xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 1634cae89d0e62853f6addbbaef8557893ee5613)
1532ed618SSoby Mathew /*
2085e80ecSAntonio Nino Diaz  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3532ed618SSoby Mathew  *
482cb2c1aSdp-arm  * SPDX-License-Identifier: BSD-3-Clause
5532ed618SSoby Mathew  */
6532ed618SSoby Mathew 
7380559c1SDimitris Papastamos #include <amu.h>
8532ed618SSoby Mathew #include <arch.h>
9532ed618SSoby Mathew #include <arch_helpers.h>
10532ed618SSoby Mathew #include <assert.h>
11532ed618SSoby Mathew #include <bl_common.h>
12532ed618SSoby Mathew #include <context.h>
13532ed618SSoby Mathew #include <context_mgmt.h>
14532ed618SSoby Mathew #include <interrupt_mgmt.h>
15532ed618SSoby Mathew #include <platform.h>
16532ed618SSoby Mathew #include <platform_def.h>
1717b4c0ddSDimitris Papastamos #include <pubsub_events.h>
18085e80ecSAntonio Nino Diaz #include <smccc_helpers.h>
19281a08ccSDimitris Papastamos #include <spe.h>
20532ed618SSoby Mathew #include <string.h>
211a853370SDavid Cunado #include <sve.h>
2232f0d3c6SDouglas Raillard #include <utils.h>
23532ed618SSoby Mathew 
24532ed618SSoby Mathew 
25532ed618SSoby Mathew /*******************************************************************************
26532ed618SSoby Mathew  * Context management library initialisation routine. This library is used by
27532ed618SSoby Mathew  * runtime services to share pointers to 'cpu_context' structures for the secure
28532ed618SSoby Mathew  * and non-secure states. Management of the structures and their associated
29532ed618SSoby Mathew  * memory is not done by the context management library e.g. the PSCI service
30532ed618SSoby Mathew  * manages the cpu context used for entry from and exit to the non-secure state.
31532ed618SSoby Mathew  * The Secure payload dispatcher service manages the context(s) corresponding to
32532ed618SSoby Mathew  * the secure state. It also uses this library to get access to the non-secure
33532ed618SSoby Mathew  * state cpu context pointers.
34532ed618SSoby Mathew  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
35532ed618SSoby Mathew  * which will used for programming an entry into a lower EL. The same context
36532ed618SSoby Mathew  * will used to save state upon exception entry from that EL.
37532ed618SSoby Mathew  ******************************************************************************/
38532ed618SSoby Mathew void cm_init(void)
39532ed618SSoby Mathew {
40532ed618SSoby Mathew 	/*
41532ed618SSoby Mathew 	 * The context management library has only global data to intialize, but
42532ed618SSoby Mathew 	 * that will be done when the BSS is zeroed out
43532ed618SSoby Mathew 	 */
44532ed618SSoby Mathew }
45532ed618SSoby Mathew 
46532ed618SSoby Mathew /*******************************************************************************
47532ed618SSoby Mathew  * The following function initializes the cpu_context 'ctx' for
48532ed618SSoby Mathew  * first use, and sets the initial entrypoint state as specified by the
49532ed618SSoby Mathew  * entry_point_info structure.
50532ed618SSoby Mathew  *
51532ed618SSoby Mathew  * The security state to initialize is determined by the SECURE attribute
52*1634cae8SAntonio Nino Diaz  * of the entry_point_info.
53532ed618SSoby Mathew  *
54532ed618SSoby Mathew  * The EE and ST attributes are used to configure the endianess and secure
55532ed618SSoby Mathew  * timer availability for the new execution context.
56532ed618SSoby Mathew  *
57532ed618SSoby Mathew  * To prepare the register state for entry call cm_prepare_el3_exit() and
58532ed618SSoby Mathew  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
59532ed618SSoby Mathew  * cm_e1_sysreg_context_restore().
60532ed618SSoby Mathew  ******************************************************************************/
61*1634cae8SAntonio Nino Diaz void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
62532ed618SSoby Mathew {
63532ed618SSoby Mathew 	unsigned int security_state;
643e61b2b5SDavid Cunado 	uint32_t scr_el3, pmcr_el0;
65532ed618SSoby Mathew 	el3_state_t *state;
66532ed618SSoby Mathew 	gp_regs_t *gp_regs;
672ab9617eSVarun Wadekar 	unsigned long sctlr_elx, actlr_elx;
68532ed618SSoby Mathew 
69532ed618SSoby Mathew 	assert(ctx);
70532ed618SSoby Mathew 
71532ed618SSoby Mathew 	security_state = GET_SECURITY_STATE(ep->h.attr);
72532ed618SSoby Mathew 
73532ed618SSoby Mathew 	/* Clear any residual register values from the context */
7432f0d3c6SDouglas Raillard 	zeromem(ctx, sizeof(*ctx));
75532ed618SSoby Mathew 
76532ed618SSoby Mathew 	/*
7718f2efd6SDavid Cunado 	 * SCR_EL3 was initialised during reset sequence in macro
7818f2efd6SDavid Cunado 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
7918f2efd6SDavid Cunado 	 * affect the next EL.
8018f2efd6SDavid Cunado 	 *
8118f2efd6SDavid Cunado 	 * The following fields are initially set to zero and then updated to
8218f2efd6SDavid Cunado 	 * the required value depending on the state of the SPSR_EL3 and the
8318f2efd6SDavid Cunado 	 * Security state and entrypoint attributes of the next EL.
84532ed618SSoby Mathew 	 */
85532ed618SSoby Mathew 	scr_el3 = read_scr();
86532ed618SSoby Mathew 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
87532ed618SSoby Mathew 			SCR_ST_BIT | SCR_HCE_BIT);
8818f2efd6SDavid Cunado 	/*
8918f2efd6SDavid Cunado 	 * SCR_NS: Set the security state of the next EL.
9018f2efd6SDavid Cunado 	 */
91532ed618SSoby Mathew 	if (security_state != SECURE)
92532ed618SSoby Mathew 		scr_el3 |= SCR_NS_BIT;
9318f2efd6SDavid Cunado 	/*
9418f2efd6SDavid Cunado 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
9518f2efd6SDavid Cunado 	 *  Exception level as specified by SPSR.
9618f2efd6SDavid Cunado 	 */
97532ed618SSoby Mathew 	if (GET_RW(ep->spsr) == MODE_RW_64)
98532ed618SSoby Mathew 		scr_el3 |= SCR_RW_BIT;
9918f2efd6SDavid Cunado 	/*
10018f2efd6SDavid Cunado 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
10118f2efd6SDavid Cunado 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
10218f2efd6SDavid Cunado 	 *  by the entrypoint attributes.
10318f2efd6SDavid Cunado 	 */
104532ed618SSoby Mathew 	if (EP_GET_ST(ep->h.attr))
105532ed618SSoby Mathew 		scr_el3 |= SCR_ST_BIT;
106532ed618SSoby Mathew 
107532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST
10818f2efd6SDavid Cunado 	/*
10918f2efd6SDavid Cunado 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
11018f2efd6SDavid Cunado 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
11118f2efd6SDavid Cunado 	 *  Aborts are taken to EL3.
11218f2efd6SDavid Cunado 	 */
113532ed618SSoby Mathew 	scr_el3 &= ~SCR_EA_BIT;
114532ed618SSoby Mathew #endif
115532ed618SSoby Mathew 
1161a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT
1171a7c1cfeSJeenu Viswambharan 	/* Enable fault injection from lower ELs */
1181a7c1cfeSJeenu Viswambharan 	scr_el3 |= SCR_FIEN_BIT;
1191a7c1cfeSJeenu Viswambharan #endif
1201a7c1cfeSJeenu Viswambharan 
1213d8256b2SMasahiro Yamada #ifdef IMAGE_BL31
122532ed618SSoby Mathew 	/*
12318f2efd6SDavid Cunado 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
12418f2efd6SDavid Cunado 	 *  indicated by the interrupt routing model for BL31.
125532ed618SSoby Mathew 	 */
126532ed618SSoby Mathew 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
127532ed618SSoby Mathew #endif
128532ed618SSoby Mathew 
129532ed618SSoby Mathew 	/*
13018f2efd6SDavid Cunado 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
13118f2efd6SDavid Cunado 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
13218f2efd6SDavid Cunado 	 * next mode is Hyp.
133532ed618SSoby Mathew 	 */
134532ed618SSoby Mathew 	if ((GET_RW(ep->spsr) == MODE_RW_64
135532ed618SSoby Mathew 	     && GET_EL(ep->spsr) == MODE_EL2)
136532ed618SSoby Mathew 	    || (GET_RW(ep->spsr) != MODE_RW_64
137532ed618SSoby Mathew 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
138532ed618SSoby Mathew 		scr_el3 |= SCR_HCE_BIT;
139532ed618SSoby Mathew 	}
140532ed618SSoby Mathew 
14118f2efd6SDavid Cunado 	/*
14218f2efd6SDavid Cunado 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
14318f2efd6SDavid Cunado 	 * execution state setting all fields rather than relying of the hw.
14418f2efd6SDavid Cunado 	 * Some fields have architecturally UNKNOWN reset values and these are
14518f2efd6SDavid Cunado 	 * set to zero.
14618f2efd6SDavid Cunado 	 *
14718f2efd6SDavid Cunado 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
14818f2efd6SDavid Cunado 	 *
14918f2efd6SDavid Cunado 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
15018f2efd6SDavid Cunado 	 *  required by PSCI specification)
15118f2efd6SDavid Cunado 	 */
15218f2efd6SDavid Cunado 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
15318f2efd6SDavid Cunado 	if (GET_RW(ep->spsr) == MODE_RW_64)
15418f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_EL1_RES1;
15518f2efd6SDavid Cunado 	else {
15618f2efd6SDavid Cunado 		/*
15718f2efd6SDavid Cunado 		 * If the target execution state is AArch32 then the following
15818f2efd6SDavid Cunado 		 * fields need to be set.
15918f2efd6SDavid Cunado 		 *
16018f2efd6SDavid Cunado 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
16118f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
16218f2efd6SDavid Cunado 		 *
16318f2efd6SDavid Cunado 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
16418f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
16518f2efd6SDavid Cunado 		 *
16618f2efd6SDavid Cunado 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
16718f2efd6SDavid Cunado 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
16818f2efd6SDavid Cunado 		 */
16918f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
17018f2efd6SDavid Cunado 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
17118f2efd6SDavid Cunado 	}
17218f2efd6SDavid Cunado 
17318f2efd6SDavid Cunado 	/*
17418f2efd6SDavid Cunado 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
1753e61b2b5SDavid Cunado 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
17618f2efd6SDavid Cunado 	 * are not part of the stored cpu_context.
17718f2efd6SDavid Cunado 	 */
17818f2efd6SDavid Cunado 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
17918f2efd6SDavid Cunado 
1802ab9617eSVarun Wadekar 	/*
1812ab9617eSVarun Wadekar 	 * Base the context ACTLR_EL1 on the current value, as it is
1822ab9617eSVarun Wadekar 	 * implementation defined. The context restore process will write
1832ab9617eSVarun Wadekar 	 * the value from the context to the actual register and can cause
1842ab9617eSVarun Wadekar 	 * problems for processor cores that don't expect certain bits to
1852ab9617eSVarun Wadekar 	 * be zero.
1862ab9617eSVarun Wadekar 	 */
1872ab9617eSVarun Wadekar 	actlr_elx = read_actlr_el1();
1882ab9617eSVarun Wadekar 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
1892ab9617eSVarun Wadekar 
1903e61b2b5SDavid Cunado 	if (security_state == SECURE) {
1913e61b2b5SDavid Cunado 		/*
1923e61b2b5SDavid Cunado 		 * Initialise PMCR_EL0 for secure context only, setting all
1933e61b2b5SDavid Cunado 		 * fields rather than relying on hw. Some fields are
1943e61b2b5SDavid Cunado 		 * architecturally UNKNOWN on reset.
1953e61b2b5SDavid Cunado 		 *
1963e61b2b5SDavid Cunado 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
1973e61b2b5SDavid Cunado 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
1983e61b2b5SDavid Cunado 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
1993e61b2b5SDavid Cunado 		 *
2003e61b2b5SDavid Cunado 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
2013e61b2b5SDavid Cunado 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
2023e61b2b5SDavid Cunado 		 *
2033e61b2b5SDavid Cunado 		 * PMCR_EL0.X: Set to zero to disable export of events.
2043e61b2b5SDavid Cunado 		 *
2053e61b2b5SDavid Cunado 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
2063e61b2b5SDavid Cunado 		 *  counts on every clock cycle.
2073e61b2b5SDavid Cunado 		 */
2083e61b2b5SDavid Cunado 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
2093e61b2b5SDavid Cunado 				| PMCR_EL0_DP_BIT)
2103e61b2b5SDavid Cunado 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
2113e61b2b5SDavid Cunado 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
2123e61b2b5SDavid Cunado 	}
2133e61b2b5SDavid Cunado 
214532ed618SSoby Mathew 	/* Populate EL3 state so that we've the right context before doing ERET */
215532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
216532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
217532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
218532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
219532ed618SSoby Mathew 
220532ed618SSoby Mathew 	/*
221532ed618SSoby Mathew 	 * Store the X0-X7 value from the entrypoint into the context
222532ed618SSoby Mathew 	 * Use memcpy as we are in control of the layout of the structures
223532ed618SSoby Mathew 	 */
224532ed618SSoby Mathew 	gp_regs = get_gpregs_ctx(ctx);
225532ed618SSoby Mathew 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
226532ed618SSoby Mathew }
227532ed618SSoby Mathew 
228532ed618SSoby Mathew /*******************************************************************************
2290fd0f222SDimitris Papastamos  * Enable architecture extensions on first entry to Non-secure world.
2300fd0f222SDimitris Papastamos  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
2310fd0f222SDimitris Papastamos  * it is zero.
2320fd0f222SDimitris Papastamos  ******************************************************************************/
2330fd0f222SDimitris Papastamos static void enable_extensions_nonsecure(int el2_unused)
2340fd0f222SDimitris Papastamos {
2350fd0f222SDimitris Papastamos #if IMAGE_BL31
236281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS
237281a08ccSDimitris Papastamos 	spe_enable(el2_unused);
238281a08ccSDimitris Papastamos #endif
239380559c1SDimitris Papastamos 
240380559c1SDimitris Papastamos #if ENABLE_AMU
241380559c1SDimitris Papastamos 	amu_enable(el2_unused);
242380559c1SDimitris Papastamos #endif
2431a853370SDavid Cunado 
2441a853370SDavid Cunado #if ENABLE_SVE_FOR_NS
2451a853370SDavid Cunado 	sve_enable(el2_unused);
2461a853370SDavid Cunado #endif
2470fd0f222SDimitris Papastamos #endif
2480fd0f222SDimitris Papastamos }
2490fd0f222SDimitris Papastamos 
2500fd0f222SDimitris Papastamos /*******************************************************************************
251532ed618SSoby Mathew  * The following function initializes the cpu_context for a CPU specified by
252532ed618SSoby Mathew  * its `cpu_idx` for first use, and sets the initial entrypoint state as
253532ed618SSoby Mathew  * specified by the entry_point_info structure.
254532ed618SSoby Mathew  ******************************************************************************/
255532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx,
256532ed618SSoby Mathew 			      const entry_point_info_t *ep)
257532ed618SSoby Mathew {
258532ed618SSoby Mathew 	cpu_context_t *ctx;
259532ed618SSoby Mathew 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
260*1634cae8SAntonio Nino Diaz 	cm_setup_context(ctx, ep);
261532ed618SSoby Mathew }
262532ed618SSoby Mathew 
263532ed618SSoby Mathew /*******************************************************************************
264532ed618SSoby Mathew  * The following function initializes the cpu_context for the current CPU
265532ed618SSoby Mathew  * for first use, and sets the initial entrypoint state as specified by the
266532ed618SSoby Mathew  * entry_point_info structure.
267532ed618SSoby Mathew  ******************************************************************************/
268532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep)
269532ed618SSoby Mathew {
270532ed618SSoby Mathew 	cpu_context_t *ctx;
271532ed618SSoby Mathew 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
272*1634cae8SAntonio Nino Diaz 	cm_setup_context(ctx, ep);
273532ed618SSoby Mathew }
274532ed618SSoby Mathew 
275532ed618SSoby Mathew /*******************************************************************************
276532ed618SSoby Mathew  * Prepare the CPU system registers for first entry into secure or normal world
277532ed618SSoby Mathew  *
278532ed618SSoby Mathew  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
279532ed618SSoby Mathew  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
280532ed618SSoby Mathew  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
281532ed618SSoby Mathew  * For all entries, the EL1 registers are initialized from the cpu_context
282532ed618SSoby Mathew  ******************************************************************************/
283532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state)
284532ed618SSoby Mathew {
285d832aee9Sdp-arm 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
286532ed618SSoby Mathew 	cpu_context_t *ctx = cm_get_context(security_state);
2870fd0f222SDimitris Papastamos 	int el2_unused = 0;
288532ed618SSoby Mathew 
289532ed618SSoby Mathew 	assert(ctx);
290532ed618SSoby Mathew 
291532ed618SSoby Mathew 	if (security_state == NON_SECURE) {
292532ed618SSoby Mathew 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
293532ed618SSoby Mathew 		if (scr_el3 & SCR_HCE_BIT) {
294532ed618SSoby Mathew 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
295532ed618SSoby Mathew 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
296532ed618SSoby Mathew 						 CTX_SCTLR_EL1);
2972e09d4f8SKen Kuang 			sctlr_elx &= SCTLR_EE_BIT;
298532ed618SSoby Mathew 			sctlr_elx |= SCTLR_EL2_RES1;
299532ed618SSoby Mathew 			write_sctlr_el2(sctlr_elx);
300f4c8aa90SJeenu Viswambharan 		} else if (EL_IMPLEMENTED(2)) {
3010fd0f222SDimitris Papastamos 			el2_unused = 1;
3020fd0f222SDimitris Papastamos 
30318f2efd6SDavid Cunado 			/*
30418f2efd6SDavid Cunado 			 * EL2 present but unused, need to disable safely.
30518f2efd6SDavid Cunado 			 * SCTLR_EL2 can be ignored in this case.
30618f2efd6SDavid Cunado 			 *
30718f2efd6SDavid Cunado 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
30818f2efd6SDavid Cunado 			 * to zero so that Non-secure operations do not trap to
30918f2efd6SDavid Cunado 			 * EL2.
31018f2efd6SDavid Cunado 			 *
31118f2efd6SDavid Cunado 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
31218f2efd6SDavid Cunado 			 */
313532ed618SSoby Mathew 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
314532ed618SSoby Mathew 
31518f2efd6SDavid Cunado 			/*
31618f2efd6SDavid Cunado 			 * Initialise CPTR_EL2 setting all fields rather than
31718f2efd6SDavid Cunado 			 * relying on the hw. All fields have architecturally
31818f2efd6SDavid Cunado 			 * UNKNOWN reset values.
31918f2efd6SDavid Cunado 			 *
32018f2efd6SDavid Cunado 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
32118f2efd6SDavid Cunado 			 *  accesses to the CPACR_EL1 or CPACR from both
32218f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
32318f2efd6SDavid Cunado 			 *
32418f2efd6SDavid Cunado 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
32518f2efd6SDavid Cunado 			 *  register accesses to the trace registers from both
32618f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
32718f2efd6SDavid Cunado 			 *
32818f2efd6SDavid Cunado 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
32918f2efd6SDavid Cunado 			 *  to SIMD and floating-point functionality from both
33018f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
33118f2efd6SDavid Cunado 			 */
33218f2efd6SDavid Cunado 			write_cptr_el2(CPTR_EL2_RESET_VAL &
33318f2efd6SDavid Cunado 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
33418f2efd6SDavid Cunado 					| CPTR_EL2_TFP_BIT));
335532ed618SSoby Mathew 
33618f2efd6SDavid Cunado 			/*
33718f2efd6SDavid Cunado 			 * Initiliase CNTHCTL_EL2. All fields are
33818f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset and are set to zero
33918f2efd6SDavid Cunado 			 * except for field(s) listed below.
34018f2efd6SDavid Cunado 			 *
34118f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
34218f2efd6SDavid Cunado 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
34318f2efd6SDavid Cunado 			 *  physical timer registers.
34418f2efd6SDavid Cunado 			 *
34518f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
34618f2efd6SDavid Cunado 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
34718f2efd6SDavid Cunado 			 *  physical counter registers.
34818f2efd6SDavid Cunado 			 */
34918f2efd6SDavid Cunado 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
35018f2efd6SDavid Cunado 						EL1PCEN_BIT | EL1PCTEN_BIT);
351532ed618SSoby Mathew 
35218f2efd6SDavid Cunado 			/*
35318f2efd6SDavid Cunado 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
35418f2efd6SDavid Cunado 			 * architecturally UNKNOWN value.
35518f2efd6SDavid Cunado 			 */
356532ed618SSoby Mathew 			write_cntvoff_el2(0);
357532ed618SSoby Mathew 
35818f2efd6SDavid Cunado 			/*
35918f2efd6SDavid Cunado 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
36018f2efd6SDavid Cunado 			 * MPIDR_EL1 respectively.
36118f2efd6SDavid Cunado 			 */
362532ed618SSoby Mathew 			write_vpidr_el2(read_midr_el1());
363532ed618SSoby Mathew 			write_vmpidr_el2(read_mpidr_el1());
364532ed618SSoby Mathew 
365532ed618SSoby Mathew 			/*
36618f2efd6SDavid Cunado 			 * Initialise VTTBR_EL2. All fields are architecturally
36718f2efd6SDavid Cunado 			 * UNKNOWN on reset.
36818f2efd6SDavid Cunado 			 *
36918f2efd6SDavid Cunado 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
37018f2efd6SDavid Cunado 			 *  2 address translation is disabled, cache maintenance
37118f2efd6SDavid Cunado 			 *  operations depend on the VMID.
37218f2efd6SDavid Cunado 			 *
37318f2efd6SDavid Cunado 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
37418f2efd6SDavid Cunado 			 *  translation is disabled.
375532ed618SSoby Mathew 			 */
37618f2efd6SDavid Cunado 			write_vttbr_el2(VTTBR_RESET_VAL &
37718f2efd6SDavid Cunado 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
37818f2efd6SDavid Cunado 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
37918f2efd6SDavid Cunado 
380495f3d3cSDavid Cunado 			/*
38118f2efd6SDavid Cunado 			 * Initialise MDCR_EL2, setting all fields rather than
38218f2efd6SDavid Cunado 			 * relying on hw. Some fields are architecturally
38318f2efd6SDavid Cunado 			 * UNKNOWN on reset.
38418f2efd6SDavid Cunado 			 *
38518f2efd6SDavid Cunado 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
38618f2efd6SDavid Cunado 			 *  EL1 System register accesses to the Debug ROM
38718f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
38818f2efd6SDavid Cunado 			 *
38918f2efd6SDavid Cunado 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
39018f2efd6SDavid Cunado 			 *  System register accesses to the powerdown debug
39118f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
39218f2efd6SDavid Cunado 			 *
39318f2efd6SDavid Cunado 			 * MDCR_EL2.TDA: Set to zero so that System register
39418f2efd6SDavid Cunado 			 *  accesses to the debug registers do not trap to EL2.
39518f2efd6SDavid Cunado 			 *
39618f2efd6SDavid Cunado 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
39718f2efd6SDavid Cunado 			 *  are not routed to EL2.
39818f2efd6SDavid Cunado 			 *
39918f2efd6SDavid Cunado 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
40018f2efd6SDavid Cunado 			 *  Monitors.
40118f2efd6SDavid Cunado 			 *
40218f2efd6SDavid Cunado 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
40318f2efd6SDavid Cunado 			 *  EL1 accesses to all Performance Monitors registers
40418f2efd6SDavid Cunado 			 *  are not trapped to EL2.
40518f2efd6SDavid Cunado 			 *
40618f2efd6SDavid Cunado 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
40718f2efd6SDavid Cunado 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
40818f2efd6SDavid Cunado 			 *  trapped to EL2.
40918f2efd6SDavid Cunado 			 *
41018f2efd6SDavid Cunado 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
41118f2efd6SDavid Cunado 			 *  architecturally-defined reset value.
412495f3d3cSDavid Cunado 			 */
413d832aee9Sdp-arm 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
41418f2efd6SDavid Cunado 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
41518f2efd6SDavid Cunado 					>> PMCR_EL0_N_SHIFT)) &
41618f2efd6SDavid Cunado 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
41718f2efd6SDavid Cunado 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
41818f2efd6SDavid Cunado 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
41918f2efd6SDavid Cunado 					| MDCR_EL2_TPMCR_BIT));
420d832aee9Sdp-arm 
421d832aee9Sdp-arm 			write_mdcr_el2(mdcr_el2);
422d832aee9Sdp-arm 
423939f66d6SDavid Cunado 			/*
42418f2efd6SDavid Cunado 			 * Initialise HSTR_EL2. All fields are architecturally
42518f2efd6SDavid Cunado 			 * UNKNOWN on reset.
42618f2efd6SDavid Cunado 			 *
42718f2efd6SDavid Cunado 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
42818f2efd6SDavid Cunado 			 *  Non-secure EL0 or EL1 accesses to System registers
42918f2efd6SDavid Cunado 			 *  do not trap to EL2.
430939f66d6SDavid Cunado 			 */
43118f2efd6SDavid Cunado 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
432939f66d6SDavid Cunado 			/*
43318f2efd6SDavid Cunado 			 * Initialise CNTHP_CTL_EL2. All fields are
43418f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset.
43518f2efd6SDavid Cunado 			 *
43618f2efd6SDavid Cunado 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
43718f2efd6SDavid Cunado 			 *  physical timer and prevent timer interrupts.
438939f66d6SDavid Cunado 			 */
43918f2efd6SDavid Cunado 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
44018f2efd6SDavid Cunado 						~(CNTHP_CTL_ENABLE_BIT));
441532ed618SSoby Mathew 		}
4420fd0f222SDimitris Papastamos 		enable_extensions_nonsecure(el2_unused);
443532ed618SSoby Mathew 	}
444532ed618SSoby Mathew 
44517b4c0ddSDimitris Papastamos 	cm_el1_sysregs_context_restore(security_state);
44617b4c0ddSDimitris Papastamos 	cm_set_next_eret_context(security_state);
447532ed618SSoby Mathew }
448532ed618SSoby Mathew 
449532ed618SSoby Mathew /*******************************************************************************
450532ed618SSoby Mathew  * The next four functions are used by runtime services to save and restore
451532ed618SSoby Mathew  * EL1 context on the 'cpu_context' structure for the specified security
452532ed618SSoby Mathew  * state.
453532ed618SSoby Mathew  ******************************************************************************/
454532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state)
455532ed618SSoby Mathew {
456532ed618SSoby Mathew 	cpu_context_t *ctx;
457532ed618SSoby Mathew 
458532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
459532ed618SSoby Mathew 	assert(ctx);
460532ed618SSoby Mathew 
461532ed618SSoby Mathew 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
46217b4c0ddSDimitris Papastamos 
46317b4c0ddSDimitris Papastamos #if IMAGE_BL31
46417b4c0ddSDimitris Papastamos 	if (security_state == SECURE)
46517b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_exited_secure_world);
46617b4c0ddSDimitris Papastamos 	else
46717b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_exited_normal_world);
46817b4c0ddSDimitris Papastamos #endif
469532ed618SSoby Mathew }
470532ed618SSoby Mathew 
471532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state)
472532ed618SSoby Mathew {
473532ed618SSoby Mathew 	cpu_context_t *ctx;
474532ed618SSoby Mathew 
475532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
476532ed618SSoby Mathew 	assert(ctx);
477532ed618SSoby Mathew 
478532ed618SSoby Mathew 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
47917b4c0ddSDimitris Papastamos 
48017b4c0ddSDimitris Papastamos #if IMAGE_BL31
48117b4c0ddSDimitris Papastamos 	if (security_state == SECURE)
48217b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_entering_secure_world);
48317b4c0ddSDimitris Papastamos 	else
48417b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_entering_normal_world);
48517b4c0ddSDimitris Papastamos #endif
486532ed618SSoby Mathew }
487532ed618SSoby Mathew 
488532ed618SSoby Mathew /*******************************************************************************
489532ed618SSoby Mathew  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
490532ed618SSoby Mathew  * given security state with the given entrypoint
491532ed618SSoby Mathew  ******************************************************************************/
492532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
493532ed618SSoby Mathew {
494532ed618SSoby Mathew 	cpu_context_t *ctx;
495532ed618SSoby Mathew 	el3_state_t *state;
496532ed618SSoby Mathew 
497532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
498532ed618SSoby Mathew 	assert(ctx);
499532ed618SSoby Mathew 
500532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
501532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
502532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
503532ed618SSoby Mathew }
504532ed618SSoby Mathew 
505532ed618SSoby Mathew /*******************************************************************************
506532ed618SSoby Mathew  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
507532ed618SSoby Mathew  * pertaining to the given security state
508532ed618SSoby Mathew  ******************************************************************************/
509532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state,
510532ed618SSoby Mathew 			uintptr_t entrypoint, uint32_t spsr)
511532ed618SSoby Mathew {
512532ed618SSoby Mathew 	cpu_context_t *ctx;
513532ed618SSoby Mathew 	el3_state_t *state;
514532ed618SSoby Mathew 
515532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
516532ed618SSoby Mathew 	assert(ctx);
517532ed618SSoby Mathew 
518532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
519532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
520532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
521532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
522532ed618SSoby Mathew }
523532ed618SSoby Mathew 
524532ed618SSoby Mathew /*******************************************************************************
525532ed618SSoby Mathew  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
526532ed618SSoby Mathew  * pertaining to the given security state using the value and bit position
527532ed618SSoby Mathew  * specified in the parameters. It preserves all other bits.
528532ed618SSoby Mathew  ******************************************************************************/
529532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state,
530532ed618SSoby Mathew 			  uint32_t bit_pos,
531532ed618SSoby Mathew 			  uint32_t value)
532532ed618SSoby Mathew {
533532ed618SSoby Mathew 	cpu_context_t *ctx;
534532ed618SSoby Mathew 	el3_state_t *state;
535532ed618SSoby Mathew 	uint32_t scr_el3;
536532ed618SSoby Mathew 
537532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
538532ed618SSoby Mathew 	assert(ctx);
539532ed618SSoby Mathew 
540532ed618SSoby Mathew 	/* Ensure that the bit position is a valid one */
541532ed618SSoby Mathew 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
542532ed618SSoby Mathew 
543532ed618SSoby Mathew 	/* Ensure that the 'value' is only a bit wide */
544532ed618SSoby Mathew 	assert(value <= 1);
545532ed618SSoby Mathew 
546532ed618SSoby Mathew 	/*
547532ed618SSoby Mathew 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
548532ed618SSoby Mathew 	 * and set it to its new value.
549532ed618SSoby Mathew 	 */
550532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
551532ed618SSoby Mathew 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
552532ed618SSoby Mathew 	scr_el3 &= ~(1 << bit_pos);
553532ed618SSoby Mathew 	scr_el3 |= value << bit_pos;
554532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
555532ed618SSoby Mathew }
556532ed618SSoby Mathew 
557532ed618SSoby Mathew /*******************************************************************************
558532ed618SSoby Mathew  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
559532ed618SSoby Mathew  * given security state.
560532ed618SSoby Mathew  ******************************************************************************/
561532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state)
562532ed618SSoby Mathew {
563532ed618SSoby Mathew 	cpu_context_t *ctx;
564532ed618SSoby Mathew 	el3_state_t *state;
565532ed618SSoby Mathew 
566532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
567532ed618SSoby Mathew 	assert(ctx);
568532ed618SSoby Mathew 
569532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
570532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
571532ed618SSoby Mathew 	return read_ctx_reg(state, CTX_SCR_EL3);
572532ed618SSoby Mathew }
573532ed618SSoby Mathew 
574532ed618SSoby Mathew /*******************************************************************************
575532ed618SSoby Mathew  * This function is used to program the context that's used for exception
576532ed618SSoby Mathew  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
577532ed618SSoby Mathew  * the required security state
578532ed618SSoby Mathew  ******************************************************************************/
579532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state)
580532ed618SSoby Mathew {
581532ed618SSoby Mathew 	cpu_context_t *ctx;
582532ed618SSoby Mathew 
583532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
584532ed618SSoby Mathew 	assert(ctx);
585532ed618SSoby Mathew 
586532ed618SSoby Mathew 	cm_set_next_context(ctx);
587532ed618SSoby Mathew }
588