1532ed618SSoby Mathew /* 2*2bbad1d1SZelalem Aweke * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7532ed618SSoby Mathew #include <assert.h> 840daecc1SAntonio Nino Diaz #include <stdbool.h> 9532ed618SSoby Mathew #include <string.h> 1009d40e0eSAntonio Nino Diaz 1109d40e0eSAntonio Nino Diaz #include <platform_def.h> 1209d40e0eSAntonio Nino Diaz 1309d40e0eSAntonio Nino Diaz #include <arch.h> 1409d40e0eSAntonio Nino Diaz #include <arch_helpers.h> 15b7e398d6SSoby Mathew #include <arch_features.h> 1609d40e0eSAntonio Nino Diaz #include <bl31/interrupt_mgmt.h> 1709d40e0eSAntonio Nino Diaz #include <common/bl_common.h> 1809d40e0eSAntonio Nino Diaz #include <context.h> 1909d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/context_mgmt.h> 2009d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/pubsub_events.h> 2109d40e0eSAntonio Nino Diaz #include <lib/extensions/amu.h> 2209d40e0eSAntonio Nino Diaz #include <lib/extensions/mpam.h> 23dc78e62dSjohpow01 #include <lib/extensions/sme.h> 2409d40e0eSAntonio Nino Diaz #include <lib/extensions/spe.h> 2509d40e0eSAntonio Nino Diaz #include <lib/extensions/sve.h> 26d4582d30SManish V Badarkhe #include <lib/extensions/sys_reg_trace.h> 27813524eaSManish V Badarkhe #include <lib/extensions/trbe.h> 288fcd3d96SManish V Badarkhe #include <lib/extensions/trf.h> 296cac724dSjohpow01 #include <lib/extensions/twed.h> 3009d40e0eSAntonio Nino Diaz #include <lib/utils.h> 31532ed618SSoby Mathew 32dc78e62dSjohpow01 static void manage_extensions_secure(cpu_context_t *ctx); 33532ed618SSoby Mathew 34*2bbad1d1SZelalem Aweke /****************************************************************************** 35*2bbad1d1SZelalem Aweke * This function performs initializations that are specific to SECURE state 36*2bbad1d1SZelalem Aweke * and updates the cpu context specified by 'ctx'. 37*2bbad1d1SZelalem Aweke *****************************************************************************/ 38*2bbad1d1SZelalem Aweke static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) 39532ed618SSoby Mathew { 40*2bbad1d1SZelalem Aweke u_register_t scr_el3; 41*2bbad1d1SZelalem Aweke el3_state_t *state; 42*2bbad1d1SZelalem Aweke 43*2bbad1d1SZelalem Aweke state = get_el3state_ctx(ctx); 44*2bbad1d1SZelalem Aweke scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 45*2bbad1d1SZelalem Aweke 46*2bbad1d1SZelalem Aweke #if defined(IMAGE_BL31) && !defined(SPD_spmd) 47532ed618SSoby Mathew /* 48*2bbad1d1SZelalem Aweke * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 49*2bbad1d1SZelalem Aweke * indicated by the interrupt routing model for BL31. 50532ed618SSoby Mathew */ 51*2bbad1d1SZelalem Aweke scr_el3 |= get_scr_el3_from_routing_model(SECURE); 52*2bbad1d1SZelalem Aweke #endif 53*2bbad1d1SZelalem Aweke 54*2bbad1d1SZelalem Aweke #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS 55*2bbad1d1SZelalem Aweke /* Get Memory Tagging Extension support level */ 56*2bbad1d1SZelalem Aweke unsigned int mte = get_armv8_5_mte_support(); 57*2bbad1d1SZelalem Aweke #endif 58*2bbad1d1SZelalem Aweke /* 59*2bbad1d1SZelalem Aweke * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS 60*2bbad1d1SZelalem Aweke * is set, or when MTE is only implemented at EL0. 61*2bbad1d1SZelalem Aweke */ 62*2bbad1d1SZelalem Aweke #if CTX_INCLUDE_MTE_REGS 63*2bbad1d1SZelalem Aweke assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); 64*2bbad1d1SZelalem Aweke scr_el3 |= SCR_ATA_BIT; 65*2bbad1d1SZelalem Aweke #else 66*2bbad1d1SZelalem Aweke if (mte == MTE_IMPLEMENTED_EL0) { 67*2bbad1d1SZelalem Aweke scr_el3 |= SCR_ATA_BIT; 68*2bbad1d1SZelalem Aweke } 69*2bbad1d1SZelalem Aweke #endif /* CTX_INCLUDE_MTE_REGS */ 70*2bbad1d1SZelalem Aweke 71*2bbad1d1SZelalem Aweke /* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */ 72*2bbad1d1SZelalem Aweke if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) { 73*2bbad1d1SZelalem Aweke if (GET_RW(ep->spsr) != MODE_RW_64) { 74*2bbad1d1SZelalem Aweke ERROR("S-EL2 can not be used in AArch32\n."); 75*2bbad1d1SZelalem Aweke panic(); 76*2bbad1d1SZelalem Aweke } 77*2bbad1d1SZelalem Aweke 78*2bbad1d1SZelalem Aweke scr_el3 |= SCR_EEL2_BIT; 79*2bbad1d1SZelalem Aweke } 80*2bbad1d1SZelalem Aweke 81*2bbad1d1SZelalem Aweke write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 82*2bbad1d1SZelalem Aweke 83*2bbad1d1SZelalem Aweke manage_extensions_secure(ctx); 84*2bbad1d1SZelalem Aweke } 85*2bbad1d1SZelalem Aweke 86*2bbad1d1SZelalem Aweke #if ENABLE_RME 87*2bbad1d1SZelalem Aweke /****************************************************************************** 88*2bbad1d1SZelalem Aweke * This function performs initializations that are specific to REALM state 89*2bbad1d1SZelalem Aweke * and updates the cpu context specified by 'ctx'. 90*2bbad1d1SZelalem Aweke *****************************************************************************/ 91*2bbad1d1SZelalem Aweke static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) 92*2bbad1d1SZelalem Aweke { 93*2bbad1d1SZelalem Aweke u_register_t scr_el3; 94*2bbad1d1SZelalem Aweke el3_state_t *state; 95*2bbad1d1SZelalem Aweke 96*2bbad1d1SZelalem Aweke state = get_el3state_ctx(ctx); 97*2bbad1d1SZelalem Aweke scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 98*2bbad1d1SZelalem Aweke 99*2bbad1d1SZelalem Aweke scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT; 100*2bbad1d1SZelalem Aweke 101*2bbad1d1SZelalem Aweke write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 102*2bbad1d1SZelalem Aweke } 103*2bbad1d1SZelalem Aweke #endif /* ENABLE_RME */ 104*2bbad1d1SZelalem Aweke 105*2bbad1d1SZelalem Aweke /****************************************************************************** 106*2bbad1d1SZelalem Aweke * This function performs initializations that are specific to NON-SECURE state 107*2bbad1d1SZelalem Aweke * and updates the cpu context specified by 'ctx'. 108*2bbad1d1SZelalem Aweke *****************************************************************************/ 109*2bbad1d1SZelalem Aweke static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) 110*2bbad1d1SZelalem Aweke { 111*2bbad1d1SZelalem Aweke u_register_t scr_el3; 112*2bbad1d1SZelalem Aweke el3_state_t *state; 113*2bbad1d1SZelalem Aweke 114*2bbad1d1SZelalem Aweke state = get_el3state_ctx(ctx); 115*2bbad1d1SZelalem Aweke scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 116*2bbad1d1SZelalem Aweke 117*2bbad1d1SZelalem Aweke /* SCR_NS: Set the NS bit */ 118*2bbad1d1SZelalem Aweke scr_el3 |= SCR_NS_BIT; 119*2bbad1d1SZelalem Aweke 120*2bbad1d1SZelalem Aweke #if !CTX_INCLUDE_PAUTH_REGS 121*2bbad1d1SZelalem Aweke /* 122*2bbad1d1SZelalem Aweke * If the pointer authentication registers aren't saved during world 123*2bbad1d1SZelalem Aweke * switches the value of the registers can be leaked from the Secure to 124*2bbad1d1SZelalem Aweke * the Non-secure world. To prevent this, rather than enabling pointer 125*2bbad1d1SZelalem Aweke * authentication everywhere, we only enable it in the Non-secure world. 126*2bbad1d1SZelalem Aweke * 127*2bbad1d1SZelalem Aweke * If the Secure world wants to use pointer authentication, 128*2bbad1d1SZelalem Aweke * CTX_INCLUDE_PAUTH_REGS must be set to 1. 129*2bbad1d1SZelalem Aweke */ 130*2bbad1d1SZelalem Aweke scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 131*2bbad1d1SZelalem Aweke #endif /* !CTX_INCLUDE_PAUTH_REGS */ 132*2bbad1d1SZelalem Aweke 133*2bbad1d1SZelalem Aweke /* Allow access to Allocation Tags when MTE is implemented. */ 134*2bbad1d1SZelalem Aweke scr_el3 |= SCR_ATA_BIT; 135*2bbad1d1SZelalem Aweke 136*2bbad1d1SZelalem Aweke #ifdef IMAGE_BL31 137*2bbad1d1SZelalem Aweke /* 138*2bbad1d1SZelalem Aweke * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 139*2bbad1d1SZelalem Aweke * indicated by the interrupt routing model for BL31. 140*2bbad1d1SZelalem Aweke */ 141*2bbad1d1SZelalem Aweke scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); 142*2bbad1d1SZelalem Aweke #endif 143*2bbad1d1SZelalem Aweke write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 144532ed618SSoby Mathew } 145532ed618SSoby Mathew 146532ed618SSoby Mathew /******************************************************************************* 147*2bbad1d1SZelalem Aweke * The following function performs initialization of the cpu_context 'ctx' 148*2bbad1d1SZelalem Aweke * for first use that is common to all security states, and sets the 149*2bbad1d1SZelalem Aweke * initial entrypoint state as specified by the entry_point_info structure. 150532ed618SSoby Mathew * 1518aabea33SPaul Beesley * The EE and ST attributes are used to configure the endianness and secure 152532ed618SSoby Mathew * timer availability for the new execution context. 153532ed618SSoby Mathew ******************************************************************************/ 154*2bbad1d1SZelalem Aweke static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 155532ed618SSoby Mathew { 156f1be00daSLouis Mayencourt u_register_t scr_el3; 157532ed618SSoby Mathew el3_state_t *state; 158532ed618SSoby Mathew gp_regs_t *gp_regs; 159eeb5a7b5SDeepika Bhavnani u_register_t sctlr_elx, actlr_elx; 160532ed618SSoby Mathew 161532ed618SSoby Mathew /* Clear any residual register values from the context */ 16232f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 163532ed618SSoby Mathew 164532ed618SSoby Mathew /* 16518f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 16618f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 16718f2efd6SDavid Cunado * affect the next EL. 16818f2efd6SDavid Cunado * 16918f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 17018f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 17118f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 172532ed618SSoby Mathew */ 173f1be00daSLouis Mayencourt scr_el3 = read_scr(); 174532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 175*2bbad1d1SZelalem Aweke SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT); 176c5ea4f8aSZelalem Aweke 17718f2efd6SDavid Cunado /* 17818f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 17918f2efd6SDavid Cunado * Exception level as specified by SPSR. 18018f2efd6SDavid Cunado */ 181c5ea4f8aSZelalem Aweke if (GET_RW(ep->spsr) == MODE_RW_64) { 182532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 183c5ea4f8aSZelalem Aweke } 184*2bbad1d1SZelalem Aweke 18518f2efd6SDavid Cunado /* 18618f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 18718f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 18818f2efd6SDavid Cunado * by the entrypoint attributes. 18918f2efd6SDavid Cunado */ 190c5ea4f8aSZelalem Aweke if (EP_GET_ST(ep->h.attr) != 0U) { 191532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 192c5ea4f8aSZelalem Aweke } 193532ed618SSoby Mathew 194cb4ec47bSjohpow01 /* 195cb4ec47bSjohpow01 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting 196cb4ec47bSjohpow01 * SCR_EL3.HXEn. 197cb4ec47bSjohpow01 */ 198cb4ec47bSjohpow01 #if ENABLE_FEAT_HCX 199cb4ec47bSjohpow01 scr_el3 |= SCR_HXEn_BIT; 200cb4ec47bSjohpow01 #endif 201cb4ec47bSjohpow01 202fbc44bd1SVarun Wadekar #if RAS_TRAP_LOWER_EL_ERR_ACCESS 203fbc44bd1SVarun Wadekar /* 204fbc44bd1SVarun Wadekar * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR 205fbc44bd1SVarun Wadekar * and RAS ERX registers from EL1 and EL2 are trapped to EL3. 206fbc44bd1SVarun Wadekar */ 207fbc44bd1SVarun Wadekar scr_el3 |= SCR_TERR_BIT; 208fbc44bd1SVarun Wadekar #endif 209fbc44bd1SVarun Wadekar 21024f671f3SJulius Werner #if !HANDLE_EA_EL3_FIRST 21118f2efd6SDavid Cunado /* 21218f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 21318f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 21418f2efd6SDavid Cunado * Aborts are taken to EL3. 21518f2efd6SDavid Cunado */ 216532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 217532ed618SSoby Mathew #endif 218532ed618SSoby Mathew 2191a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT 2201a7c1cfeSJeenu Viswambharan /* Enable fault injection from lower ELs */ 2211a7c1cfeSJeenu Viswambharan scr_el3 |= SCR_FIEN_BIT; 2221a7c1cfeSJeenu Viswambharan #endif 2231a7c1cfeSJeenu Viswambharan 2245283962eSAntonio Nino Diaz /* 225*2bbad1d1SZelalem Aweke * CPTR_EL3 was initialized out of reset, copy that value to the 226*2bbad1d1SZelalem Aweke * context register. 2275283962eSAntonio Nino Diaz */ 22868ac5ed0SArunachalam Ganapathy write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3()); 229532ed618SSoby Mathew 230532ed618SSoby Mathew /* 23118f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 23218f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 23318f2efd6SDavid Cunado * next mode is Hyp. 234110ee433SJimmy Brisson * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 235110ee433SJimmy Brisson * same conditions as HVC instructions and when the processor supports 236110ee433SJimmy Brisson * ARMv8.6-FGT. 23729d0ee54SJimmy Brisson * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) 23829d0ee54SJimmy Brisson * CNTPOFF_EL2 register under the same conditions as HVC instructions 23929d0ee54SJimmy Brisson * and when the processor supports ECV. 240532ed618SSoby Mathew */ 241a0fee747SAntonio Nino Diaz if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 242a0fee747SAntonio Nino Diaz || ((GET_RW(ep->spsr) != MODE_RW_64) 243a0fee747SAntonio Nino Diaz && (GET_M32(ep->spsr) == MODE32_hyp))) { 244532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 245110ee433SJimmy Brisson 246110ee433SJimmy Brisson if (is_armv8_6_fgt_present()) { 247110ee433SJimmy Brisson scr_el3 |= SCR_FGTEN_BIT; 248110ee433SJimmy Brisson } 24929d0ee54SJimmy Brisson 25029d0ee54SJimmy Brisson if (get_armv8_6_ecv_support() 25129d0ee54SJimmy Brisson == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) { 25229d0ee54SJimmy Brisson scr_el3 |= SCR_ECVEN_BIT; 25329d0ee54SJimmy Brisson } 254532ed618SSoby Mathew } 255532ed618SSoby Mathew 25618f2efd6SDavid Cunado /* 257873d4241Sjohpow01 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3 258873d4241Sjohpow01 * and EL2, when clear, this bit traps accesses from EL2 so we set it 259873d4241Sjohpow01 * to 1 when EL2 is present. 260873d4241Sjohpow01 */ 261873d4241Sjohpow01 if (is_armv8_6_feat_amuv1p1_present() && 262873d4241Sjohpow01 (el_implemented(2) != EL_IMPL_NONE)) { 263873d4241Sjohpow01 scr_el3 |= SCR_AMVOFFEN_BIT; 264873d4241Sjohpow01 } 265873d4241Sjohpow01 266873d4241Sjohpow01 /* 26718f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 26818f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 26918f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 27018f2efd6SDavid Cunado * set to zero. 27118f2efd6SDavid Cunado * 27218f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 27318f2efd6SDavid Cunado * 27418f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 27518f2efd6SDavid Cunado * required by PSCI specification) 27618f2efd6SDavid Cunado */ 277a0fee747SAntonio Nino Diaz sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U; 278c5ea4f8aSZelalem Aweke if (GET_RW(ep->spsr) == MODE_RW_64) { 27918f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 280c5ea4f8aSZelalem Aweke } else { 28118f2efd6SDavid Cunado /* 28218f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 28318f2efd6SDavid Cunado * fields need to be set. 28418f2efd6SDavid Cunado * 28518f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 28618f2efd6SDavid Cunado * instructions are not trapped to EL1. 28718f2efd6SDavid Cunado * 28818f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 28918f2efd6SDavid Cunado * instructions are not trapped to EL1. 29018f2efd6SDavid Cunado * 29118f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 29218f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 29318f2efd6SDavid Cunado */ 29418f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 29518f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 29618f2efd6SDavid Cunado } 29718f2efd6SDavid Cunado 2985f5d1ed7SLouis Mayencourt #if ERRATA_A75_764081 2995f5d1ed7SLouis Mayencourt /* 3005f5d1ed7SLouis Mayencourt * If workaround of errata 764081 for Cortex-A75 is used then set 3015f5d1ed7SLouis Mayencourt * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 3025f5d1ed7SLouis Mayencourt */ 3035f5d1ed7SLouis Mayencourt sctlr_elx |= SCTLR_IESB_BIT; 3045f5d1ed7SLouis Mayencourt #endif 3055f5d1ed7SLouis Mayencourt 3066cac724dSjohpow01 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 3076cac724dSjohpow01 if (is_armv8_6_twed_present()) { 3086cac724dSjohpow01 uint32_t delay = plat_arm_set_twedel_scr_el3(); 3096cac724dSjohpow01 3106cac724dSjohpow01 if (delay != TWED_DISABLED) { 3116cac724dSjohpow01 /* Make sure delay value fits */ 3126cac724dSjohpow01 assert((delay & ~SCR_TWEDEL_MASK) == 0U); 3136cac724dSjohpow01 3146cac724dSjohpow01 /* Set delay in SCR_EL3 */ 3156cac724dSjohpow01 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 3166cac724dSjohpow01 scr_el3 |= ((delay & SCR_TWEDEL_MASK) 3176cac724dSjohpow01 << SCR_TWEDEL_SHIFT); 3186cac724dSjohpow01 3196cac724dSjohpow01 /* Enable WFE delay */ 3206cac724dSjohpow01 scr_el3 |= SCR_TWEDEn_BIT; 3216cac724dSjohpow01 } 3226cac724dSjohpow01 } 3236cac724dSjohpow01 32418f2efd6SDavid Cunado /* 32518f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 3262e61d687SOlivier Deprez * and other EL2 registers are set up by cm_prepare_el3_exit() as they 32718f2efd6SDavid Cunado * are not part of the stored cpu_context. 32818f2efd6SDavid Cunado */ 3292825946eSMax Shvetsov write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 33018f2efd6SDavid Cunado 3312ab9617eSVarun Wadekar /* 3322ab9617eSVarun Wadekar * Base the context ACTLR_EL1 on the current value, as it is 3332ab9617eSVarun Wadekar * implementation defined. The context restore process will write 3342ab9617eSVarun Wadekar * the value from the context to the actual register and can cause 3352ab9617eSVarun Wadekar * problems for processor cores that don't expect certain bits to 3362ab9617eSVarun Wadekar * be zero. 3372ab9617eSVarun Wadekar */ 3382ab9617eSVarun Wadekar actlr_elx = read_actlr_el1(); 3392825946eSMax Shvetsov write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 3402ab9617eSVarun Wadekar 3413e61b2b5SDavid Cunado /* 342e290a8fcSAlexei Fedorov * Populate EL3 state so that we've the right context 343e290a8fcSAlexei Fedorov * before doing ERET 3443e61b2b5SDavid Cunado */ 345532ed618SSoby Mathew state = get_el3state_ctx(ctx); 346532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 347532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 348532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 349532ed618SSoby Mathew 350532ed618SSoby Mathew /* 351532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 352532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 353532ed618SSoby Mathew */ 354532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 355532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 356532ed618SSoby Mathew } 357532ed618SSoby Mathew 358532ed618SSoby Mathew /******************************************************************************* 359*2bbad1d1SZelalem Aweke * Context management library initialization routine. This library is used by 360*2bbad1d1SZelalem Aweke * runtime services to share pointers to 'cpu_context' structures for secure 361*2bbad1d1SZelalem Aweke * non-secure and realm states. Management of the structures and their associated 362*2bbad1d1SZelalem Aweke * memory is not done by the context management library e.g. the PSCI service 363*2bbad1d1SZelalem Aweke * manages the cpu context used for entry from and exit to the non-secure state. 364*2bbad1d1SZelalem Aweke * The Secure payload dispatcher service manages the context(s) corresponding to 365*2bbad1d1SZelalem Aweke * the secure state. It also uses this library to get access to the non-secure 366*2bbad1d1SZelalem Aweke * state cpu context pointers. 367*2bbad1d1SZelalem Aweke * Lastly, this library provides the API to make SP_EL3 point to the cpu context 368*2bbad1d1SZelalem Aweke * which will be used for programming an entry into a lower EL. The same context 369*2bbad1d1SZelalem Aweke * will be used to save state upon exception entry from that EL. 370*2bbad1d1SZelalem Aweke ******************************************************************************/ 371*2bbad1d1SZelalem Aweke void __init cm_init(void) 372*2bbad1d1SZelalem Aweke { 373*2bbad1d1SZelalem Aweke /* 374*2bbad1d1SZelalem Aweke * The context management library has only global data to intialize, but 375*2bbad1d1SZelalem Aweke * that will be done when the BSS is zeroed out. 376*2bbad1d1SZelalem Aweke */ 377*2bbad1d1SZelalem Aweke } 378*2bbad1d1SZelalem Aweke 379*2bbad1d1SZelalem Aweke /******************************************************************************* 380*2bbad1d1SZelalem Aweke * This is the high-level function used to initialize the cpu_context 'ctx' for 381*2bbad1d1SZelalem Aweke * first use. It performs initializations that are common to all security states 382*2bbad1d1SZelalem Aweke * and initializations specific to the security state specified in 'ep' 383*2bbad1d1SZelalem Aweke ******************************************************************************/ 384*2bbad1d1SZelalem Aweke void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 385*2bbad1d1SZelalem Aweke { 386*2bbad1d1SZelalem Aweke unsigned int security_state; 387*2bbad1d1SZelalem Aweke 388*2bbad1d1SZelalem Aweke assert(ctx != NULL); 389*2bbad1d1SZelalem Aweke 390*2bbad1d1SZelalem Aweke /* 391*2bbad1d1SZelalem Aweke * Perform initializations that are common 392*2bbad1d1SZelalem Aweke * to all security states 393*2bbad1d1SZelalem Aweke */ 394*2bbad1d1SZelalem Aweke setup_context_common(ctx, ep); 395*2bbad1d1SZelalem Aweke 396*2bbad1d1SZelalem Aweke security_state = GET_SECURITY_STATE(ep->h.attr); 397*2bbad1d1SZelalem Aweke 398*2bbad1d1SZelalem Aweke /* Perform security state specific initializations */ 399*2bbad1d1SZelalem Aweke switch (security_state) { 400*2bbad1d1SZelalem Aweke case SECURE: 401*2bbad1d1SZelalem Aweke setup_secure_context(ctx, ep); 402*2bbad1d1SZelalem Aweke break; 403*2bbad1d1SZelalem Aweke #if ENABLE_RME 404*2bbad1d1SZelalem Aweke case REALM: 405*2bbad1d1SZelalem Aweke setup_realm_context(ctx, ep); 406*2bbad1d1SZelalem Aweke break; 407*2bbad1d1SZelalem Aweke #endif 408*2bbad1d1SZelalem Aweke case NON_SECURE: 409*2bbad1d1SZelalem Aweke setup_ns_context(ctx, ep); 410*2bbad1d1SZelalem Aweke break; 411*2bbad1d1SZelalem Aweke default: 412*2bbad1d1SZelalem Aweke ERROR("Invalid security state\n"); 413*2bbad1d1SZelalem Aweke panic(); 414*2bbad1d1SZelalem Aweke break; 415*2bbad1d1SZelalem Aweke } 416*2bbad1d1SZelalem Aweke } 417*2bbad1d1SZelalem Aweke 418*2bbad1d1SZelalem Aweke /******************************************************************************* 4190fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 4200fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 4210fd0f222SDimitris Papastamos * it is zero. 4220fd0f222SDimitris Papastamos ******************************************************************************/ 423dc78e62dSjohpow01 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx) 4240fd0f222SDimitris Papastamos { 4250fd0f222SDimitris Papastamos #if IMAGE_BL31 426281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 427281a08ccSDimitris Papastamos spe_enable(el2_unused); 428281a08ccSDimitris Papastamos #endif 429380559c1SDimitris Papastamos 430380559c1SDimitris Papastamos #if ENABLE_AMU 43168ac5ed0SArunachalam Ganapathy amu_enable(el2_unused, ctx); 43268ac5ed0SArunachalam Ganapathy #endif 43368ac5ed0SArunachalam Ganapathy 434dc78e62dSjohpow01 #if ENABLE_SME_FOR_NS 435dc78e62dSjohpow01 /* Enable SME, SVE, and FPU/SIMD for non-secure world. */ 436dc78e62dSjohpow01 sme_enable(ctx); 437dc78e62dSjohpow01 #elif ENABLE_SVE_FOR_NS 438dc78e62dSjohpow01 /* Enable SVE and FPU/SIMD for non-secure world. */ 43968ac5ed0SArunachalam Ganapathy sve_enable(ctx); 440380559c1SDimitris Papastamos #endif 4411a853370SDavid Cunado 4425f835918SJeenu Viswambharan #if ENABLE_MPAM_FOR_LOWER_ELS 4435f835918SJeenu Viswambharan mpam_enable(el2_unused); 4445f835918SJeenu Viswambharan #endif 445813524eaSManish V Badarkhe 446813524eaSManish V Badarkhe #if ENABLE_TRBE_FOR_NS 447813524eaSManish V Badarkhe trbe_enable(); 448813524eaSManish V Badarkhe #endif /* ENABLE_TRBE_FOR_NS */ 449813524eaSManish V Badarkhe 450d4582d30SManish V Badarkhe #if ENABLE_SYS_REG_TRACE_FOR_NS 451d4582d30SManish V Badarkhe sys_reg_trace_enable(ctx); 452d4582d30SManish V Badarkhe #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */ 453d4582d30SManish V Badarkhe 4548fcd3d96SManish V Badarkhe #if ENABLE_TRF_FOR_NS 4558fcd3d96SManish V Badarkhe trf_enable(); 4568fcd3d96SManish V Badarkhe #endif /* ENABLE_TRF_FOR_NS */ 4570fd0f222SDimitris Papastamos #endif 4580fd0f222SDimitris Papastamos } 4590fd0f222SDimitris Papastamos 4600fd0f222SDimitris Papastamos /******************************************************************************* 46168ac5ed0SArunachalam Ganapathy * Enable architecture extensions on first entry to Secure world. 46268ac5ed0SArunachalam Ganapathy ******************************************************************************/ 463dc78e62dSjohpow01 static void manage_extensions_secure(cpu_context_t *ctx) 46468ac5ed0SArunachalam Ganapathy { 46568ac5ed0SArunachalam Ganapathy #if IMAGE_BL31 466dc78e62dSjohpow01 #if ENABLE_SME_FOR_NS 467dc78e62dSjohpow01 #if ENABLE_SME_FOR_SWD 468dc78e62dSjohpow01 /* 469dc78e62dSjohpow01 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must 470dc78e62dSjohpow01 * ensure SME, SVE, and FPU/SIMD context properly managed. 471dc78e62dSjohpow01 */ 472dc78e62dSjohpow01 sme_enable(ctx); 473dc78e62dSjohpow01 #else /* ENABLE_SME_FOR_SWD */ 474dc78e62dSjohpow01 /* 475dc78e62dSjohpow01 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can 476dc78e62dSjohpow01 * safely use the associated registers. 477dc78e62dSjohpow01 */ 478dc78e62dSjohpow01 sme_disable(ctx); 479dc78e62dSjohpow01 #endif /* ENABLE_SME_FOR_SWD */ 480dc78e62dSjohpow01 #elif ENABLE_SVE_FOR_NS 48168ac5ed0SArunachalam Ganapathy #if ENABLE_SVE_FOR_SWD 482dc78e62dSjohpow01 /* 483dc78e62dSjohpow01 * Enable SVE and FPU in secure context, secure manager must ensure that 484dc78e62dSjohpow01 * the SVE and FPU register contexts are properly managed. 485dc78e62dSjohpow01 */ 48668ac5ed0SArunachalam Ganapathy sve_enable(ctx); 487dc78e62dSjohpow01 #else /* ENABLE_SVE_FOR_SWD */ 488dc78e62dSjohpow01 /* 489dc78e62dSjohpow01 * Disable SVE and FPU in secure context so non-secure world can safely 490dc78e62dSjohpow01 * use them. 491dc78e62dSjohpow01 */ 492dc78e62dSjohpow01 sve_disable(ctx); 493dc78e62dSjohpow01 #endif /* ENABLE_SVE_FOR_SWD */ 494dc78e62dSjohpow01 #endif /* ENABLE_SVE_FOR_NS */ 495dc78e62dSjohpow01 #endif /* IMAGE_BL31 */ 49668ac5ed0SArunachalam Ganapathy } 49768ac5ed0SArunachalam Ganapathy 49868ac5ed0SArunachalam Ganapathy /******************************************************************************* 499532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 500532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 501532ed618SSoby Mathew * specified by the entry_point_info structure. 502532ed618SSoby Mathew ******************************************************************************/ 503532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 504532ed618SSoby Mathew const entry_point_info_t *ep) 505532ed618SSoby Mathew { 506532ed618SSoby Mathew cpu_context_t *ctx; 507532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 5081634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 509532ed618SSoby Mathew } 510532ed618SSoby Mathew 511532ed618SSoby Mathew /******************************************************************************* 512532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 513532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 514532ed618SSoby Mathew * entry_point_info structure. 515532ed618SSoby Mathew ******************************************************************************/ 516532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 517532ed618SSoby Mathew { 518532ed618SSoby Mathew cpu_context_t *ctx; 519532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 5201634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 521532ed618SSoby Mathew } 522532ed618SSoby Mathew 523532ed618SSoby Mathew /******************************************************************************* 524c5ea4f8aSZelalem Aweke * Prepare the CPU system registers for first entry into realm, secure, or 525c5ea4f8aSZelalem Aweke * normal world. 526532ed618SSoby Mathew * 527532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 528532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 529532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 530532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 531532ed618SSoby Mathew ******************************************************************************/ 532532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 533532ed618SSoby Mathew { 534f1be00daSLouis Mayencourt u_register_t sctlr_elx, scr_el3, mdcr_el2; 535532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 53640daecc1SAntonio Nino Diaz bool el2_unused = false; 537a0fee747SAntonio Nino Diaz uint64_t hcr_el2 = 0U; 538532ed618SSoby Mathew 539a0fee747SAntonio Nino Diaz assert(ctx != NULL); 540532ed618SSoby Mathew 541532ed618SSoby Mathew if (security_state == NON_SECURE) { 542f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 543a0fee747SAntonio Nino Diaz CTX_SCR_EL3); 544a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_HCE_BIT) != 0U) { 545532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 5462825946eSMax Shvetsov sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), 547532ed618SSoby Mathew CTX_SCTLR_EL1); 5482e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 549532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 5505f5d1ed7SLouis Mayencourt #if ERRATA_A75_764081 5515f5d1ed7SLouis Mayencourt /* 5525f5d1ed7SLouis Mayencourt * If workaround of errata 764081 for Cortex-A75 is used 5535f5d1ed7SLouis Mayencourt * then set SCTLR_EL2.IESB to enable Implicit Error 5545f5d1ed7SLouis Mayencourt * Synchronization Barrier. 5555f5d1ed7SLouis Mayencourt */ 5565f5d1ed7SLouis Mayencourt sctlr_elx |= SCTLR_IESB_BIT; 5575f5d1ed7SLouis Mayencourt #endif 558532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 559a0fee747SAntonio Nino Diaz } else if (el_implemented(2) != EL_IMPL_NONE) { 56040daecc1SAntonio Nino Diaz el2_unused = true; 5610fd0f222SDimitris Papastamos 56218f2efd6SDavid Cunado /* 56318f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 56418f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 56518f2efd6SDavid Cunado * 5663ff4aaacSJeenu Viswambharan * Set EL2 register width appropriately: Set HCR_EL2 5673ff4aaacSJeenu Viswambharan * field to match SCR_EL3.RW. 56818f2efd6SDavid Cunado */ 569a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_RW_BIT) != 0U) 5703ff4aaacSJeenu Viswambharan hcr_el2 |= HCR_RW_BIT; 5713ff4aaacSJeenu Viswambharan 5723ff4aaacSJeenu Viswambharan /* 5733ff4aaacSJeenu Viswambharan * For Armv8.3 pointer authentication feature, disable 5743ff4aaacSJeenu Viswambharan * traps to EL2 when accessing key registers or using 5753ff4aaacSJeenu Viswambharan * pointer authentication instructions from lower ELs. 5763ff4aaacSJeenu Viswambharan */ 5773ff4aaacSJeenu Viswambharan hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 5783ff4aaacSJeenu Viswambharan 5793ff4aaacSJeenu Viswambharan write_hcr_el2(hcr_el2); 580532ed618SSoby Mathew 58118f2efd6SDavid Cunado /* 58218f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 58318f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 58418f2efd6SDavid Cunado * UNKNOWN reset values. 58518f2efd6SDavid Cunado * 58618f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 58718f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 58818f2efd6SDavid Cunado * Execution states do not trap to EL2. 58918f2efd6SDavid Cunado * 59018f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 59118f2efd6SDavid Cunado * register accesses to the trace registers from both 59218f2efd6SDavid Cunado * Execution states do not trap to EL2. 593d4582d30SManish V Badarkhe * If PE trace unit System registers are not implemented 594d4582d30SManish V Badarkhe * then this bit is reserved, and must be set to zero. 59518f2efd6SDavid Cunado * 59618f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 59718f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 59818f2efd6SDavid Cunado * Execution states do not trap to EL2. 59918f2efd6SDavid Cunado */ 60018f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 60118f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 60218f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 603532ed618SSoby Mathew 60418f2efd6SDavid Cunado /* 6058aabea33SPaul Beesley * Initialise CNTHCTL_EL2. All fields are 60618f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 60718f2efd6SDavid Cunado * except for field(s) listed below. 60818f2efd6SDavid Cunado * 609c5ea4f8aSZelalem Aweke * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to 61018f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 61118f2efd6SDavid Cunado * physical timer registers. 61218f2efd6SDavid Cunado * 61318f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 61418f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 61518f2efd6SDavid Cunado * physical counter registers. 61618f2efd6SDavid Cunado */ 61718f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 61818f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 619532ed618SSoby Mathew 62018f2efd6SDavid Cunado /* 62118f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 62218f2efd6SDavid Cunado * architecturally UNKNOWN value. 62318f2efd6SDavid Cunado */ 624532ed618SSoby Mathew write_cntvoff_el2(0); 625532ed618SSoby Mathew 62618f2efd6SDavid Cunado /* 62718f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 62818f2efd6SDavid Cunado * MPIDR_EL1 respectively. 62918f2efd6SDavid Cunado */ 630532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 631532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 632532ed618SSoby Mathew 633532ed618SSoby Mathew /* 63418f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 63518f2efd6SDavid Cunado * UNKNOWN on reset. 63618f2efd6SDavid Cunado * 63718f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 63818f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 63918f2efd6SDavid Cunado * operations depend on the VMID. 64018f2efd6SDavid Cunado * 64118f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 64218f2efd6SDavid Cunado * translation is disabled. 643532ed618SSoby Mathew */ 64418f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 64518f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 64618f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 64718f2efd6SDavid Cunado 648495f3d3cSDavid Cunado /* 64918f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 65018f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 65118f2efd6SDavid Cunado * UNKNOWN on reset. 65218f2efd6SDavid Cunado * 653e290a8fcSAlexei Fedorov * MDCR_EL2.HLP: Set to one so that event counter 654e290a8fcSAlexei Fedorov * overflow, that is recorded in PMOVSCLR_EL0[0-30], 655e290a8fcSAlexei Fedorov * occurs on the increment that changes 656e290a8fcSAlexei Fedorov * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is 657e290a8fcSAlexei Fedorov * implemented. This bit is RES0 in versions of the 658e290a8fcSAlexei Fedorov * architecture earlier than ARMv8.5, setting it to 1 659e290a8fcSAlexei Fedorov * doesn't have any effect on them. 660e290a8fcSAlexei Fedorov * 661e290a8fcSAlexei Fedorov * MDCR_EL2.TTRF: Set to zero so that access to Trace 662e290a8fcSAlexei Fedorov * Filter Control register TRFCR_EL1 at EL1 is not 663e290a8fcSAlexei Fedorov * trapped to EL2. This bit is RES0 in versions of 664e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.4. 665e290a8fcSAlexei Fedorov * 666e290a8fcSAlexei Fedorov * MDCR_EL2.HPMD: Set to one so that event counting is 667e290a8fcSAlexei Fedorov * prohibited at EL2. This bit is RES0 in versions of 668e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.1, setting it 669e290a8fcSAlexei Fedorov * to 1 doesn't have any effect on them. 670e290a8fcSAlexei Fedorov * 671e290a8fcSAlexei Fedorov * MDCR_EL2.TPMS: Set to zero so that accesses to 672e290a8fcSAlexei Fedorov * Statistical Profiling control registers from EL1 673e290a8fcSAlexei Fedorov * do not trap to EL2. This bit is RES0 when SPE is 674e290a8fcSAlexei Fedorov * not implemented. 675e290a8fcSAlexei Fedorov * 67618f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 67718f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 67818f2efd6SDavid Cunado * registers are not trapped to EL2. 67918f2efd6SDavid Cunado * 68018f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 68118f2efd6SDavid Cunado * System register accesses to the powerdown debug 68218f2efd6SDavid Cunado * registers are not trapped to EL2. 68318f2efd6SDavid Cunado * 68418f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 68518f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 68618f2efd6SDavid Cunado * 68718f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 68818f2efd6SDavid Cunado * are not routed to EL2. 68918f2efd6SDavid Cunado * 69018f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 69118f2efd6SDavid Cunado * Monitors. 69218f2efd6SDavid Cunado * 69318f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 69418f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 69518f2efd6SDavid Cunado * are not trapped to EL2. 69618f2efd6SDavid Cunado * 69718f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 69818f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 69918f2efd6SDavid Cunado * trapped to EL2. 70018f2efd6SDavid Cunado * 70118f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 70218f2efd6SDavid Cunado * architecturally-defined reset value. 70340ff9074SManish V Badarkhe * 70440ff9074SManish V Badarkhe * MDCR_EL2.E2TB: Set to zero so that the trace Buffer 70540ff9074SManish V Badarkhe * owning exception level is NS-EL1 and, tracing is 70640ff9074SManish V Badarkhe * prohibited at NS-EL2. These bits are RES0 when 70740ff9074SManish V Badarkhe * FEAT_TRBE is not implemented. 708495f3d3cSDavid Cunado */ 709e290a8fcSAlexei Fedorov mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP | 710e290a8fcSAlexei Fedorov MDCR_EL2_HPMD) | 71118f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 71218f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 713e290a8fcSAlexei Fedorov ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS | 714e290a8fcSAlexei Fedorov MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | 715e290a8fcSAlexei Fedorov MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT | 716e290a8fcSAlexei Fedorov MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT | 71740ff9074SManish V Badarkhe MDCR_EL2_TPMCR_BIT | 71840ff9074SManish V Badarkhe MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1)); 719d832aee9Sdp-arm 720d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 721d832aee9Sdp-arm 722939f66d6SDavid Cunado /* 72318f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 72418f2efd6SDavid Cunado * UNKNOWN on reset. 72518f2efd6SDavid Cunado * 72618f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 72718f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 72818f2efd6SDavid Cunado * do not trap to EL2. 729939f66d6SDavid Cunado */ 73018f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 731939f66d6SDavid Cunado /* 73218f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 73318f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 73418f2efd6SDavid Cunado * 73518f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 73618f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 737939f66d6SDavid Cunado */ 73818f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 73918f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 740532ed618SSoby Mathew } 741dc78e62dSjohpow01 manage_extensions_nonsecure(el2_unused, ctx); 742532ed618SSoby Mathew } 743532ed618SSoby Mathew 74417b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 74517b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 746532ed618SSoby Mathew } 747532ed618SSoby Mathew 74828f39f02SMax Shvetsov #if CTX_INCLUDE_EL2_REGS 74928f39f02SMax Shvetsov /******************************************************************************* 75028f39f02SMax Shvetsov * Save EL2 sysreg context 75128f39f02SMax Shvetsov ******************************************************************************/ 75228f39f02SMax Shvetsov void cm_el2_sysregs_context_save(uint32_t security_state) 75328f39f02SMax Shvetsov { 75428f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 75528f39f02SMax Shvetsov 75628f39f02SMax Shvetsov /* 757c5ea4f8aSZelalem Aweke * Always save the non-secure and realm EL2 context, only save the 75828f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 75928f39f02SMax Shvetsov */ 760c5ea4f8aSZelalem Aweke if ((security_state != SECURE) || 7616b704da3SRuari Phipps ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 76228f39f02SMax Shvetsov cpu_context_t *ctx; 76328f39f02SMax Shvetsov 76428f39f02SMax Shvetsov ctx = cm_get_context(security_state); 76528f39f02SMax Shvetsov assert(ctx != NULL); 76628f39f02SMax Shvetsov 7672825946eSMax Shvetsov el2_sysregs_context_save(get_el2_sysregs_ctx(ctx)); 76828f39f02SMax Shvetsov } 76928f39f02SMax Shvetsov } 77028f39f02SMax Shvetsov 77128f39f02SMax Shvetsov /******************************************************************************* 77228f39f02SMax Shvetsov * Restore EL2 sysreg context 77328f39f02SMax Shvetsov ******************************************************************************/ 77428f39f02SMax Shvetsov void cm_el2_sysregs_context_restore(uint32_t security_state) 77528f39f02SMax Shvetsov { 77628f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 77728f39f02SMax Shvetsov 77828f39f02SMax Shvetsov /* 779c5ea4f8aSZelalem Aweke * Always restore the non-secure and realm EL2 context, only restore the 78028f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 78128f39f02SMax Shvetsov */ 782c5ea4f8aSZelalem Aweke if ((security_state != SECURE) || 7836b704da3SRuari Phipps ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 78428f39f02SMax Shvetsov cpu_context_t *ctx; 78528f39f02SMax Shvetsov 78628f39f02SMax Shvetsov ctx = cm_get_context(security_state); 78728f39f02SMax Shvetsov assert(ctx != NULL); 78828f39f02SMax Shvetsov 7892825946eSMax Shvetsov el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx)); 79028f39f02SMax Shvetsov } 79128f39f02SMax Shvetsov } 79228f39f02SMax Shvetsov #endif /* CTX_INCLUDE_EL2_REGS */ 79328f39f02SMax Shvetsov 794532ed618SSoby Mathew /******************************************************************************* 795532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 796532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 797532ed618SSoby Mathew * state. 798532ed618SSoby Mathew ******************************************************************************/ 799532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 800532ed618SSoby Mathew { 801532ed618SSoby Mathew cpu_context_t *ctx; 802532ed618SSoby Mathew 803532ed618SSoby Mathew ctx = cm_get_context(security_state); 804a0fee747SAntonio Nino Diaz assert(ctx != NULL); 805532ed618SSoby Mathew 8062825946eSMax Shvetsov el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 80717b4c0ddSDimitris Papastamos 80817b4c0ddSDimitris Papastamos #if IMAGE_BL31 80917b4c0ddSDimitris Papastamos if (security_state == SECURE) 81017b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 81117b4c0ddSDimitris Papastamos else 81217b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 81317b4c0ddSDimitris Papastamos #endif 814532ed618SSoby Mathew } 815532ed618SSoby Mathew 816532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 817532ed618SSoby Mathew { 818532ed618SSoby Mathew cpu_context_t *ctx; 819532ed618SSoby Mathew 820532ed618SSoby Mathew ctx = cm_get_context(security_state); 821a0fee747SAntonio Nino Diaz assert(ctx != NULL); 822532ed618SSoby Mathew 8232825946eSMax Shvetsov el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 82417b4c0ddSDimitris Papastamos 82517b4c0ddSDimitris Papastamos #if IMAGE_BL31 82617b4c0ddSDimitris Papastamos if (security_state == SECURE) 82717b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 82817b4c0ddSDimitris Papastamos else 82917b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 83017b4c0ddSDimitris Papastamos #endif 831532ed618SSoby Mathew } 832532ed618SSoby Mathew 833532ed618SSoby Mathew /******************************************************************************* 834532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 835532ed618SSoby Mathew * given security state with the given entrypoint 836532ed618SSoby Mathew ******************************************************************************/ 837532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 838532ed618SSoby Mathew { 839532ed618SSoby Mathew cpu_context_t *ctx; 840532ed618SSoby Mathew el3_state_t *state; 841532ed618SSoby Mathew 842532ed618SSoby Mathew ctx = cm_get_context(security_state); 843a0fee747SAntonio Nino Diaz assert(ctx != NULL); 844532ed618SSoby Mathew 845532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 846532ed618SSoby Mathew state = get_el3state_ctx(ctx); 847532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 848532ed618SSoby Mathew } 849532ed618SSoby Mathew 850532ed618SSoby Mathew /******************************************************************************* 851532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 852532ed618SSoby Mathew * pertaining to the given security state 853532ed618SSoby Mathew ******************************************************************************/ 854532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 855532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 856532ed618SSoby Mathew { 857532ed618SSoby Mathew cpu_context_t *ctx; 858532ed618SSoby Mathew el3_state_t *state; 859532ed618SSoby Mathew 860532ed618SSoby Mathew ctx = cm_get_context(security_state); 861a0fee747SAntonio Nino Diaz assert(ctx != NULL); 862532ed618SSoby Mathew 863532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 864532ed618SSoby Mathew state = get_el3state_ctx(ctx); 865532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 866532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 867532ed618SSoby Mathew } 868532ed618SSoby Mathew 869532ed618SSoby Mathew /******************************************************************************* 870532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 871532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 872532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 873532ed618SSoby Mathew ******************************************************************************/ 874532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 875532ed618SSoby Mathew uint32_t bit_pos, 876532ed618SSoby Mathew uint32_t value) 877532ed618SSoby Mathew { 878532ed618SSoby Mathew cpu_context_t *ctx; 879532ed618SSoby Mathew el3_state_t *state; 880f1be00daSLouis Mayencourt u_register_t scr_el3; 881532ed618SSoby Mathew 882532ed618SSoby Mathew ctx = cm_get_context(security_state); 883a0fee747SAntonio Nino Diaz assert(ctx != NULL); 884532ed618SSoby Mathew 885532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 886d7b5f408SJimmy Brisson assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 887532ed618SSoby Mathew 888532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 889a0fee747SAntonio Nino Diaz assert(value <= 1U); 890532ed618SSoby Mathew 891532ed618SSoby Mathew /* 892532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 893532ed618SSoby Mathew * and set it to its new value. 894532ed618SSoby Mathew */ 895532ed618SSoby Mathew state = get_el3state_ctx(ctx); 896f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 897d7b5f408SJimmy Brisson scr_el3 &= ~(1UL << bit_pos); 898f1be00daSLouis Mayencourt scr_el3 |= (u_register_t)value << bit_pos; 899532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 900532ed618SSoby Mathew } 901532ed618SSoby Mathew 902532ed618SSoby Mathew /******************************************************************************* 903532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 904532ed618SSoby Mathew * given security state. 905532ed618SSoby Mathew ******************************************************************************/ 906f1be00daSLouis Mayencourt u_register_t cm_get_scr_el3(uint32_t security_state) 907532ed618SSoby Mathew { 908532ed618SSoby Mathew cpu_context_t *ctx; 909532ed618SSoby Mathew el3_state_t *state; 910532ed618SSoby Mathew 911532ed618SSoby Mathew ctx = cm_get_context(security_state); 912a0fee747SAntonio Nino Diaz assert(ctx != NULL); 913532ed618SSoby Mathew 914532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 915532ed618SSoby Mathew state = get_el3state_ctx(ctx); 916f1be00daSLouis Mayencourt return read_ctx_reg(state, CTX_SCR_EL3); 917532ed618SSoby Mathew } 918532ed618SSoby Mathew 919532ed618SSoby Mathew /******************************************************************************* 920532ed618SSoby Mathew * This function is used to program the context that's used for exception 921532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 922532ed618SSoby Mathew * the required security state 923532ed618SSoby Mathew ******************************************************************************/ 924532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 925532ed618SSoby Mathew { 926532ed618SSoby Mathew cpu_context_t *ctx; 927532ed618SSoby Mathew 928532ed618SSoby Mathew ctx = cm_get_context(security_state); 929a0fee747SAntonio Nino Diaz assert(ctx != NULL); 930532ed618SSoby Mathew 931532ed618SSoby Mathew cm_set_next_context(ctx); 932532ed618SSoby Mathew } 933