1532ed618SSoby Mathew /* 2873d4241Sjohpow01 * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7532ed618SSoby Mathew #include <assert.h> 840daecc1SAntonio Nino Diaz #include <stdbool.h> 9532ed618SSoby Mathew #include <string.h> 1009d40e0eSAntonio Nino Diaz 1109d40e0eSAntonio Nino Diaz #include <platform_def.h> 1209d40e0eSAntonio Nino Diaz 1309d40e0eSAntonio Nino Diaz #include <arch.h> 1409d40e0eSAntonio Nino Diaz #include <arch_helpers.h> 15b7e398d6SSoby Mathew #include <arch_features.h> 1609d40e0eSAntonio Nino Diaz #include <bl31/interrupt_mgmt.h> 1709d40e0eSAntonio Nino Diaz #include <common/bl_common.h> 1809d40e0eSAntonio Nino Diaz #include <context.h> 1909d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/context_mgmt.h> 2009d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/pubsub_events.h> 2109d40e0eSAntonio Nino Diaz #include <lib/extensions/amu.h> 2209d40e0eSAntonio Nino Diaz #include <lib/extensions/mpam.h> 2309d40e0eSAntonio Nino Diaz #include <lib/extensions/spe.h> 2409d40e0eSAntonio Nino Diaz #include <lib/extensions/sve.h> 256cac724dSjohpow01 #include <lib/extensions/twed.h> 2609d40e0eSAntonio Nino Diaz #include <lib/utils.h> 27532ed618SSoby Mathew 28532ed618SSoby Mathew 29532ed618SSoby Mathew /******************************************************************************* 30532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 31532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 32532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 33532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 34532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 35532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 36532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 37532ed618SSoby Mathew * state cpu context pointers. 38532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 39532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 40532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 41532ed618SSoby Mathew ******************************************************************************/ 4287c85134SDaniel Boulby void __init cm_init(void) 43532ed618SSoby Mathew { 44532ed618SSoby Mathew /* 45532ed618SSoby Mathew * The context management library has only global data to intialize, but 46532ed618SSoby Mathew * that will be done when the BSS is zeroed out 47532ed618SSoby Mathew */ 48532ed618SSoby Mathew } 49532ed618SSoby Mathew 50532ed618SSoby Mathew /******************************************************************************* 51532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 52532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 53532ed618SSoby Mathew * entry_point_info structure. 54532ed618SSoby Mathew * 55532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 561634cae8SAntonio Nino Diaz * of the entry_point_info. 57532ed618SSoby Mathew * 588aabea33SPaul Beesley * The EE and ST attributes are used to configure the endianness and secure 59532ed618SSoby Mathew * timer availability for the new execution context. 60532ed618SSoby Mathew * 61532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 62532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 632e61d687SOlivier Deprez * cm_el1_sysregs_context_restore(). 64532ed618SSoby Mathew ******************************************************************************/ 651634cae8SAntonio Nino Diaz void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 66532ed618SSoby Mathew { 67532ed618SSoby Mathew unsigned int security_state; 68f1be00daSLouis Mayencourt u_register_t scr_el3; 69532ed618SSoby Mathew el3_state_t *state; 70532ed618SSoby Mathew gp_regs_t *gp_regs; 71eeb5a7b5SDeepika Bhavnani u_register_t sctlr_elx, actlr_elx; 72532ed618SSoby Mathew 73a0fee747SAntonio Nino Diaz assert(ctx != NULL); 74532ed618SSoby Mathew 75532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 76532ed618SSoby Mathew 77532ed618SSoby Mathew /* Clear any residual register values from the context */ 7832f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 79532ed618SSoby Mathew 80532ed618SSoby Mathew /* 8118f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 8218f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 8318f2efd6SDavid Cunado * affect the next EL. 8418f2efd6SDavid Cunado * 8518f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 8618f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 8718f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 88532ed618SSoby Mathew */ 89f1be00daSLouis Mayencourt scr_el3 = read_scr(); 90532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 91532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 9218f2efd6SDavid Cunado /* 9318f2efd6SDavid Cunado * SCR_NS: Set the security state of the next EL. 9418f2efd6SDavid Cunado */ 95532ed618SSoby Mathew if (security_state != SECURE) 96532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 9718f2efd6SDavid Cunado /* 9818f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 9918f2efd6SDavid Cunado * Exception level as specified by SPSR. 10018f2efd6SDavid Cunado */ 101532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 102532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 10318f2efd6SDavid Cunado /* 10418f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 10518f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 10618f2efd6SDavid Cunado * by the entrypoint attributes. 10718f2efd6SDavid Cunado */ 108a0fee747SAntonio Nino Diaz if (EP_GET_ST(ep->h.attr) != 0U) 109532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 110532ed618SSoby Mathew 111fbc44bd1SVarun Wadekar #if RAS_TRAP_LOWER_EL_ERR_ACCESS 112fbc44bd1SVarun Wadekar /* 113fbc44bd1SVarun Wadekar * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR 114fbc44bd1SVarun Wadekar * and RAS ERX registers from EL1 and EL2 are trapped to EL3. 115fbc44bd1SVarun Wadekar */ 116fbc44bd1SVarun Wadekar scr_el3 |= SCR_TERR_BIT; 117fbc44bd1SVarun Wadekar #endif 118fbc44bd1SVarun Wadekar 11924f671f3SJulius Werner #if !HANDLE_EA_EL3_FIRST 12018f2efd6SDavid Cunado /* 12118f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 12218f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 12318f2efd6SDavid Cunado * Aborts are taken to EL3. 12418f2efd6SDavid Cunado */ 125532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 126532ed618SSoby Mathew #endif 127532ed618SSoby Mathew 1281a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT 1291a7c1cfeSJeenu Viswambharan /* Enable fault injection from lower ELs */ 1301a7c1cfeSJeenu Viswambharan scr_el3 |= SCR_FIEN_BIT; 1311a7c1cfeSJeenu Viswambharan #endif 1321a7c1cfeSJeenu Viswambharan 1335283962eSAntonio Nino Diaz #if !CTX_INCLUDE_PAUTH_REGS 1345283962eSAntonio Nino Diaz /* 1355283962eSAntonio Nino Diaz * If the pointer authentication registers aren't saved during world 1365283962eSAntonio Nino Diaz * switches the value of the registers can be leaked from the Secure to 1375283962eSAntonio Nino Diaz * the Non-secure world. To prevent this, rather than enabling pointer 1385283962eSAntonio Nino Diaz * authentication everywhere, we only enable it in the Non-secure world. 1395283962eSAntonio Nino Diaz * 1405283962eSAntonio Nino Diaz * If the Secure world wants to use pointer authentication, 1415283962eSAntonio Nino Diaz * CTX_INCLUDE_PAUTH_REGS must be set to 1. 1425283962eSAntonio Nino Diaz */ 1435283962eSAntonio Nino Diaz if (security_state == NON_SECURE) 1445283962eSAntonio Nino Diaz scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 1455283962eSAntonio Nino Diaz #endif /* !CTX_INCLUDE_PAUTH_REGS */ 1465283962eSAntonio Nino Diaz 1470563ab08SAlexei Fedorov #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS 1480563ab08SAlexei Fedorov /* Get Memory Tagging Extension support level */ 1490563ab08SAlexei Fedorov unsigned int mte = get_armv8_5_mte_support(); 1500563ab08SAlexei Fedorov #endif 151b7e398d6SSoby Mathew /* 1529dd94382SJustin Chadwell * Enable MTE support. Support is enabled unilaterally for the normal 1539dd94382SJustin Chadwell * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is 1549dd94382SJustin Chadwell * set. 155b7e398d6SSoby Mathew */ 1569dd94382SJustin Chadwell #if CTX_INCLUDE_MTE_REGS 1570563ab08SAlexei Fedorov assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); 1589dd94382SJustin Chadwell scr_el3 |= SCR_ATA_BIT; 1599dd94382SJustin Chadwell #else 1609dd94382SJustin Chadwell /* 1610563ab08SAlexei Fedorov * When MTE is only implemented at EL0, it can be enabled 1620563ab08SAlexei Fedorov * across both worlds as no MTE registers are used. 1639dd94382SJustin Chadwell */ 1640563ab08SAlexei Fedorov if ((mte == MTE_IMPLEMENTED_EL0) || 1659dd94382SJustin Chadwell /* 1660563ab08SAlexei Fedorov * When MTE is implemented at all ELs, it can be only enabled 1670563ab08SAlexei Fedorov * in Non-Secure world without register saving. 1689dd94382SJustin Chadwell */ 1690563ab08SAlexei Fedorov (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) && 1700563ab08SAlexei Fedorov (security_state == NON_SECURE))) { 171b7e398d6SSoby Mathew scr_el3 |= SCR_ATA_BIT; 172b7e398d6SSoby Mathew } 1730563ab08SAlexei Fedorov #endif /* CTX_INCLUDE_MTE_REGS */ 174b7e398d6SSoby Mathew 1753d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 176532ed618SSoby Mathew /* 1778aabea33SPaul Beesley * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 17818f2efd6SDavid Cunado * indicated by the interrupt routing model for BL31. 179532ed618SSoby Mathew */ 180532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 181*0c5e7d1cSMax Shvetsov 182*0c5e7d1cSMax Shvetsov #if ENABLE_SVE_FOR_NS 183*0c5e7d1cSMax Shvetsov if (security_state == NON_SECURE) { 184*0c5e7d1cSMax Shvetsov sve_enable(ctx); 185*0c5e7d1cSMax Shvetsov } 186*0c5e7d1cSMax Shvetsov #endif 187*0c5e7d1cSMax Shvetsov #if ENABLE_SVE_FOR_SWD 188*0c5e7d1cSMax Shvetsov if (security_state == SECURE) { 189*0c5e7d1cSMax Shvetsov sve_enable(ctx); 190*0c5e7d1cSMax Shvetsov } 191*0c5e7d1cSMax Shvetsov #endif 192*0c5e7d1cSMax Shvetsov 193532ed618SSoby Mathew #endif 194532ed618SSoby Mathew 195532ed618SSoby Mathew /* 19618f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 19718f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 19818f2efd6SDavid Cunado * next mode is Hyp. 199110ee433SJimmy Brisson * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 200110ee433SJimmy Brisson * same conditions as HVC instructions and when the processor supports 201110ee433SJimmy Brisson * ARMv8.6-FGT. 20229d0ee54SJimmy Brisson * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) 20329d0ee54SJimmy Brisson * CNTPOFF_EL2 register under the same conditions as HVC instructions 20429d0ee54SJimmy Brisson * and when the processor supports ECV. 205532ed618SSoby Mathew */ 206a0fee747SAntonio Nino Diaz if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 207a0fee747SAntonio Nino Diaz || ((GET_RW(ep->spsr) != MODE_RW_64) 208a0fee747SAntonio Nino Diaz && (GET_M32(ep->spsr) == MODE32_hyp))) { 209532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 210110ee433SJimmy Brisson 211110ee433SJimmy Brisson if (is_armv8_6_fgt_present()) { 212110ee433SJimmy Brisson scr_el3 |= SCR_FGTEN_BIT; 213110ee433SJimmy Brisson } 21429d0ee54SJimmy Brisson 21529d0ee54SJimmy Brisson if (get_armv8_6_ecv_support() 21629d0ee54SJimmy Brisson == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) { 21729d0ee54SJimmy Brisson scr_el3 |= SCR_ECVEN_BIT; 21829d0ee54SJimmy Brisson } 219532ed618SSoby Mathew } 220532ed618SSoby Mathew 2210376e7c4SAchin Gupta /* Enable S-EL2 if the next EL is EL2 and security state is secure */ 222db3ae853SArtsem Artsemenka if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) { 223db3ae853SArtsem Artsemenka if (GET_RW(ep->spsr) != MODE_RW_64) { 224db3ae853SArtsem Artsemenka ERROR("S-EL2 can not be used in AArch32."); 225db3ae853SArtsem Artsemenka panic(); 226db3ae853SArtsem Artsemenka } 227db3ae853SArtsem Artsemenka 2280376e7c4SAchin Gupta scr_el3 |= SCR_EEL2_BIT; 229db3ae853SArtsem Artsemenka } 2300376e7c4SAchin Gupta 23118f2efd6SDavid Cunado /* 232873d4241Sjohpow01 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3 233873d4241Sjohpow01 * and EL2, when clear, this bit traps accesses from EL2 so we set it 234873d4241Sjohpow01 * to 1 when EL2 is present. 235873d4241Sjohpow01 */ 236873d4241Sjohpow01 if (is_armv8_6_feat_amuv1p1_present() && 237873d4241Sjohpow01 (el_implemented(2) != EL_IMPL_NONE)) { 238873d4241Sjohpow01 scr_el3 |= SCR_AMVOFFEN_BIT; 239873d4241Sjohpow01 } 240873d4241Sjohpow01 241873d4241Sjohpow01 /* 24218f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 24318f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 24418f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 24518f2efd6SDavid Cunado * set to zero. 24618f2efd6SDavid Cunado * 24718f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 24818f2efd6SDavid Cunado * 24918f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 25018f2efd6SDavid Cunado * required by PSCI specification) 25118f2efd6SDavid Cunado */ 252a0fee747SAntonio Nino Diaz sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U; 25318f2efd6SDavid Cunado if (GET_RW(ep->spsr) == MODE_RW_64) 25418f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 25518f2efd6SDavid Cunado else { 25618f2efd6SDavid Cunado /* 25718f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 25818f2efd6SDavid Cunado * fields need to be set. 25918f2efd6SDavid Cunado * 26018f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 26118f2efd6SDavid Cunado * instructions are not trapped to EL1. 26218f2efd6SDavid Cunado * 26318f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 26418f2efd6SDavid Cunado * instructions are not trapped to EL1. 26518f2efd6SDavid Cunado * 26618f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 26718f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 26818f2efd6SDavid Cunado */ 26918f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 27018f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 27118f2efd6SDavid Cunado } 27218f2efd6SDavid Cunado 2735f5d1ed7SLouis Mayencourt #if ERRATA_A75_764081 2745f5d1ed7SLouis Mayencourt /* 2755f5d1ed7SLouis Mayencourt * If workaround of errata 764081 for Cortex-A75 is used then set 2765f5d1ed7SLouis Mayencourt * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 2775f5d1ed7SLouis Mayencourt */ 2785f5d1ed7SLouis Mayencourt sctlr_elx |= SCTLR_IESB_BIT; 2795f5d1ed7SLouis Mayencourt #endif 2805f5d1ed7SLouis Mayencourt 2816cac724dSjohpow01 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 2826cac724dSjohpow01 if (is_armv8_6_twed_present()) { 2836cac724dSjohpow01 uint32_t delay = plat_arm_set_twedel_scr_el3(); 2846cac724dSjohpow01 2856cac724dSjohpow01 if (delay != TWED_DISABLED) { 2866cac724dSjohpow01 /* Make sure delay value fits */ 2876cac724dSjohpow01 assert((delay & ~SCR_TWEDEL_MASK) == 0U); 2886cac724dSjohpow01 2896cac724dSjohpow01 /* Set delay in SCR_EL3 */ 2906cac724dSjohpow01 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 2916cac724dSjohpow01 scr_el3 |= ((delay & SCR_TWEDEL_MASK) 2926cac724dSjohpow01 << SCR_TWEDEL_SHIFT); 2936cac724dSjohpow01 2946cac724dSjohpow01 /* Enable WFE delay */ 2956cac724dSjohpow01 scr_el3 |= SCR_TWEDEn_BIT; 2966cac724dSjohpow01 } 2976cac724dSjohpow01 } 2986cac724dSjohpow01 29918f2efd6SDavid Cunado /* 30018f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 3012e61d687SOlivier Deprez * and other EL2 registers are set up by cm_prepare_el3_exit() as they 30218f2efd6SDavid Cunado * are not part of the stored cpu_context. 30318f2efd6SDavid Cunado */ 3042825946eSMax Shvetsov write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 30518f2efd6SDavid Cunado 3062ab9617eSVarun Wadekar /* 3072ab9617eSVarun Wadekar * Base the context ACTLR_EL1 on the current value, as it is 3082ab9617eSVarun Wadekar * implementation defined. The context restore process will write 3092ab9617eSVarun Wadekar * the value from the context to the actual register and can cause 3102ab9617eSVarun Wadekar * problems for processor cores that don't expect certain bits to 3112ab9617eSVarun Wadekar * be zero. 3122ab9617eSVarun Wadekar */ 3132ab9617eSVarun Wadekar actlr_elx = read_actlr_el1(); 3142825946eSMax Shvetsov write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 3152ab9617eSVarun Wadekar 3163e61b2b5SDavid Cunado /* 317e290a8fcSAlexei Fedorov * Populate EL3 state so that we've the right context 318e290a8fcSAlexei Fedorov * before doing ERET 3193e61b2b5SDavid Cunado */ 320532ed618SSoby Mathew state = get_el3state_ctx(ctx); 321532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 322532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 323532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 324532ed618SSoby Mathew 325532ed618SSoby Mathew /* 326532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 327532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 328532ed618SSoby Mathew */ 329532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 330532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 331532ed618SSoby Mathew } 332532ed618SSoby Mathew 333532ed618SSoby Mathew /******************************************************************************* 3340fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 3350fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 3360fd0f222SDimitris Papastamos * it is zero. 3370fd0f222SDimitris Papastamos ******************************************************************************/ 33840daecc1SAntonio Nino Diaz static void enable_extensions_nonsecure(bool el2_unused) 3390fd0f222SDimitris Papastamos { 3400fd0f222SDimitris Papastamos #if IMAGE_BL31 341281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 342281a08ccSDimitris Papastamos spe_enable(el2_unused); 343281a08ccSDimitris Papastamos #endif 344380559c1SDimitris Papastamos 345380559c1SDimitris Papastamos #if ENABLE_AMU 346380559c1SDimitris Papastamos amu_enable(el2_unused); 347380559c1SDimitris Papastamos #endif 3481a853370SDavid Cunado 3495f835918SJeenu Viswambharan #if ENABLE_MPAM_FOR_LOWER_ELS 3505f835918SJeenu Viswambharan mpam_enable(el2_unused); 3515f835918SJeenu Viswambharan #endif 3520fd0f222SDimitris Papastamos #endif 3530fd0f222SDimitris Papastamos } 3540fd0f222SDimitris Papastamos 3550fd0f222SDimitris Papastamos /******************************************************************************* 356532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 357532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 358532ed618SSoby Mathew * specified by the entry_point_info structure. 359532ed618SSoby Mathew ******************************************************************************/ 360532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 361532ed618SSoby Mathew const entry_point_info_t *ep) 362532ed618SSoby Mathew { 363532ed618SSoby Mathew cpu_context_t *ctx; 364532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 3651634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 366532ed618SSoby Mathew } 367532ed618SSoby Mathew 368532ed618SSoby Mathew /******************************************************************************* 369532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 370532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 371532ed618SSoby Mathew * entry_point_info structure. 372532ed618SSoby Mathew ******************************************************************************/ 373532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 374532ed618SSoby Mathew { 375532ed618SSoby Mathew cpu_context_t *ctx; 376532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 3771634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 378532ed618SSoby Mathew } 379532ed618SSoby Mathew 380532ed618SSoby Mathew /******************************************************************************* 381532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 382532ed618SSoby Mathew * 383532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 384532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 385532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 386532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 387532ed618SSoby Mathew ******************************************************************************/ 388532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 389532ed618SSoby Mathew { 390f1be00daSLouis Mayencourt u_register_t sctlr_elx, scr_el3, mdcr_el2; 391532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 39240daecc1SAntonio Nino Diaz bool el2_unused = false; 393a0fee747SAntonio Nino Diaz uint64_t hcr_el2 = 0U; 394532ed618SSoby Mathew 395a0fee747SAntonio Nino Diaz assert(ctx != NULL); 396532ed618SSoby Mathew 397532ed618SSoby Mathew if (security_state == NON_SECURE) { 398f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 399a0fee747SAntonio Nino Diaz CTX_SCR_EL3); 400a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_HCE_BIT) != 0U) { 401532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 4022825946eSMax Shvetsov sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), 403532ed618SSoby Mathew CTX_SCTLR_EL1); 4042e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 405532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 4065f5d1ed7SLouis Mayencourt #if ERRATA_A75_764081 4075f5d1ed7SLouis Mayencourt /* 4085f5d1ed7SLouis Mayencourt * If workaround of errata 764081 for Cortex-A75 is used 4095f5d1ed7SLouis Mayencourt * then set SCTLR_EL2.IESB to enable Implicit Error 4105f5d1ed7SLouis Mayencourt * Synchronization Barrier. 4115f5d1ed7SLouis Mayencourt */ 4125f5d1ed7SLouis Mayencourt sctlr_elx |= SCTLR_IESB_BIT; 4135f5d1ed7SLouis Mayencourt #endif 414532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 415a0fee747SAntonio Nino Diaz } else if (el_implemented(2) != EL_IMPL_NONE) { 41640daecc1SAntonio Nino Diaz el2_unused = true; 4170fd0f222SDimitris Papastamos 41818f2efd6SDavid Cunado /* 41918f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 42018f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 42118f2efd6SDavid Cunado * 4223ff4aaacSJeenu Viswambharan * Set EL2 register width appropriately: Set HCR_EL2 4233ff4aaacSJeenu Viswambharan * field to match SCR_EL3.RW. 42418f2efd6SDavid Cunado */ 425a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_RW_BIT) != 0U) 4263ff4aaacSJeenu Viswambharan hcr_el2 |= HCR_RW_BIT; 4273ff4aaacSJeenu Viswambharan 4283ff4aaacSJeenu Viswambharan /* 4293ff4aaacSJeenu Viswambharan * For Armv8.3 pointer authentication feature, disable 4303ff4aaacSJeenu Viswambharan * traps to EL2 when accessing key registers or using 4313ff4aaacSJeenu Viswambharan * pointer authentication instructions from lower ELs. 4323ff4aaacSJeenu Viswambharan */ 4333ff4aaacSJeenu Viswambharan hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 4343ff4aaacSJeenu Viswambharan 4353ff4aaacSJeenu Viswambharan write_hcr_el2(hcr_el2); 436532ed618SSoby Mathew 43718f2efd6SDavid Cunado /* 43818f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 43918f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 44018f2efd6SDavid Cunado * UNKNOWN reset values. 44118f2efd6SDavid Cunado * 44218f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 44318f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 44418f2efd6SDavid Cunado * Execution states do not trap to EL2. 44518f2efd6SDavid Cunado * 44618f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 44718f2efd6SDavid Cunado * register accesses to the trace registers from both 44818f2efd6SDavid Cunado * Execution states do not trap to EL2. 44918f2efd6SDavid Cunado * 45018f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 45118f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 45218f2efd6SDavid Cunado * Execution states do not trap to EL2. 45318f2efd6SDavid Cunado */ 45418f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 45518f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 45618f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 457532ed618SSoby Mathew 45818f2efd6SDavid Cunado /* 4598aabea33SPaul Beesley * Initialise CNTHCTL_EL2. All fields are 46018f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 46118f2efd6SDavid Cunado * except for field(s) listed below. 46218f2efd6SDavid Cunado * 46318f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 46418f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 46518f2efd6SDavid Cunado * physical timer registers. 46618f2efd6SDavid Cunado * 46718f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 46818f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 46918f2efd6SDavid Cunado * physical counter registers. 47018f2efd6SDavid Cunado */ 47118f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 47218f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 473532ed618SSoby Mathew 47418f2efd6SDavid Cunado /* 47518f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 47618f2efd6SDavid Cunado * architecturally UNKNOWN value. 47718f2efd6SDavid Cunado */ 478532ed618SSoby Mathew write_cntvoff_el2(0); 479532ed618SSoby Mathew 48018f2efd6SDavid Cunado /* 48118f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 48218f2efd6SDavid Cunado * MPIDR_EL1 respectively. 48318f2efd6SDavid Cunado */ 484532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 485532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 486532ed618SSoby Mathew 487532ed618SSoby Mathew /* 48818f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 48918f2efd6SDavid Cunado * UNKNOWN on reset. 49018f2efd6SDavid Cunado * 49118f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 49218f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 49318f2efd6SDavid Cunado * operations depend on the VMID. 49418f2efd6SDavid Cunado * 49518f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 49618f2efd6SDavid Cunado * translation is disabled. 497532ed618SSoby Mathew */ 49818f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 49918f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 50018f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 50118f2efd6SDavid Cunado 502495f3d3cSDavid Cunado /* 50318f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 50418f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 50518f2efd6SDavid Cunado * UNKNOWN on reset. 50618f2efd6SDavid Cunado * 507e290a8fcSAlexei Fedorov * MDCR_EL2.HLP: Set to one so that event counter 508e290a8fcSAlexei Fedorov * overflow, that is recorded in PMOVSCLR_EL0[0-30], 509e290a8fcSAlexei Fedorov * occurs on the increment that changes 510e290a8fcSAlexei Fedorov * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is 511e290a8fcSAlexei Fedorov * implemented. This bit is RES0 in versions of the 512e290a8fcSAlexei Fedorov * architecture earlier than ARMv8.5, setting it to 1 513e290a8fcSAlexei Fedorov * doesn't have any effect on them. 514e290a8fcSAlexei Fedorov * 515e290a8fcSAlexei Fedorov * MDCR_EL2.TTRF: Set to zero so that access to Trace 516e290a8fcSAlexei Fedorov * Filter Control register TRFCR_EL1 at EL1 is not 517e290a8fcSAlexei Fedorov * trapped to EL2. This bit is RES0 in versions of 518e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.4. 519e290a8fcSAlexei Fedorov * 520e290a8fcSAlexei Fedorov * MDCR_EL2.HPMD: Set to one so that event counting is 521e290a8fcSAlexei Fedorov * prohibited at EL2. This bit is RES0 in versions of 522e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.1, setting it 523e290a8fcSAlexei Fedorov * to 1 doesn't have any effect on them. 524e290a8fcSAlexei Fedorov * 525e290a8fcSAlexei Fedorov * MDCR_EL2.TPMS: Set to zero so that accesses to 526e290a8fcSAlexei Fedorov * Statistical Profiling control registers from EL1 527e290a8fcSAlexei Fedorov * do not trap to EL2. This bit is RES0 when SPE is 528e290a8fcSAlexei Fedorov * not implemented. 529e290a8fcSAlexei Fedorov * 53018f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 53118f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 53218f2efd6SDavid Cunado * registers are not trapped to EL2. 53318f2efd6SDavid Cunado * 53418f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 53518f2efd6SDavid Cunado * System register accesses to the powerdown debug 53618f2efd6SDavid Cunado * registers are not trapped to EL2. 53718f2efd6SDavid Cunado * 53818f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 53918f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 54018f2efd6SDavid Cunado * 54118f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 54218f2efd6SDavid Cunado * are not routed to EL2. 54318f2efd6SDavid Cunado * 54418f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 54518f2efd6SDavid Cunado * Monitors. 54618f2efd6SDavid Cunado * 54718f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 54818f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 54918f2efd6SDavid Cunado * are not trapped to EL2. 55018f2efd6SDavid Cunado * 55118f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 55218f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 55318f2efd6SDavid Cunado * trapped to EL2. 55418f2efd6SDavid Cunado * 55518f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 55618f2efd6SDavid Cunado * architecturally-defined reset value. 557495f3d3cSDavid Cunado */ 558e290a8fcSAlexei Fedorov mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP | 559e290a8fcSAlexei Fedorov MDCR_EL2_HPMD) | 56018f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 56118f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 562e290a8fcSAlexei Fedorov ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS | 563e290a8fcSAlexei Fedorov MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | 564e290a8fcSAlexei Fedorov MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT | 565e290a8fcSAlexei Fedorov MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT | 566e290a8fcSAlexei Fedorov MDCR_EL2_TPMCR_BIT); 567d832aee9Sdp-arm 568d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 569d832aee9Sdp-arm 570939f66d6SDavid Cunado /* 57118f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 57218f2efd6SDavid Cunado * UNKNOWN on reset. 57318f2efd6SDavid Cunado * 57418f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 57518f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 57618f2efd6SDavid Cunado * do not trap to EL2. 577939f66d6SDavid Cunado */ 57818f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 579939f66d6SDavid Cunado /* 58018f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 58118f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 58218f2efd6SDavid Cunado * 58318f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 58418f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 585939f66d6SDavid Cunado */ 58618f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 58718f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 588532ed618SSoby Mathew } 5890fd0f222SDimitris Papastamos enable_extensions_nonsecure(el2_unused); 590532ed618SSoby Mathew } 591532ed618SSoby Mathew 59217b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 59317b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 594532ed618SSoby Mathew } 595532ed618SSoby Mathew 59628f39f02SMax Shvetsov #if CTX_INCLUDE_EL2_REGS 59728f39f02SMax Shvetsov /******************************************************************************* 59828f39f02SMax Shvetsov * Save EL2 sysreg context 59928f39f02SMax Shvetsov ******************************************************************************/ 60028f39f02SMax Shvetsov void cm_el2_sysregs_context_save(uint32_t security_state) 60128f39f02SMax Shvetsov { 60228f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 60328f39f02SMax Shvetsov 60428f39f02SMax Shvetsov /* 60528f39f02SMax Shvetsov * Always save the non-secure EL2 context, only save the 60628f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 60728f39f02SMax Shvetsov */ 60828f39f02SMax Shvetsov if ((security_state == NON_SECURE) || 6096b704da3SRuari Phipps ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 61028f39f02SMax Shvetsov cpu_context_t *ctx; 61128f39f02SMax Shvetsov 61228f39f02SMax Shvetsov ctx = cm_get_context(security_state); 61328f39f02SMax Shvetsov assert(ctx != NULL); 61428f39f02SMax Shvetsov 6152825946eSMax Shvetsov el2_sysregs_context_save(get_el2_sysregs_ctx(ctx)); 61628f39f02SMax Shvetsov } 61728f39f02SMax Shvetsov } 61828f39f02SMax Shvetsov 61928f39f02SMax Shvetsov /******************************************************************************* 62028f39f02SMax Shvetsov * Restore EL2 sysreg context 62128f39f02SMax Shvetsov ******************************************************************************/ 62228f39f02SMax Shvetsov void cm_el2_sysregs_context_restore(uint32_t security_state) 62328f39f02SMax Shvetsov { 62428f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 62528f39f02SMax Shvetsov 62628f39f02SMax Shvetsov /* 62728f39f02SMax Shvetsov * Always restore the non-secure EL2 context, only restore the 62828f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 62928f39f02SMax Shvetsov */ 63028f39f02SMax Shvetsov if ((security_state == NON_SECURE) || 6316b704da3SRuari Phipps ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 63228f39f02SMax Shvetsov cpu_context_t *ctx; 63328f39f02SMax Shvetsov 63428f39f02SMax Shvetsov ctx = cm_get_context(security_state); 63528f39f02SMax Shvetsov assert(ctx != NULL); 63628f39f02SMax Shvetsov 6372825946eSMax Shvetsov el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx)); 63828f39f02SMax Shvetsov } 63928f39f02SMax Shvetsov } 64028f39f02SMax Shvetsov #endif /* CTX_INCLUDE_EL2_REGS */ 64128f39f02SMax Shvetsov 642532ed618SSoby Mathew /******************************************************************************* 643532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 644532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 645532ed618SSoby Mathew * state. 646532ed618SSoby Mathew ******************************************************************************/ 647532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 648532ed618SSoby Mathew { 649532ed618SSoby Mathew cpu_context_t *ctx; 650532ed618SSoby Mathew 651532ed618SSoby Mathew ctx = cm_get_context(security_state); 652a0fee747SAntonio Nino Diaz assert(ctx != NULL); 653532ed618SSoby Mathew 6542825946eSMax Shvetsov el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 65517b4c0ddSDimitris Papastamos 65617b4c0ddSDimitris Papastamos #if IMAGE_BL31 65717b4c0ddSDimitris Papastamos if (security_state == SECURE) 65817b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 65917b4c0ddSDimitris Papastamos else 66017b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 66117b4c0ddSDimitris Papastamos #endif 662532ed618SSoby Mathew } 663532ed618SSoby Mathew 664532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 665532ed618SSoby Mathew { 666532ed618SSoby Mathew cpu_context_t *ctx; 667532ed618SSoby Mathew 668532ed618SSoby Mathew ctx = cm_get_context(security_state); 669a0fee747SAntonio Nino Diaz assert(ctx != NULL); 670532ed618SSoby Mathew 6712825946eSMax Shvetsov el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 67217b4c0ddSDimitris Papastamos 67317b4c0ddSDimitris Papastamos #if IMAGE_BL31 67417b4c0ddSDimitris Papastamos if (security_state == SECURE) 67517b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 67617b4c0ddSDimitris Papastamos else 67717b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 67817b4c0ddSDimitris Papastamos #endif 679532ed618SSoby Mathew } 680532ed618SSoby Mathew 681532ed618SSoby Mathew /******************************************************************************* 682532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 683532ed618SSoby Mathew * given security state with the given entrypoint 684532ed618SSoby Mathew ******************************************************************************/ 685532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 686532ed618SSoby Mathew { 687532ed618SSoby Mathew cpu_context_t *ctx; 688532ed618SSoby Mathew el3_state_t *state; 689532ed618SSoby Mathew 690532ed618SSoby Mathew ctx = cm_get_context(security_state); 691a0fee747SAntonio Nino Diaz assert(ctx != NULL); 692532ed618SSoby Mathew 693532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 694532ed618SSoby Mathew state = get_el3state_ctx(ctx); 695532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 696532ed618SSoby Mathew } 697532ed618SSoby Mathew 698532ed618SSoby Mathew /******************************************************************************* 699532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 700532ed618SSoby Mathew * pertaining to the given security state 701532ed618SSoby Mathew ******************************************************************************/ 702532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 703532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 704532ed618SSoby Mathew { 705532ed618SSoby Mathew cpu_context_t *ctx; 706532ed618SSoby Mathew el3_state_t *state; 707532ed618SSoby Mathew 708532ed618SSoby Mathew ctx = cm_get_context(security_state); 709a0fee747SAntonio Nino Diaz assert(ctx != NULL); 710532ed618SSoby Mathew 711532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 712532ed618SSoby Mathew state = get_el3state_ctx(ctx); 713532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 714532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 715532ed618SSoby Mathew } 716532ed618SSoby Mathew 717532ed618SSoby Mathew /******************************************************************************* 718532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 719532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 720532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 721532ed618SSoby Mathew ******************************************************************************/ 722532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 723532ed618SSoby Mathew uint32_t bit_pos, 724532ed618SSoby Mathew uint32_t value) 725532ed618SSoby Mathew { 726532ed618SSoby Mathew cpu_context_t *ctx; 727532ed618SSoby Mathew el3_state_t *state; 728f1be00daSLouis Mayencourt u_register_t scr_el3; 729532ed618SSoby Mathew 730532ed618SSoby Mathew ctx = cm_get_context(security_state); 731a0fee747SAntonio Nino Diaz assert(ctx != NULL); 732532ed618SSoby Mathew 733532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 734d7b5f408SJimmy Brisson assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 735532ed618SSoby Mathew 736532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 737a0fee747SAntonio Nino Diaz assert(value <= 1U); 738532ed618SSoby Mathew 739532ed618SSoby Mathew /* 740532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 741532ed618SSoby Mathew * and set it to its new value. 742532ed618SSoby Mathew */ 743532ed618SSoby Mathew state = get_el3state_ctx(ctx); 744f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 745d7b5f408SJimmy Brisson scr_el3 &= ~(1UL << bit_pos); 746f1be00daSLouis Mayencourt scr_el3 |= (u_register_t)value << bit_pos; 747532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 748532ed618SSoby Mathew } 749532ed618SSoby Mathew 750532ed618SSoby Mathew /******************************************************************************* 751532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 752532ed618SSoby Mathew * given security state. 753532ed618SSoby Mathew ******************************************************************************/ 754f1be00daSLouis Mayencourt u_register_t cm_get_scr_el3(uint32_t security_state) 755532ed618SSoby Mathew { 756532ed618SSoby Mathew cpu_context_t *ctx; 757532ed618SSoby Mathew el3_state_t *state; 758532ed618SSoby Mathew 759532ed618SSoby Mathew ctx = cm_get_context(security_state); 760a0fee747SAntonio Nino Diaz assert(ctx != NULL); 761532ed618SSoby Mathew 762532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 763532ed618SSoby Mathew state = get_el3state_ctx(ctx); 764f1be00daSLouis Mayencourt return read_ctx_reg(state, CTX_SCR_EL3); 765532ed618SSoby Mathew } 766532ed618SSoby Mathew 767532ed618SSoby Mathew /******************************************************************************* 768532ed618SSoby Mathew * This function is used to program the context that's used for exception 769532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 770532ed618SSoby Mathew * the required security state 771532ed618SSoby Mathew ******************************************************************************/ 772532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 773532ed618SSoby Mathew { 774532ed618SSoby Mathew cpu_context_t *ctx; 775532ed618SSoby Mathew 776532ed618SSoby Mathew ctx = cm_get_context(security_state); 777a0fee747SAntonio Nino Diaz assert(ctx != NULL); 778532ed618SSoby Mathew 779532ed618SSoby Mathew cm_set_next_context(ctx); 780532ed618SSoby Mathew } 781