register accesses to the Debug ROM
35118f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
35218f2efd6SDavid Cunado 			 *
35318f2efd6SDavid Cunado 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
35418f2efd6SDavid Cunado 			 *  System register accesses to the powerdown debug
35518f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
35618f2efd6SDavid Cunado 			 *
35718f2efd6SDavid Cunado 			 * MDCR_EL2.TDA: Set to zero so that System register
35818f2efd6SDavid Cunado 			 *  accesses to the debug registers do not trap to EL2.
35918f2efd6SDavid Cunado 			 *
36018f2efd6SDavid Cunado 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
36118f2efd6SDavid Cunado 			 *  are not routed to EL2.
36218f2efd6SDavid Cunado 			 *
36318f2efd6SDavid Cunado 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
36418f2efd6SDavid Cunado 			 *  Monitors.
36518f2efd6SDavid Cunado 			 *
36618f2efd6SDavid Cunado 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
36718f2efd6SDavid Cunado 			 *  EL1 accesses to all Performance Monitors registers
36818f2efd6SDavid Cunado 			 *  are not trapped to EL2.
36918f2efd6SDavid Cunado 			 *
37018f2efd6SDavid Cunado 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
37118f2efd6SDavid Cunado 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
37218f2efd6SDavid Cunado 			 *  trapped to EL2.
37318f2efd6SDavid Cunado 			 *
37418f2efd6SDavid Cunado 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
37518f2efd6SDavid Cunado 			 *  architecturally-defined reset value.
376495f3d3cSDavid Cunado 			 */
377d832aee9Sdp-arm 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
37818f2efd6SDavid Cunado 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
37918f2efd6SDavid Cunado 					>> PMCR_EL0_N_SHIFT)) &
38018f2efd6SDavid Cunado 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
38118f2efd6SDavid Cunado 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
38218f2efd6SDavid Cunado 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
38318f2efd6SDavid Cunado 					| MDCR_EL2_TPMCR_BIT));
384d832aee9Sdp-arm 
385d832aee9Sdp-arm #if ENABLE_SPE_FOR_LOWER_ELS
386d832aee9Sdp-arm 			uint64_t id_aa64dfr0_el1;
387d832aee9Sdp-arm 
388d832aee9Sdp-arm 			/* Detect if SPE is implemented */
389d832aee9Sdp-arm 			id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
390d832aee9Sdp-arm 				ID_AA64DFR0_PMS_SHIFT;
391d832aee9Sdp-arm 			if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
392d832aee9Sdp-arm 				/*
393d832aee9Sdp-arm 				 * Make sure traps to EL2 are not generated if
394d832aee9Sdp-arm 				 * EL2 is implemented but not used.
395d832aee9Sdp-arm 				 */
396d832aee9Sdp-arm 				mdcr_el2 &= ~MDCR_EL2_TPMS;
397d832aee9Sdp-arm 				mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
398d832aee9Sdp-arm 			}
399d832aee9Sdp-arm #endif
400d832aee9Sdp-arm 
401d832aee9Sdp-arm 			write_mdcr_el2(mdcr_el2);
402d832aee9Sdp-arm 
403939f66d6SDavid Cunado 			/*
40418f2efd6SDavid Cunado 			 * Initialise HSTR_EL2. All fields are architecturally
40518f2efd6SDavid Cunado 			 * UNKNOWN on reset.
40618f2efd6SDavid Cunado 			 *
40718f2efd6SDavid Cunado 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
40818f2efd6SDavid Cunado 			 *  Non-secure EL0 or EL1 accesses to System registers
40918f2efd6SDavid Cunado 			 *  do not trap to EL2.
410939f66d6SDavid Cunado 			 */
41118f2efd6SDavid Cunado 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
412939f66d6SDavid Cunado 			/*
41318f2efd6SDavid Cunado 			 * Initialise CNTHP_CTL_EL2. All fields are
41418f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset.
41518f2efd6SDavid Cunado 			 *
41618f2efd6SDavid Cunado 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
41718f2efd6SDavid Cunado 			 *  physical timer and prevent timer interrupts.
418939f66d6SDavid Cunado 			 */
41918f2efd6SDavid Cunado 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
42018f2efd6SDavid Cunado 						~(CNTHP_CTL_ENABLE_BIT));
421532ed618SSoby Mathew 		}
422532ed618SSoby Mathew 	}
423532ed618SSoby Mathew 
424532ed618SSoby Mathew 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
425532ed618SSoby Mathew 
426532ed618SSoby Mathew 	cm_set_next_context(ctx);
427532ed618SSoby Mathew }
428532ed618SSoby Mathew 
429532ed618SSoby Mathew /*******************************************************************************
430532ed618SSoby Mathew  * The next four functions are used by runtime services to save and restore
431532ed618SSoby Mathew  * EL1 context on the 'cpu_context' structure for the specified security
432532ed618SSoby Mathew  * state.
433532ed618SSoby Mathew  ******************************************************************************/
434532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state)
435532ed618SSoby Mathew {
436532ed618SSoby Mathew 	cpu_context_t *ctx;
437532ed618SSoby Mathew 
438532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
439532ed618SSoby Mathew 	assert(ctx);
440532ed618SSoby Mathew 
441532ed618SSoby Mathew 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
442d832aee9Sdp-arm 	el1_sysregs_context_save_post_ops();
443532ed618SSoby Mathew }
444532ed618SSoby Mathew 
445532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state)
446532ed618SSoby Mathew {
447532ed618SSoby Mathew 	cpu_context_t *ctx;
448532ed618SSoby Mathew 
449532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
450532ed618SSoby Mathew 	assert(ctx);
451532ed618SSoby Mathew 
452532ed618SSoby Mathew 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
453532ed618SSoby Mathew }
454532ed618SSoby Mathew 
455532ed618SSoby Mathew /*******************************************************************************
456532ed618SSoby Mathew  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
457532ed618SSoby Mathew  * given security state with the given entrypoint
458532ed618SSoby Mathew  ******************************************************************************/
459532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
460532ed618SSoby Mathew {
461532ed618SSoby Mathew 	cpu_context_t *ctx;
462532ed618SSoby Mathew 	el3_state_t *state;
463532ed618SSoby Mathew 
464532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
465532ed618SSoby Mathew 	assert(ctx);
466532ed618SSoby Mathew 
467532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
468532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
469532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
470532ed618SSoby Mathew }
471532ed618SSoby Mathew 
472532ed618SSoby Mathew /*******************************************************************************
473532ed618SSoby Mathew  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
474532ed618SSoby Mathew  * pertaining to the given security state
475532ed618SSoby Mathew  ******************************************************************************/
476532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state,
477532ed618SSoby Mathew 			uintptr_t entrypoint, uint32_t spsr)
478532ed618SSoby Mathew {
479532ed618SSoby Mathew 	cpu_context_t *ctx;
480532ed618SSoby Mathew 	el3_state_t *state;
481532ed618SSoby Mathew 
482532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
483532ed618SSoby Mathew 	assert(ctx);
484532ed618SSoby Mathew 
485532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
486532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
487532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
488532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
489532ed618SSoby Mathew }
490532ed618SSoby Mathew 
491532ed618SSoby Mathew /*******************************************************************************
492532ed618SSoby Mathew  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
493532ed618SSoby Mathew  * pertaining to the given security state using the value and bit position
494532ed618SSoby Mathew  * specified in the parameters. It preserves all other bits.
495532ed618SSoby Mathew  ******************************************************************************/
496532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state,
497532ed618SSoby Mathew 			  uint32_t bit_pos,
498532ed618SSoby Mathew 			  uint32_t value)
499532ed618SSoby Mathew {
500532ed618SSoby Mathew 	cpu_context_t *ctx;
501532ed618SSoby Mathew 	el3_state_t *state;
502532ed618SSoby Mathew 	uint32_t scr_el3;
503532ed618SSoby Mathew 
504532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
505532ed618SSoby Mathew 	assert(ctx);
506532ed618SSoby Mathew 
507532ed618SSoby Mathew 	/* Ensure that the bit position is a valid one */
508532ed618SSoby Mathew 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
509532ed618SSoby Mathew 
510532ed618SSoby Mathew 	/* Ensure that the 'value' is only a bit wide */
511532ed618SSoby Mathew 	assert(value <= 1);
512532ed618SSoby Mathew 
513532ed618SSoby Mathew 	/*
514532ed618SSoby Mathew 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
515532ed618SSoby Mathew 	 * and set it to its new value.
516532ed618SSoby Mathew 	 */
517532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
518532ed618SSoby Mathew 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
519532ed618SSoby Mathew 	scr_el3 &= ~(1 << bit_pos);
520532ed618SSoby Mathew 	scr_el3 |= value << bit_pos;
521532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
522532ed618SSoby Mathew }
523532ed618SSoby Mathew 
524532ed618SSoby Mathew /*******************************************************************************
525532ed618SSoby Mathew  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
526532ed618SSoby Mathew  * given security state.
527532ed618SSoby Mathew  ******************************************************************************/
528532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state)
529532ed618SSoby Mathew {
530532ed618SSoby Mathew 	cpu_context_t *ctx;
531532ed618SSoby Mathew 	el3_state_t *state;
532532ed618SSoby Mathew 
533532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
534532ed618SSoby Mathew 	assert(ctx);
535532ed618SSoby Mathew 
536532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
537532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
538532ed618SSoby Mathew 	return read_ctx_reg(state, CTX_SCR_EL3);
539532ed618SSoby Mathew }
540532ed618SSoby Mathew 
541532ed618SSoby Mathew /*******************************************************************************
542532ed618SSoby Mathew  * This function is used to program the context that's used for exception
543532ed618SSoby Mathew  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
544532ed618SSoby Mathew  * the required security state
545532ed618SSoby Mathew  ******************************************************************************/
546532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state)
547532ed618SSoby Mathew {
548532ed618SSoby Mathew 	cpu_context_t *ctx;
549532ed618SSoby Mathew 
550532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
551532ed618SSoby Mathew 	assert(ctx);
552532ed618SSoby Mathew 
553532ed618SSoby Mathew 	cm_set_next_context(ctx);
554532ed618SSoby Mathew }
555