1532ed618SSoby Mathew /* 232f0d3c6SDouglas Raillard * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7532ed618SSoby Mathew #include <arch.h> 8532ed618SSoby Mathew #include <arch_helpers.h> 9532ed618SSoby Mathew #include <assert.h> 10532ed618SSoby Mathew #include <bl_common.h> 11532ed618SSoby Mathew #include <context.h> 12532ed618SSoby Mathew #include <context_mgmt.h> 13532ed618SSoby Mathew #include <interrupt_mgmt.h> 14532ed618SSoby Mathew #include <platform.h> 15532ed618SSoby Mathew #include <platform_def.h> 1617b4c0ddSDimitris Papastamos #include <pubsub_events.h> 17532ed618SSoby Mathew #include <smcc_helpers.h> 18*281a08ccSDimitris Papastamos #include <spe.h> 19532ed618SSoby Mathew #include <string.h> 2032f0d3c6SDouglas Raillard #include <utils.h> 21532ed618SSoby Mathew 22532ed618SSoby Mathew 23532ed618SSoby Mathew /******************************************************************************* 24532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 25532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 26532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 27532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 28532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 29532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 30532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 31532ed618SSoby Mathew * state cpu context pointers. 32532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 33532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 34532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 35532ed618SSoby Mathew ******************************************************************************/ 36532ed618SSoby Mathew void cm_init(void) 37532ed618SSoby Mathew { 38532ed618SSoby Mathew /* 39532ed618SSoby Mathew * The context management library has only global data to intialize, but 40532ed618SSoby Mathew * that will be done when the BSS is zeroed out 41532ed618SSoby Mathew */ 42532ed618SSoby Mathew } 43532ed618SSoby Mathew 44532ed618SSoby Mathew /******************************************************************************* 45532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 46532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 47532ed618SSoby Mathew * entry_point_info structure. 48532ed618SSoby Mathew * 49532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 50532ed618SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 51532ed618SSoby Mathew * context and sets this as the next context to return to. 52532ed618SSoby Mathew * 53532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 54532ed618SSoby Mathew * timer availability for the new execution context. 55532ed618SSoby Mathew * 56532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 57532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 58532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 59532ed618SSoby Mathew ******************************************************************************/ 60532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 61532ed618SSoby Mathew { 62532ed618SSoby Mathew unsigned int security_state; 633e61b2b5SDavid Cunado uint32_t scr_el3, pmcr_el0; 64532ed618SSoby Mathew el3_state_t *state; 65532ed618SSoby Mathew gp_regs_t *gp_regs; 66532ed618SSoby Mathew unsigned long sctlr_elx; 67532ed618SSoby Mathew 68532ed618SSoby Mathew assert(ctx); 69532ed618SSoby Mathew 70532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 71532ed618SSoby Mathew 72532ed618SSoby Mathew /* Clear any residual register values from the context */ 7332f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 74532ed618SSoby Mathew 75532ed618SSoby Mathew /* 7618f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 7718f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 7818f2efd6SDavid Cunado * affect the next EL. 7918f2efd6SDavid Cunado * 8018f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 8118f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 8218f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 83532ed618SSoby Mathew */ 84532ed618SSoby Mathew scr_el3 = read_scr(); 85532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 86532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 8718f2efd6SDavid Cunado /* 8818f2efd6SDavid Cunado * SCR_NS: Set the security state of the next EL. 8918f2efd6SDavid Cunado */ 90532ed618SSoby Mathew if (security_state != SECURE) 91532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 9218f2efd6SDavid Cunado /* 9318f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 9418f2efd6SDavid Cunado * Exception level as specified by SPSR. 9518f2efd6SDavid Cunado */ 96532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 97532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 9818f2efd6SDavid Cunado /* 9918f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 10018f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 10118f2efd6SDavid Cunado * by the entrypoint attributes. 10218f2efd6SDavid Cunado */ 103532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 104532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 105532ed618SSoby Mathew 106532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST 10718f2efd6SDavid Cunado /* 10818f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 10918f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 11018f2efd6SDavid Cunado * Aborts are taken to EL3. 11118f2efd6SDavid Cunado */ 112532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 113532ed618SSoby Mathew #endif 114532ed618SSoby Mathew 1153d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 116532ed618SSoby Mathew /* 11718f2efd6SDavid Cunado * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 11818f2efd6SDavid Cunado * indicated by the interrupt routing model for BL31. 119532ed618SSoby Mathew */ 120532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 121532ed618SSoby Mathew #endif 122532ed618SSoby Mathew 123532ed618SSoby Mathew /* 12418f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 12518f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 12618f2efd6SDavid Cunado * next mode is Hyp. 127532ed618SSoby Mathew */ 128532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 129532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 130532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 131532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 132532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 133532ed618SSoby Mathew } 134532ed618SSoby Mathew 13518f2efd6SDavid Cunado /* 13618f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 13718f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 13818f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 13918f2efd6SDavid Cunado * set to zero. 14018f2efd6SDavid Cunado * 14118f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 14218f2efd6SDavid Cunado * 14318f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 14418f2efd6SDavid Cunado * required by PSCI specification) 14518f2efd6SDavid Cunado */ 14618f2efd6SDavid Cunado sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 14718f2efd6SDavid Cunado if (GET_RW(ep->spsr) == MODE_RW_64) 14818f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 14918f2efd6SDavid Cunado else { 15018f2efd6SDavid Cunado /* 15118f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 15218f2efd6SDavid Cunado * fields need to be set. 15318f2efd6SDavid Cunado * 15418f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 15518f2efd6SDavid Cunado * instructions are not trapped to EL1. 15618f2efd6SDavid Cunado * 15718f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 15818f2efd6SDavid Cunado * instructions are not trapped to EL1. 15918f2efd6SDavid Cunado * 16018f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 16118f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 16218f2efd6SDavid Cunado */ 16318f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 16418f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 16518f2efd6SDavid Cunado } 16618f2efd6SDavid Cunado 16718f2efd6SDavid Cunado /* 16818f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 1693e61b2b5SDavid Cunado * and other EL2 registers are set up by cm_preapre_ns_entry() as they 17018f2efd6SDavid Cunado * are not part of the stored cpu_context. 17118f2efd6SDavid Cunado */ 17218f2efd6SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 17318f2efd6SDavid Cunado 1743e61b2b5SDavid Cunado if (security_state == SECURE) { 1753e61b2b5SDavid Cunado /* 1763e61b2b5SDavid Cunado * Initialise PMCR_EL0 for secure context only, setting all 1773e61b2b5SDavid Cunado * fields rather than relying on hw. Some fields are 1783e61b2b5SDavid Cunado * architecturally UNKNOWN on reset. 1793e61b2b5SDavid Cunado * 1803e61b2b5SDavid Cunado * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 1813e61b2b5SDavid Cunado * is recorded in PMOVSCLR_EL0[31], occurs on the increment 1823e61b2b5SDavid Cunado * that changes PMCCNTR_EL0[63] from 1 to 0. 1833e61b2b5SDavid Cunado * 1843e61b2b5SDavid Cunado * PMCR_EL0.DP: Set to one so that the cycle counter, 1853e61b2b5SDavid Cunado * PMCCNTR_EL0 does not count when event counting is prohibited. 1863e61b2b5SDavid Cunado * 1873e61b2b5SDavid Cunado * PMCR_EL0.X: Set to zero to disable export of events. 1883e61b2b5SDavid Cunado * 1893e61b2b5SDavid Cunado * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 1903e61b2b5SDavid Cunado * counts on every clock cycle. 1913e61b2b5SDavid Cunado */ 1923e61b2b5SDavid Cunado pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 1933e61b2b5SDavid Cunado | PMCR_EL0_DP_BIT) 1943e61b2b5SDavid Cunado & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 1953e61b2b5SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 1963e61b2b5SDavid Cunado } 1973e61b2b5SDavid Cunado 198532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 199532ed618SSoby Mathew state = get_el3state_ctx(ctx); 200532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 201532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 202532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 203532ed618SSoby Mathew 204532ed618SSoby Mathew /* 205532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 206532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 207532ed618SSoby Mathew */ 208532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 209532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 210532ed618SSoby Mathew } 211532ed618SSoby Mathew 212532ed618SSoby Mathew /******************************************************************************* 2130fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 2140fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 2150fd0f222SDimitris Papastamos * it is zero. 2160fd0f222SDimitris Papastamos ******************************************************************************/ 2170fd0f222SDimitris Papastamos static void enable_extensions_nonsecure(int el2_unused) 2180fd0f222SDimitris Papastamos { 2190fd0f222SDimitris Papastamos #if IMAGE_BL31 220*281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 221*281a08ccSDimitris Papastamos spe_enable(el2_unused); 222*281a08ccSDimitris Papastamos #endif 2230fd0f222SDimitris Papastamos #endif 2240fd0f222SDimitris Papastamos } 2250fd0f222SDimitris Papastamos 2260fd0f222SDimitris Papastamos /******************************************************************************* 227532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 228532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 229532ed618SSoby Mathew * specified by the entry_point_info structure. 230532ed618SSoby Mathew ******************************************************************************/ 231532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 232532ed618SSoby Mathew const entry_point_info_t *ep) 233532ed618SSoby Mathew { 234532ed618SSoby Mathew cpu_context_t *ctx; 235532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 236532ed618SSoby Mathew cm_init_context_common(ctx, ep); 237532ed618SSoby Mathew } 238532ed618SSoby Mathew 239532ed618SSoby Mathew /******************************************************************************* 240532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 241532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 242532ed618SSoby Mathew * entry_point_info structure. 243532ed618SSoby Mathew ******************************************************************************/ 244532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 245532ed618SSoby Mathew { 246532ed618SSoby Mathew cpu_context_t *ctx; 247532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 248532ed618SSoby Mathew cm_init_context_common(ctx, ep); 249532ed618SSoby Mathew } 250532ed618SSoby Mathew 251532ed618SSoby Mathew /******************************************************************************* 252532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 253532ed618SSoby Mathew * 254532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 255532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 256532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 257532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 258532ed618SSoby Mathew ******************************************************************************/ 259532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 260532ed618SSoby Mathew { 261d832aee9Sdp-arm uint32_t sctlr_elx, scr_el3, mdcr_el2; 262532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 2630fd0f222SDimitris Papastamos int el2_unused = 0; 264532ed618SSoby Mathew 265532ed618SSoby Mathew assert(ctx); 266532ed618SSoby Mathew 267532ed618SSoby Mathew if (security_state == NON_SECURE) { 268532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 269532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 270532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 271532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 272532ed618SSoby Mathew CTX_SCTLR_EL1); 2732e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 274532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 275532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 276f4c8aa90SJeenu Viswambharan } else if (EL_IMPLEMENTED(2)) { 2770fd0f222SDimitris Papastamos el2_unused = 1; 2780fd0f222SDimitris Papastamos 27918f2efd6SDavid Cunado /* 28018f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 28118f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 28218f2efd6SDavid Cunado * 28318f2efd6SDavid Cunado * Initialise all fields in HCR_EL2, except HCR_EL2.RW, 28418f2efd6SDavid Cunado * to zero so that Non-secure operations do not trap to 28518f2efd6SDavid Cunado * EL2. 28618f2efd6SDavid Cunado * 28718f2efd6SDavid Cunado * HCR_EL2.RW: Set this field to match SCR_EL3.RW 28818f2efd6SDavid Cunado */ 289532ed618SSoby Mathew write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 290532ed618SSoby Mathew 29118f2efd6SDavid Cunado /* 29218f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 29318f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 29418f2efd6SDavid Cunado * UNKNOWN reset values. 29518f2efd6SDavid Cunado * 29618f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 29718f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 29818f2efd6SDavid Cunado * Execution states do not trap to EL2. 29918f2efd6SDavid Cunado * 30018f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 30118f2efd6SDavid Cunado * register accesses to the trace registers from both 30218f2efd6SDavid Cunado * Execution states do not trap to EL2. 30318f2efd6SDavid Cunado * 30418f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 30518f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 30618f2efd6SDavid Cunado * Execution states do not trap to EL2. 30718f2efd6SDavid Cunado */ 30818f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 30918f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 31018f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 311532ed618SSoby Mathew 31218f2efd6SDavid Cunado /* 31318f2efd6SDavid Cunado * Initiliase CNTHCTL_EL2. All fields are 31418f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 31518f2efd6SDavid Cunado * except for field(s) listed below. 31618f2efd6SDavid Cunado * 31718f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 31818f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 31918f2efd6SDavid Cunado * physical timer registers. 32018f2efd6SDavid Cunado * 32118f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 32218f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 32318f2efd6SDavid Cunado * physical counter registers. 32418f2efd6SDavid Cunado */ 32518f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 32618f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 327532ed618SSoby Mathew 32818f2efd6SDavid Cunado /* 32918f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 33018f2efd6SDavid Cunado * architecturally UNKNOWN value. 33118f2efd6SDavid Cunado */ 332532ed618SSoby Mathew write_cntvoff_el2(0); 333532ed618SSoby Mathew 33418f2efd6SDavid Cunado /* 33518f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 33618f2efd6SDavid Cunado * MPIDR_EL1 respectively. 33718f2efd6SDavid Cunado */ 338532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 339532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 340532ed618SSoby Mathew 341532ed618SSoby Mathew /* 34218f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 34318f2efd6SDavid Cunado * UNKNOWN on reset. 34418f2efd6SDavid Cunado * 34518f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 34618f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 34718f2efd6SDavid Cunado * operations depend on the VMID. 34818f2efd6SDavid Cunado * 34918f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 35018f2efd6SDavid Cunado * translation is disabled. 351532ed618SSoby Mathew */ 35218f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 35318f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 35418f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 35518f2efd6SDavid Cunado 356495f3d3cSDavid Cunado /* 35718f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 35818f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 35918f2efd6SDavid Cunado * UNKNOWN on reset. 36018f2efd6SDavid Cunado * 36118f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 36218f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 36318f2efd6SDavid Cunado * registers are not trapped to EL2. 36418f2efd6SDavid Cunado * 36518f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 36618f2efd6SDavid Cunado * System register accesses to the powerdown debug 36718f2efd6SDavid Cunado * registers are not trapped to EL2. 36818f2efd6SDavid Cunado * 36918f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 37018f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 37118f2efd6SDavid Cunado * 37218f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 37318f2efd6SDavid Cunado * are not routed to EL2. 37418f2efd6SDavid Cunado * 37518f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 37618f2efd6SDavid Cunado * Monitors. 37718f2efd6SDavid Cunado * 37818f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 37918f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 38018f2efd6SDavid Cunado * are not trapped to EL2. 38118f2efd6SDavid Cunado * 38218f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 38318f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 38418f2efd6SDavid Cunado * trapped to EL2. 38518f2efd6SDavid Cunado * 38618f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 38718f2efd6SDavid Cunado * architecturally-defined reset value. 388495f3d3cSDavid Cunado */ 389d832aee9Sdp-arm mdcr_el2 = ((MDCR_EL2_RESET_VAL | 39018f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 39118f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 39218f2efd6SDavid Cunado ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 39318f2efd6SDavid Cunado | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 39418f2efd6SDavid Cunado | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 39518f2efd6SDavid Cunado | MDCR_EL2_TPMCR_BIT)); 396d832aee9Sdp-arm 397d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 398d832aee9Sdp-arm 399939f66d6SDavid Cunado /* 40018f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 40118f2efd6SDavid Cunado * UNKNOWN on reset. 40218f2efd6SDavid Cunado * 40318f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 40418f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 40518f2efd6SDavid Cunado * do not trap to EL2. 406939f66d6SDavid Cunado */ 40718f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 408939f66d6SDavid Cunado /* 40918f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 41018f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 41118f2efd6SDavid Cunado * 41218f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 41318f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 414939f66d6SDavid Cunado */ 41518f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 41618f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 417532ed618SSoby Mathew } 4180fd0f222SDimitris Papastamos enable_extensions_nonsecure(el2_unused); 419532ed618SSoby Mathew } 420532ed618SSoby Mathew 42117b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 42217b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 423532ed618SSoby Mathew } 424532ed618SSoby Mathew 425532ed618SSoby Mathew /******************************************************************************* 426532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 427532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 428532ed618SSoby Mathew * state. 429532ed618SSoby Mathew ******************************************************************************/ 430532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 431532ed618SSoby Mathew { 432532ed618SSoby Mathew cpu_context_t *ctx; 433532ed618SSoby Mathew 434532ed618SSoby Mathew ctx = cm_get_context(security_state); 435532ed618SSoby Mathew assert(ctx); 436532ed618SSoby Mathew 437532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 43817b4c0ddSDimitris Papastamos 43917b4c0ddSDimitris Papastamos #if IMAGE_BL31 44017b4c0ddSDimitris Papastamos if (security_state == SECURE) 44117b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 44217b4c0ddSDimitris Papastamos else 44317b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 44417b4c0ddSDimitris Papastamos #endif 445532ed618SSoby Mathew } 446532ed618SSoby Mathew 447532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 448532ed618SSoby Mathew { 449532ed618SSoby Mathew cpu_context_t *ctx; 450532ed618SSoby Mathew 451532ed618SSoby Mathew ctx = cm_get_context(security_state); 452532ed618SSoby Mathew assert(ctx); 453532ed618SSoby Mathew 454532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 45517b4c0ddSDimitris Papastamos 45617b4c0ddSDimitris Papastamos #if IMAGE_BL31 45717b4c0ddSDimitris Papastamos if (security_state == SECURE) 45817b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 45917b4c0ddSDimitris Papastamos else 46017b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 46117b4c0ddSDimitris Papastamos #endif 462532ed618SSoby Mathew } 463532ed618SSoby Mathew 464532ed618SSoby Mathew /******************************************************************************* 465532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 466532ed618SSoby Mathew * given security state with the given entrypoint 467532ed618SSoby Mathew ******************************************************************************/ 468532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 469532ed618SSoby Mathew { 470532ed618SSoby Mathew cpu_context_t *ctx; 471532ed618SSoby Mathew el3_state_t *state; 472532ed618SSoby Mathew 473532ed618SSoby Mathew ctx = cm_get_context(security_state); 474532ed618SSoby Mathew assert(ctx); 475532ed618SSoby Mathew 476532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 477532ed618SSoby Mathew state = get_el3state_ctx(ctx); 478532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 479532ed618SSoby Mathew } 480532ed618SSoby Mathew 481532ed618SSoby Mathew /******************************************************************************* 482532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 483532ed618SSoby Mathew * pertaining to the given security state 484532ed618SSoby Mathew ******************************************************************************/ 485532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 486532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 487532ed618SSoby Mathew { 488532ed618SSoby Mathew cpu_context_t *ctx; 489532ed618SSoby Mathew el3_state_t *state; 490532ed618SSoby Mathew 491532ed618SSoby Mathew ctx = cm_get_context(security_state); 492532ed618SSoby Mathew assert(ctx); 493532ed618SSoby Mathew 494532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 495532ed618SSoby Mathew state = get_el3state_ctx(ctx); 496532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 497532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 498532ed618SSoby Mathew } 499532ed618SSoby Mathew 500532ed618SSoby Mathew /******************************************************************************* 501532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 502532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 503532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 504532ed618SSoby Mathew ******************************************************************************/ 505532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 506532ed618SSoby Mathew uint32_t bit_pos, 507532ed618SSoby Mathew uint32_t value) 508532ed618SSoby Mathew { 509532ed618SSoby Mathew cpu_context_t *ctx; 510532ed618SSoby Mathew el3_state_t *state; 511532ed618SSoby Mathew uint32_t scr_el3; 512532ed618SSoby Mathew 513532ed618SSoby Mathew ctx = cm_get_context(security_state); 514532ed618SSoby Mathew assert(ctx); 515532ed618SSoby Mathew 516532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 517532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 518532ed618SSoby Mathew 519532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 520532ed618SSoby Mathew assert(value <= 1); 521532ed618SSoby Mathew 522532ed618SSoby Mathew /* 523532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 524532ed618SSoby Mathew * and set it to its new value. 525532ed618SSoby Mathew */ 526532ed618SSoby Mathew state = get_el3state_ctx(ctx); 527532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 528532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 529532ed618SSoby Mathew scr_el3 |= value << bit_pos; 530532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 531532ed618SSoby Mathew } 532532ed618SSoby Mathew 533532ed618SSoby Mathew /******************************************************************************* 534532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 535532ed618SSoby Mathew * given security state. 536532ed618SSoby Mathew ******************************************************************************/ 537532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 538532ed618SSoby Mathew { 539532ed618SSoby Mathew cpu_context_t *ctx; 540532ed618SSoby Mathew el3_state_t *state; 541532ed618SSoby Mathew 542532ed618SSoby Mathew ctx = cm_get_context(security_state); 543532ed618SSoby Mathew assert(ctx); 544532ed618SSoby Mathew 545532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 546532ed618SSoby Mathew state = get_el3state_ctx(ctx); 547532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 548532ed618SSoby Mathew } 549532ed618SSoby Mathew 550532ed618SSoby Mathew /******************************************************************************* 551532ed618SSoby Mathew * This function is used to program the context that's used for exception 552532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 553532ed618SSoby Mathew * the required security state 554532ed618SSoby Mathew ******************************************************************************/ 555532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 556532ed618SSoby Mathew { 557532ed618SSoby Mathew cpu_context_t *ctx; 558532ed618SSoby Mathew 559532ed618SSoby Mathew ctx = cm_get_context(security_state); 560532ed618SSoby Mathew assert(ctx); 561532ed618SSoby Mathew 562532ed618SSoby Mathew cm_set_next_context(ctx); 563532ed618SSoby Mathew } 564