xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision b47dddd061e92054c3b2096fc8aa9688bfef68d6)
1 /*
2  * Copyright (C) 2018-2024, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <drivers/clk.h>
17 #include <drivers/delay_timer.h>
18 #include <drivers/st/stm32mp_clkfunc.h>
19 #include <drivers/st/stm32mp1_clk.h>
20 #include <drivers/st/stm32mp1_rcc.h>
21 #include <dt-bindings/clock/stm32mp1-clksrc.h>
22 #include <lib/mmio.h>
23 #include <lib/spinlock.h>
24 #include <lib/utils_def.h>
25 #include <libfdt.h>
26 #include <plat/common/platform.h>
27 
28 #include <platform_def.h>
29 
30 enum stm32mp1_pllcfg {
31 	PLLCFG_M,
32 	PLLCFG_N,
33 	PLL_DIV_MN_NB,
34 	PLLCFG_P = PLL_DIV_MN_NB,
35 	PLLCFG_Q,
36 	PLLCFG_R,
37 	PLLCFG_O,
38 	PLLCFG_NB
39 };
40 
41 #define PLL_DIV_MN_NB	2
42 #define PLL_DIV_PQR_NB	3
43 
44 enum stm32mp1_pllcsg {
45 	PLLCSG_MOD_PER,
46 	PLLCSG_INC_STEP,
47 	PLLCSG_SSCG_MODE,
48 	PLLCSG_NB
49 };
50 
51 struct stm32_pll_dt_cfg {
52 	bool status;
53 	uint32_t src;
54 	uint32_t cfg[PLLCFG_NB];
55 	uint32_t frac;
56 	bool csg_enabled;
57 	uint32_t csg[PLLCSG_NB];
58 };
59 
60 struct stm32_clk_platdata {
61 	uint32_t npll;
62 	struct stm32_pll_dt_cfg *pll;
63 	uint32_t nclksrc;
64 	uint32_t *clksrc;
65 	uint32_t nclkdiv;
66 	uint32_t *clkdiv;
67 	bool lse_css;
68 };
69 
70 struct stm32_clk_priv {
71 	uintptr_t base;
72 	const struct mux_cfg *parents;
73 	const uint32_t nb_parents;
74 	const struct div_cfg *div;
75 	const uint32_t nb_div;
76 	void *pdata;
77 };
78 
79 static struct stm32_clk_priv *stm32_clock_data;
80 
81 static struct stm32_clk_priv *clk_stm32_get_priv(void)
82 {
83 	return stm32_clock_data;
84 }
85 
86 static int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base)
87 {
88 	stm32_clock_data = priv;
89 
90 	priv->base = base;
91 
92 	return 0;
93 }
94 
95 #define MAX_HSI_HZ		64000000
96 #define USB_PHY_48_MHZ		48000000
97 
98 #define TIMEOUT_US_200MS	U(200000)
99 #define TIMEOUT_US_1S		U(1000000)
100 
101 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
102 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
103 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
104 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
105 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
106 
107 struct mux_cfg {
108 	uint16_t offset;
109 	uint8_t shift;
110 	uint8_t width;
111 	uint8_t bitrdy;
112 };
113 
114 struct div_cfg {
115 	uint16_t offset;
116 	uint8_t shift;
117 	uint8_t width;
118 	uint8_t bitrdy;
119 };
120 
121 #define DIV_NO_BIT_RDY UINT8_MAX
122 
123 #define DIV_CFG(_id, _offset, _shift, _width,  _bitrdy)\
124 	[(_id)] = {\
125 		.offset	= (_offset),\
126 		.shift	= (_shift),\
127 		.width	= (_width),\
128 		.bitrdy	= (_bitrdy),\
129 	}
130 
131 static const struct div_cfg dividers_mp15[] = {
132 	DIV_CFG(DIV_MPU, RCC_MPCKDIVR, 0, 4, 31),
133 	DIV_CFG(DIV_AXI, RCC_AXIDIVR, 0, 3, 31),
134 	DIV_CFG(DIV_MCU, RCC_MCUDIVR, 0, 4, 31),
135 	DIV_CFG(DIV_APB1, RCC_APB1DIVR, 0, 3, 31),
136 	DIV_CFG(DIV_APB2, RCC_APB2DIVR, 0, 3, 31),
137 	DIV_CFG(DIV_APB3, RCC_APB3DIVR, 0, 3, 31),
138 	DIV_CFG(DIV_APB4, RCC_APB4DIVR, 0, 3, 31),
139 	DIV_CFG(DIV_APB5, RCC_APB5DIVR, 0, 3, 31),
140 	DIV_CFG(DIV_RTC, RCC_RTCDIVR, 0, 6, DIV_NO_BIT_RDY),
141 	DIV_CFG(DIV_MCO1, RCC_MCO1CFGR, 4, 4, DIV_NO_BIT_RDY),
142 	DIV_CFG(DIV_MCO2, RCC_MCO2CFGR, 4, 4, DIV_NO_BIT_RDY),
143 	DIV_CFG(DIV_TRACE, RCC_DBGCFGR, 0, 3, DIV_NO_BIT_RDY),
144 	DIV_CFG(DIV_ETHPTP, RCC_ETHCKSELR, 4, 4, DIV_NO_BIT_RDY),
145 };
146 
147 /*
148  * MUX CONFIG
149  */
150 
151 #define MUX_NO_BIT_RDY		UINT8_MAX
152 
153 #define MUXRDY_CFG(_id, _offset, _shift, _width,  _bitrdy)\
154 	[(_id)] = {\
155 		.offset	= (_offset),\
156 		.shift	= (_shift),\
157 		.width	= (_width),\
158 		.bitrdy = (_bitrdy),\
159 	}
160 
161 #define MUX_CFG(_id, _offset, _shift, _width)\
162 	MUXRDY_CFG(_id, _offset, _shift, _width,  MUX_NO_BIT_RDY)
163 
164 static const struct mux_cfg parent_mp15[MUX_NB] = {
165 	MUX_CFG(MUX_PLL12,	RCC_RCK12SELR, 0, 2),
166 	MUX_CFG(MUX_PLL3,	RCC_RCK3SELR, 0, 2),
167 	MUX_CFG(MUX_PLL4,	RCC_RCK4SELR, 0, 2),
168 	MUX_CFG(MUX_CKPER,	RCC_CPERCKSELR, 0, 2),
169 	MUXRDY_CFG(MUX_MPU,	RCC_MPCKSELR, 0, 2, 31),
170 	MUXRDY_CFG(MUX_AXI,	RCC_ASSCKSELR, 0, 3, 31),
171 	MUXRDY_CFG(MUX_MCU,	RCC_MSSCKSELR, 0, 2, 31),
172 	MUX_CFG(MUX_RTC,	RCC_BDCR, 16, 2),
173 	MUX_CFG(MUX_SDMMC12,	RCC_SDMMC12CKSELR, 0, 3),
174 	MUX_CFG(MUX_SPI2S23,	RCC_SPI2S23CKSELR, 0, 3),
175 	MUX_CFG(MUX_SPI45,	RCC_SPI45CKSELR, 0, 3),
176 	MUX_CFG(MUX_I2C12,	RCC_I2C12CKSELR, 0, 3),
177 	MUX_CFG(MUX_I2C35,	RCC_I2C35CKSELR, 0, 3),
178 	MUX_CFG(MUX_LPTIM23,	RCC_LPTIM23CKSELR, 0, 3),
179 	MUX_CFG(MUX_LPTIM45,	RCC_LPTIM45CKSELR, 0, 3),
180 	MUX_CFG(MUX_UART24,	RCC_UART24CKSELR, 0, 3),
181 	MUX_CFG(MUX_UART35,	RCC_UART35CKSELR, 0, 3),
182 	MUX_CFG(MUX_UART78,	RCC_UART78CKSELR, 0, 3),
183 	MUX_CFG(MUX_SAI1,	RCC_SAI1CKSELR, 0, 3),
184 	MUX_CFG(MUX_ETH,	RCC_ETHCKSELR, 0, 2),
185 	MUX_CFG(MUX_I2C46,	RCC_I2C46CKSELR, 0, 3),
186 	MUX_CFG(MUX_RNG2,	RCC_RNG2CKSELR, 0, 2),
187 	MUX_CFG(MUX_SDMMC3,	RCC_SDMMC3CKSELR, 0, 3),
188 	MUX_CFG(MUX_FMC,	RCC_FMCCKSELR, 0, 2),
189 	MUX_CFG(MUX_QSPI,	RCC_QSPICKSELR, 0, 2),
190 	MUX_CFG(MUX_USBPHY,	RCC_USBCKSELR, 0, 2),
191 	MUX_CFG(MUX_USBO,	RCC_USBCKSELR, 4, 1),
192 	MUX_CFG(MUX_SPDIF,	RCC_SPDIFCKSELR, 0, 2),
193 	MUX_CFG(MUX_SPI2S1,	RCC_SPI2S1CKSELR, 0, 3),
194 	MUX_CFG(MUX_CEC,	RCC_CECCKSELR, 0, 2),
195 	MUX_CFG(MUX_LPTIM1,	RCC_LPTIM1CKSELR, 0, 3),
196 	MUX_CFG(MUX_UART6,	RCC_UART6CKSELR, 0, 3),
197 	MUX_CFG(MUX_FDCAN,	RCC_FDCANCKSELR, 0, 2),
198 	MUX_CFG(MUX_SAI2,	RCC_SAI2CKSELR, 0, 3),
199 	MUX_CFG(MUX_SAI3,	RCC_SAI3CKSELR, 0, 3),
200 	MUX_CFG(MUX_SAI4,	RCC_SAI4CKSELR, 0, 3),
201 	MUX_CFG(MUX_ADC,	RCC_ADCCKSELR, 0, 2),
202 	MUX_CFG(MUX_DSI,	RCC_DSICKSELR, 0, 1),
203 	MUX_CFG(MUX_RNG1,	RCC_RNG1CKSELR, 0, 2),
204 	MUX_CFG(MUX_STGEN,	RCC_STGENCKSELR, 0, 2),
205 	MUX_CFG(MUX_UART1,	RCC_UART1CKSELR, 0, 3),
206 	MUX_CFG(MUX_SPI6,	RCC_SPI6CKSELR, 0, 3),
207 	MUX_CFG(MUX_MCO1,	RCC_MCO1CFGR, 0, 3),
208 	MUX_CFG(MUX_MCO2,	RCC_MCO2CFGR, 0, 3),
209 };
210 
211 #define MASK_WIDTH_SHIFT(_width, _shift) \
212 	GENMASK(((_width) + (_shift) - 1U), (_shift))
213 
214 int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id)
215 {
216 	const struct mux_cfg *mux;
217 	uint32_t mask;
218 
219 	if (mux_id >= priv->nb_parents) {
220 		panic();
221 	}
222 
223 	mux = &priv->parents[mux_id];
224 
225 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
226 
227 	return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift;
228 }
229 
230 static int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel)
231 {
232 	const struct mux_cfg *mux = &priv->parents[pid];
233 	uintptr_t address = priv->base + mux->offset;
234 	uint32_t mask;
235 	uint64_t timeout;
236 
237 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
238 
239 	mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask);
240 
241 	if (mux->bitrdy == MUX_NO_BIT_RDY) {
242 		return 0;
243 	}
244 
245 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
246 
247 	mask = BIT(mux->bitrdy);
248 
249 	while ((mmio_read_32(address) & mask) == 0U) {
250 		if (timeout_elapsed(timeout)) {
251 			return -ETIMEDOUT;
252 		}
253 	}
254 
255 	return 0;
256 }
257 
258 static int stm32_clk_configure_mux(struct stm32_clk_priv *priv, uint32_t val)
259 {
260 	uint32_t data = val & CMD_DATA_MASK;
261 	int mux = (data & MUX_ID_MASK) >> MUX_ID_SHIFT;
262 	int sel = (data & MUX_SEL_MASK) >> MUX_SEL_SHIFT;
263 
264 	return clk_mux_set_parent(priv, mux, sel);
265 }
266 
267 int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value)
268 {
269 	const struct div_cfg *divider;
270 	uintptr_t address;
271 	uint64_t timeout;
272 	uint32_t mask;
273 
274 	if (div_id >= priv->nb_div) {
275 		panic();
276 	}
277 
278 	divider = &priv->div[div_id];
279 	address = priv->base + divider->offset;
280 
281 	mask = MASK_WIDTH_SHIFT(divider->width, divider->shift);
282 	mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask);
283 
284 	if (divider->bitrdy == DIV_NO_BIT_RDY) {
285 		return 0;
286 	}
287 
288 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
289 	mask = BIT(divider->bitrdy);
290 
291 	while ((mmio_read_32(address) & mask) == 0U) {
292 		if (timeout_elapsed(timeout)) {
293 			return -ETIMEDOUT;
294 		}
295 	}
296 
297 	return 0;
298 }
299 
300 const char *stm32mp_osc_node_label[NB_OSC] = {
301 	[_LSI] = "clk-lsi",
302 	[_LSE] = "clk-lse",
303 	[_HSI] = "clk-hsi",
304 	[_HSE] = "clk-hse",
305 	[_CSI] = "clk-csi",
306 	[_I2S_CKIN] = "i2s_ckin",
307 };
308 
309 enum stm32mp1_parent_id {
310 /* Oscillators are defined in enum stm32mp_osc_id */
311 
312 /* Other parent source */
313 	_HSI_KER = NB_OSC,
314 	_HSE_KER,
315 	_HSE_KER_DIV2,
316 	_HSE_RTC,
317 	_CSI_KER,
318 	_PLL1_P,
319 	_PLL1_Q,
320 	_PLL1_R,
321 	_PLL2_P,
322 	_PLL2_Q,
323 	_PLL2_R,
324 	_PLL3_P,
325 	_PLL3_Q,
326 	_PLL3_R,
327 	_PLL4_P,
328 	_PLL4_Q,
329 	_PLL4_R,
330 	_ACLK,
331 	_PCLK1,
332 	_PCLK2,
333 	_PCLK3,
334 	_PCLK4,
335 	_PCLK5,
336 	_HCLK6,
337 	_HCLK2,
338 	_CK_PER,
339 	_CK_MPU,
340 	_CK_MCU,
341 	_USB_PHY_48,
342 	_PARENT_NB,
343 	_UNKNOWN_ID = 0xff,
344 };
345 
346 /* Lists only the parent clock we are interested in */
347 enum stm32mp1_parent_sel {
348 	_I2C12_SEL,
349 	_I2C35_SEL,
350 	_STGEN_SEL,
351 	_I2C46_SEL,
352 	_SPI6_SEL,
353 	_UART1_SEL,
354 	_RNG1_SEL,
355 	_UART6_SEL,
356 	_UART24_SEL,
357 	_UART35_SEL,
358 	_UART78_SEL,
359 	_SDMMC12_SEL,
360 	_SDMMC3_SEL,
361 	_QSPI_SEL,
362 	_FMC_SEL,
363 	_AXIS_SEL,
364 	_MCUS_SEL,
365 	_USBPHY_SEL,
366 	_USBO_SEL,
367 	_MPU_SEL,
368 	_CKPER_SEL,
369 	_RTC_SEL,
370 	_PARENT_SEL_NB,
371 	_UNKNOWN_SEL = 0xff,
372 };
373 
374 /* State the parent clock ID straight related to a clock */
375 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
376 	[_HSE] = CK_HSE,
377 	[_HSI] = CK_HSI,
378 	[_CSI] = CK_CSI,
379 	[_LSE] = CK_LSE,
380 	[_LSI] = CK_LSI,
381 	[_I2S_CKIN] = _UNKNOWN_ID,
382 	[_USB_PHY_48] = _UNKNOWN_ID,
383 	[_HSI_KER] = CK_HSI,
384 	[_HSE_KER] = CK_HSE,
385 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
386 	[_HSE_RTC] = _UNKNOWN_ID,
387 	[_CSI_KER] = CK_CSI,
388 	[_PLL1_P] = PLL1_P,
389 	[_PLL1_Q] = PLL1_Q,
390 	[_PLL1_R] = PLL1_R,
391 	[_PLL2_P] = PLL2_P,
392 	[_PLL2_Q] = PLL2_Q,
393 	[_PLL2_R] = PLL2_R,
394 	[_PLL3_P] = PLL3_P,
395 	[_PLL3_Q] = PLL3_Q,
396 	[_PLL3_R] = PLL3_R,
397 	[_PLL4_P] = PLL4_P,
398 	[_PLL4_Q] = PLL4_Q,
399 	[_PLL4_R] = PLL4_R,
400 	[_ACLK] = CK_AXI,
401 	[_PCLK1] = CK_AXI,
402 	[_PCLK2] = CK_AXI,
403 	[_PCLK3] = CK_AXI,
404 	[_PCLK4] = CK_AXI,
405 	[_PCLK5] = CK_AXI,
406 	[_CK_PER] = CK_PER,
407 	[_CK_MPU] = CK_MPU,
408 	[_CK_MCU] = CK_MCU,
409 };
410 
411 static unsigned int clock_id2parent_id(unsigned long id)
412 {
413 	unsigned int n;
414 
415 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
416 		if (parent_id_clock_id[n] == id) {
417 			return n;
418 		}
419 	}
420 
421 	return _UNKNOWN_ID;
422 }
423 
424 enum stm32mp1_pll_id {
425 	_PLL1,
426 	_PLL2,
427 	_PLL3,
428 	_PLL4,
429 	_PLL_NB
430 };
431 
432 enum stm32mp1_div_id {
433 	_DIV_P,
434 	_DIV_Q,
435 	_DIV_R,
436 	_DIV_NB,
437 };
438 
439 enum stm32mp1_clksrc_id {
440 	CLKSRC_MPU,
441 	CLKSRC_AXI,
442 	CLKSRC_MCU,
443 	CLKSRC_PLL12,
444 	CLKSRC_PLL3,
445 	CLKSRC_PLL4,
446 	CLKSRC_RTC,
447 	CLKSRC_MCO1,
448 	CLKSRC_MCO2,
449 	CLKSRC_NB
450 };
451 
452 enum stm32mp1_clkdiv_id {
453 	CLKDIV_MPU,
454 	CLKDIV_AXI,
455 	CLKDIV_MCU,
456 	CLKDIV_APB1,
457 	CLKDIV_APB2,
458 	CLKDIV_APB3,
459 	CLKDIV_APB4,
460 	CLKDIV_APB5,
461 	CLKDIV_RTC,
462 	CLKDIV_MCO1,
463 	CLKDIV_MCO2,
464 	CLKDIV_NB
465 };
466 
467 enum stm32mp1_plltype {
468 	PLL_800,
469 	PLL_1600,
470 	PLL_TYPE_NB
471 };
472 
473 struct stm32mp1_pll {
474 	uint8_t refclk_min;
475 	uint8_t refclk_max;
476 };
477 
478 struct stm32mp1_clk_gate {
479 	uint16_t offset;
480 	uint8_t bit;
481 	uint8_t index;
482 	uint8_t set_clr;
483 	uint8_t secure;
484 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
485 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
486 };
487 
488 struct stm32mp1_clk_sel {
489 	uint16_t offset;
490 	uint8_t src;
491 	uint8_t msk;
492 	uint8_t nb_parent;
493 	const uint8_t *parent;
494 };
495 
496 #define REFCLK_SIZE 4
497 struct stm32mp1_clk_pll {
498 	enum stm32mp1_plltype plltype;
499 	uint16_t rckxselr;
500 	uint16_t pllxcfgr1;
501 	uint16_t pllxcfgr2;
502 	uint16_t pllxfracr;
503 	uint16_t pllxcr;
504 	uint16_t pllxcsgr;
505 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
506 };
507 
508 /* Clocks with selectable source and non set/clr register access */
509 #define _CLK_SELEC(sec, off, b, idx, s)			\
510 	{						\
511 		.offset = (off),			\
512 		.bit = (b),				\
513 		.index = (idx),				\
514 		.set_clr = 0,				\
515 		.secure = (sec),			\
516 		.sel = (s),				\
517 		.fixed = _UNKNOWN_ID,			\
518 	}
519 
520 /* Clocks with fixed source and non set/clr register access */
521 #define _CLK_FIXED(sec, off, b, idx, f)			\
522 	{						\
523 		.offset = (off),			\
524 		.bit = (b),				\
525 		.index = (idx),				\
526 		.set_clr = 0,				\
527 		.secure = (sec),			\
528 		.sel = _UNKNOWN_SEL,			\
529 		.fixed = (f),				\
530 	}
531 
532 /* Clocks with selectable source and set/clr register access */
533 #define _CLK_SC_SELEC(sec, off, b, idx, s)			\
534 	{						\
535 		.offset = (off),			\
536 		.bit = (b),				\
537 		.index = (idx),				\
538 		.set_clr = 1,				\
539 		.secure = (sec),			\
540 		.sel = (s),				\
541 		.fixed = _UNKNOWN_ID,			\
542 	}
543 
544 /* Clocks with fixed source and set/clr register access */
545 #define _CLK_SC_FIXED(sec, off, b, idx, f)			\
546 	{						\
547 		.offset = (off),			\
548 		.bit = (b),				\
549 		.index = (idx),				\
550 		.set_clr = 1,				\
551 		.secure = (sec),			\
552 		.sel = _UNKNOWN_SEL,			\
553 		.fixed = (f),				\
554 	}
555 
556 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
557 	[_ ## _label ## _SEL] = {				\
558 		.offset = _rcc_selr,				\
559 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
560 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
561 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
562 		.parent = (_parents),				\
563 		.nb_parent = ARRAY_SIZE(_parents)		\
564 	}
565 
566 #define _CLK_PLL(idx, type, off1, off2, off3,		\
567 		 off4, off5, off6,			\
568 		 p1, p2, p3, p4)			\
569 	[(idx)] = {					\
570 		.plltype = (type),			\
571 		.rckxselr = (off1),			\
572 		.pllxcfgr1 = (off2),			\
573 		.pllxcfgr2 = (off3),			\
574 		.pllxfracr = (off4),			\
575 		.pllxcr = (off5),			\
576 		.pllxcsgr = (off6),			\
577 		.refclk[0] = (p1),			\
578 		.refclk[1] = (p2),			\
579 		.refclk[2] = (p3),			\
580 		.refclk[3] = (p4),			\
581 	}
582 
583 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
584 
585 #define SEC		1
586 #define N_S		0
587 
588 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
589 	_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
590 	_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
591 	_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
592 	_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
593 	_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
594 	_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
595 	_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
596 	_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
597 	_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
598 	_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
599 	_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
600 
601 #if defined(IMAGE_BL32)
602 	_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
603 #endif
604 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
605 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
606 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
607 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
608 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
609 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
610 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
611 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
612 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
613 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
614 
615 #if defined(IMAGE_BL32)
616 	_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
617 #endif
618 	_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
619 
620 	_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
621 
622 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
623 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
624 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
625 
626 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
627 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
628 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
629 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
630 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
631 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
632 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
633 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
634 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
635 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
636 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
637 
638 #if defined(IMAGE_BL32)
639 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
640 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
641 #endif
642 
643 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
644 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
645 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
646 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
647 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
648 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
649 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
650 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
651 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
652 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
653 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
654 
655 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
656 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
657 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
658 	_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
659 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
660 
661 #if defined(IMAGE_BL2)
662 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
663 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
664 #endif
665 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
666 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
667 #if defined(IMAGE_BL32)
668 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
669 #endif
670 
671 	_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
672 	_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
673 };
674 
675 static const uint8_t i2c12_parents[] = {
676 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
677 };
678 
679 static const uint8_t i2c35_parents[] = {
680 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
681 };
682 
683 static const uint8_t stgen_parents[] = {
684 	_HSI_KER, _HSE_KER
685 };
686 
687 static const uint8_t i2c46_parents[] = {
688 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
689 };
690 
691 static const uint8_t spi6_parents[] = {
692 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
693 };
694 
695 static const uint8_t usart1_parents[] = {
696 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
697 };
698 
699 static const uint8_t rng1_parents[] = {
700 	_CSI, _PLL4_R, _LSE, _LSI
701 };
702 
703 static const uint8_t uart6_parents[] = {
704 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
705 };
706 
707 static const uint8_t uart234578_parents[] = {
708 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
709 };
710 
711 static const uint8_t sdmmc12_parents[] = {
712 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
713 };
714 
715 static const uint8_t sdmmc3_parents[] = {
716 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
717 };
718 
719 static const uint8_t qspi_parents[] = {
720 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
721 };
722 
723 static const uint8_t fmc_parents[] = {
724 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
725 };
726 
727 static const uint8_t axiss_parents[] = {
728 	_HSI, _HSE, _PLL2_P
729 };
730 
731 static const uint8_t mcuss_parents[] = {
732 	_HSI, _HSE, _CSI, _PLL3_P
733 };
734 
735 static const uint8_t usbphy_parents[] = {
736 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
737 };
738 
739 static const uint8_t usbo_parents[] = {
740 	_PLL4_R, _USB_PHY_48
741 };
742 
743 static const uint8_t mpu_parents[] = {
744 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
745 };
746 
747 static const uint8_t per_parents[] = {
748 	_HSI, _HSE, _CSI,
749 };
750 
751 static const uint8_t rtc_parents[] = {
752 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
753 };
754 
755 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
756 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
757 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
758 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
759 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
760 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
761 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
762 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
763 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
764 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
765 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
766 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
767 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
768 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
769 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
770 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
771 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
772 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
773 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
774 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
775 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
776 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
777 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
778 };
779 
780 /* Define characteristic of PLL according type */
781 #define POST_DIVM_MIN	8000000U
782 #define POST_DIVM_MAX	16000000U
783 #define DIVM_MIN	0U
784 #define DIVM_MAX	63U
785 #define DIVN_MIN	24U
786 #define DIVN_MAX	99U
787 #define DIVP_MIN	0U
788 #define DIVP_MAX	127U
789 #define FRAC_MAX	8192U
790 #define VCO_MIN		800000000U
791 #define VCO_MAX		1600000000U
792 
793 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
794 	[PLL_800] = {
795 		.refclk_min = 4,
796 		.refclk_max = 16,
797 	},
798 	[PLL_1600] = {
799 		.refclk_min = 8,
800 		.refclk_max = 16,
801 	},
802 };
803 
804 /* PLLNCFGR2 register divider by output */
805 static const uint8_t pllncfgr2[_DIV_NB] = {
806 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
807 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
808 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
809 };
810 
811 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
812 	_CLK_PLL(_PLL1, PLL_1600,
813 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
814 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
815 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
816 	_CLK_PLL(_PLL2, PLL_1600,
817 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
818 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
819 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
820 	_CLK_PLL(_PLL3, PLL_800,
821 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
822 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
823 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
824 	_CLK_PLL(_PLL4, PLL_800,
825 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
826 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
827 		 _HSI, _HSE, _CSI, _I2S_CKIN),
828 };
829 
830 /* Prescaler table lookups for clock computation */
831 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
832 static const uint8_t stm32mp1_mcu_div[16] = {
833 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
834 };
835 
836 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
837 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
838 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
839 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
840 	0, 1, 2, 3, 4, 4, 4, 4
841 };
842 
843 /* div = /1 /2 /3 /4 */
844 static const uint8_t stm32mp1_axi_div[8] = {
845 	1, 2, 3, 4, 4, 4, 4, 4
846 };
847 
848 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
849 	[_HSI] = "HSI",
850 	[_HSE] = "HSE",
851 	[_CSI] = "CSI",
852 	[_LSI] = "LSI",
853 	[_LSE] = "LSE",
854 	[_I2S_CKIN] = "I2S_CKIN",
855 	[_HSI_KER] = "HSI_KER",
856 	[_HSE_KER] = "HSE_KER",
857 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
858 	[_HSE_RTC] = "HSE_RTC",
859 	[_CSI_KER] = "CSI_KER",
860 	[_PLL1_P] = "PLL1_P",
861 	[_PLL1_Q] = "PLL1_Q",
862 	[_PLL1_R] = "PLL1_R",
863 	[_PLL2_P] = "PLL2_P",
864 	[_PLL2_Q] = "PLL2_Q",
865 	[_PLL2_R] = "PLL2_R",
866 	[_PLL3_P] = "PLL3_P",
867 	[_PLL3_Q] = "PLL3_Q",
868 	[_PLL3_R] = "PLL3_R",
869 	[_PLL4_P] = "PLL4_P",
870 	[_PLL4_Q] = "PLL4_Q",
871 	[_PLL4_R] = "PLL4_R",
872 	[_ACLK] = "ACLK",
873 	[_PCLK1] = "PCLK1",
874 	[_PCLK2] = "PCLK2",
875 	[_PCLK3] = "PCLK3",
876 	[_PCLK4] = "PCLK4",
877 	[_PCLK5] = "PCLK5",
878 	[_HCLK6] = "KCLK6",
879 	[_HCLK2] = "HCLK2",
880 	[_CK_PER] = "CK_PER",
881 	[_CK_MPU] = "CK_MPU",
882 	[_CK_MCU] = "CK_MCU",
883 	[_USB_PHY_48] = "USB_PHY_48",
884 };
885 
886 /* RCC clock device driver private */
887 static unsigned long stm32mp1_osc[NB_OSC];
888 static struct spinlock reg_lock;
889 static unsigned int gate_refcounts[NB_GATES];
890 static struct spinlock refcount_lock;
891 
892 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
893 {
894 	return &stm32mp1_clk_gate[idx];
895 }
896 
897 #if defined(IMAGE_BL32)
898 static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate)
899 {
900 	return gate->secure == N_S;
901 }
902 #endif
903 
904 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
905 {
906 	return &stm32mp1_clk_sel[idx];
907 }
908 
909 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
910 {
911 	return &stm32mp1_clk_pll[idx];
912 }
913 
914 static void stm32mp1_clk_lock(struct spinlock *lock)
915 {
916 	if (stm32mp_lock_available()) {
917 		/* Assume interrupts are masked */
918 		spin_lock(lock);
919 	}
920 }
921 
922 static void stm32mp1_clk_unlock(struct spinlock *lock)
923 {
924 	if (stm32mp_lock_available()) {
925 		spin_unlock(lock);
926 	}
927 }
928 
929 bool stm32mp1_rcc_is_secure(void)
930 {
931 	uintptr_t rcc_base = stm32mp_rcc_base();
932 	uint32_t mask = RCC_TZCR_TZEN;
933 
934 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
935 }
936 
937 bool stm32mp1_rcc_is_mckprot(void)
938 {
939 	uintptr_t rcc_base = stm32mp_rcc_base();
940 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
941 
942 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
943 }
944 
945 void stm32mp1_clk_rcc_regs_lock(void)
946 {
947 	stm32mp1_clk_lock(&reg_lock);
948 }
949 
950 void stm32mp1_clk_rcc_regs_unlock(void)
951 {
952 	stm32mp1_clk_unlock(&reg_lock);
953 }
954 
955 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
956 {
957 	if (idx >= NB_OSC) {
958 		return 0;
959 	}
960 
961 	return stm32mp1_osc[idx];
962 }
963 
964 static int stm32mp1_clk_get_gated_id(unsigned long id)
965 {
966 	unsigned int i;
967 
968 	for (i = 0U; i < NB_GATES; i++) {
969 		if (gate_ref(i)->index == id) {
970 			return i;
971 		}
972 	}
973 
974 	ERROR("%s: clk id %lu not found\n", __func__, id);
975 
976 	return -EINVAL;
977 }
978 
979 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
980 {
981 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
982 }
983 
984 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
985 {
986 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
987 }
988 
989 static int stm32mp1_clk_get_parent(unsigned long id)
990 {
991 	const struct stm32mp1_clk_sel *sel;
992 	uint32_t p_sel;
993 	int i;
994 	enum stm32mp1_parent_id p;
995 	enum stm32mp1_parent_sel s;
996 	uintptr_t rcc_base = stm32mp_rcc_base();
997 
998 	/* Few non gateable clock have a static parent ID, find them */
999 	i = (int)clock_id2parent_id(id);
1000 	if (i != _UNKNOWN_ID) {
1001 		return i;
1002 	}
1003 
1004 	i = stm32mp1_clk_get_gated_id(id);
1005 	if (i < 0) {
1006 		panic();
1007 	}
1008 
1009 	p = stm32mp1_clk_get_fixed_parent(i);
1010 	if (p < _PARENT_NB) {
1011 		return (int)p;
1012 	}
1013 
1014 	s = stm32mp1_clk_get_sel(i);
1015 	if (s == _UNKNOWN_SEL) {
1016 		return -EINVAL;
1017 	}
1018 	if (s >= _PARENT_SEL_NB) {
1019 		panic();
1020 	}
1021 
1022 	sel = clk_sel_ref(s);
1023 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
1024 		 (sel->msk << sel->src)) >> sel->src;
1025 	if (p_sel < sel->nb_parent) {
1026 		return (int)sel->parent[p_sel];
1027 	}
1028 
1029 	return -EINVAL;
1030 }
1031 
1032 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
1033 {
1034 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
1035 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
1036 
1037 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
1038 }
1039 
1040 /*
1041  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
1042  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
1043  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
1044  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
1045  */
1046 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
1047 {
1048 	unsigned long refclk, fvco;
1049 	uint32_t cfgr1, fracr, divm, divn;
1050 	uintptr_t rcc_base = stm32mp_rcc_base();
1051 
1052 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
1053 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
1054 
1055 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
1056 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
1057 
1058 	refclk = stm32mp1_pll_get_fref(pll);
1059 
1060 	/*
1061 	 * With FRACV :
1062 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
1063 	 * Without FRACV
1064 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
1065 	 */
1066 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
1067 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
1068 				 RCC_PLLNFRACR_FRACV_SHIFT;
1069 		unsigned long long numerator, denominator;
1070 
1071 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
1072 		numerator = refclk * numerator;
1073 		denominator = ((unsigned long long)divm + 1U) << 13;
1074 		fvco = (unsigned long)(numerator / denominator);
1075 	} else {
1076 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
1077 	}
1078 
1079 	return fvco;
1080 }
1081 
1082 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
1083 					    enum stm32mp1_div_id div_id)
1084 {
1085 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1086 	unsigned long dfout;
1087 	uint32_t cfgr2, divy;
1088 
1089 	if (div_id >= _DIV_NB) {
1090 		return 0;
1091 	}
1092 
1093 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
1094 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
1095 
1096 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
1097 
1098 	return dfout;
1099 }
1100 
1101 static unsigned long get_clock_rate(int p)
1102 {
1103 	uint32_t reg, clkdiv;
1104 	unsigned long clock = 0;
1105 	uintptr_t rcc_base = stm32mp_rcc_base();
1106 
1107 	switch (p) {
1108 	case _CK_MPU:
1109 	/* MPU sub system */
1110 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
1111 		switch (reg & RCC_SELR_SRC_MASK) {
1112 		case RCC_MPCKSELR_HSI:
1113 			clock = stm32mp1_clk_get_fixed(_HSI);
1114 			break;
1115 		case RCC_MPCKSELR_HSE:
1116 			clock = stm32mp1_clk_get_fixed(_HSE);
1117 			break;
1118 		case RCC_MPCKSELR_PLL:
1119 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1120 			break;
1121 		case RCC_MPCKSELR_PLL_MPUDIV:
1122 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1123 
1124 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
1125 			clkdiv = reg & RCC_MPUDIV_MASK;
1126 			clock >>= stm32mp1_mpu_div[clkdiv];
1127 			break;
1128 		default:
1129 			break;
1130 		}
1131 		break;
1132 	/* AXI sub system */
1133 	case _ACLK:
1134 	case _HCLK2:
1135 	case _HCLK6:
1136 	case _PCLK4:
1137 	case _PCLK5:
1138 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
1139 		switch (reg & RCC_SELR_SRC_MASK) {
1140 		case RCC_ASSCKSELR_HSI:
1141 			clock = stm32mp1_clk_get_fixed(_HSI);
1142 			break;
1143 		case RCC_ASSCKSELR_HSE:
1144 			clock = stm32mp1_clk_get_fixed(_HSE);
1145 			break;
1146 		case RCC_ASSCKSELR_PLL:
1147 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1148 			break;
1149 		default:
1150 			break;
1151 		}
1152 
1153 		/* System clock divider */
1154 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
1155 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
1156 
1157 		switch (p) {
1158 		case _PCLK4:
1159 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
1160 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1161 			break;
1162 		case _PCLK5:
1163 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
1164 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1165 			break;
1166 		default:
1167 			break;
1168 		}
1169 		break;
1170 	/* MCU sub system */
1171 	case _CK_MCU:
1172 	case _PCLK1:
1173 	case _PCLK2:
1174 	case _PCLK3:
1175 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
1176 		switch (reg & RCC_SELR_SRC_MASK) {
1177 		case RCC_MSSCKSELR_HSI:
1178 			clock = stm32mp1_clk_get_fixed(_HSI);
1179 			break;
1180 		case RCC_MSSCKSELR_HSE:
1181 			clock = stm32mp1_clk_get_fixed(_HSE);
1182 			break;
1183 		case RCC_MSSCKSELR_CSI:
1184 			clock = stm32mp1_clk_get_fixed(_CSI);
1185 			break;
1186 		case RCC_MSSCKSELR_PLL:
1187 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1188 			break;
1189 		default:
1190 			break;
1191 		}
1192 
1193 		/* MCU clock divider */
1194 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
1195 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1196 
1197 		switch (p) {
1198 		case _PCLK1:
1199 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
1200 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1201 			break;
1202 		case _PCLK2:
1203 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
1204 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1205 			break;
1206 		case _PCLK3:
1207 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
1208 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1209 			break;
1210 		case _CK_MCU:
1211 		default:
1212 			break;
1213 		}
1214 		break;
1215 	case _CK_PER:
1216 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
1217 		switch (reg & RCC_SELR_SRC_MASK) {
1218 		case RCC_CPERCKSELR_HSI:
1219 			clock = stm32mp1_clk_get_fixed(_HSI);
1220 			break;
1221 		case RCC_CPERCKSELR_HSE:
1222 			clock = stm32mp1_clk_get_fixed(_HSE);
1223 			break;
1224 		case RCC_CPERCKSELR_CSI:
1225 			clock = stm32mp1_clk_get_fixed(_CSI);
1226 			break;
1227 		default:
1228 			break;
1229 		}
1230 		break;
1231 	case _HSI:
1232 	case _HSI_KER:
1233 		clock = stm32mp1_clk_get_fixed(_HSI);
1234 		break;
1235 	case _CSI:
1236 	case _CSI_KER:
1237 		clock = stm32mp1_clk_get_fixed(_CSI);
1238 		break;
1239 	case _HSE:
1240 	case _HSE_KER:
1241 		clock = stm32mp1_clk_get_fixed(_HSE);
1242 		break;
1243 	case _HSE_KER_DIV2:
1244 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
1245 		break;
1246 	case _HSE_RTC:
1247 		clock = stm32mp1_clk_get_fixed(_HSE);
1248 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
1249 		break;
1250 	case _LSI:
1251 		clock = stm32mp1_clk_get_fixed(_LSI);
1252 		break;
1253 	case _LSE:
1254 		clock = stm32mp1_clk_get_fixed(_LSE);
1255 		break;
1256 	/* PLL */
1257 	case _PLL1_P:
1258 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1259 		break;
1260 	case _PLL1_Q:
1261 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
1262 		break;
1263 	case _PLL1_R:
1264 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
1265 		break;
1266 	case _PLL2_P:
1267 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1268 		break;
1269 	case _PLL2_Q:
1270 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1271 		break;
1272 	case _PLL2_R:
1273 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1274 		break;
1275 	case _PLL3_P:
1276 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1277 		break;
1278 	case _PLL3_Q:
1279 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1280 		break;
1281 	case _PLL3_R:
1282 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1283 		break;
1284 	case _PLL4_P:
1285 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1286 		break;
1287 	case _PLL4_Q:
1288 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1289 		break;
1290 	case _PLL4_R:
1291 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1292 		break;
1293 	/* Other */
1294 	case _USB_PHY_48:
1295 		clock = USB_PHY_48_MHZ;
1296 		break;
1297 	default:
1298 		break;
1299 	}
1300 
1301 	return clock;
1302 }
1303 
1304 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1305 {
1306 	uintptr_t rcc_base = stm32mp_rcc_base();
1307 
1308 	VERBOSE("Enable clock %u\n", gate->index);
1309 
1310 	if (gate->set_clr != 0U) {
1311 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1312 	} else {
1313 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1314 	}
1315 }
1316 
1317 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1318 {
1319 	uintptr_t rcc_base = stm32mp_rcc_base();
1320 
1321 	VERBOSE("Disable clock %u\n", gate->index);
1322 
1323 	if (gate->set_clr != 0U) {
1324 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1325 			      BIT(gate->bit));
1326 	} else {
1327 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1328 	}
1329 }
1330 
1331 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1332 {
1333 	uintptr_t rcc_base = stm32mp_rcc_base();
1334 
1335 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1336 }
1337 
1338 /* Oscillators and PLLs are not gated at runtime */
1339 static bool clock_is_always_on(unsigned long id)
1340 {
1341 	switch (id) {
1342 	case CK_HSE:
1343 	case CK_CSI:
1344 	case CK_LSI:
1345 	case CK_LSE:
1346 	case CK_HSI:
1347 	case CK_HSE_DIV2:
1348 	case PLL1_Q:
1349 	case PLL1_R:
1350 	case PLL2_P:
1351 	case PLL2_Q:
1352 	case PLL2_R:
1353 	case PLL3_P:
1354 	case PLL3_Q:
1355 	case PLL3_R:
1356 	case CK_AXI:
1357 	case CK_MPU:
1358 	case CK_MCU:
1359 	case RTC:
1360 		return true;
1361 	default:
1362 		return false;
1363 	}
1364 }
1365 
1366 static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
1367 {
1368 	const struct stm32mp1_clk_gate *gate;
1369 	int i;
1370 
1371 	if (clock_is_always_on(id)) {
1372 		return;
1373 	}
1374 
1375 	i = stm32mp1_clk_get_gated_id(id);
1376 	if (i < 0) {
1377 		ERROR("Clock %lu can't be enabled\n", id);
1378 		panic();
1379 	}
1380 
1381 	gate = gate_ref(i);
1382 
1383 	if (!with_refcnt) {
1384 		__clk_enable(gate);
1385 		return;
1386 	}
1387 
1388 #if defined(IMAGE_BL32)
1389 	if (gate_is_non_secure(gate)) {
1390 		/* Enable non-secure clock w/o any refcounting */
1391 		__clk_enable(gate);
1392 		return;
1393 	}
1394 #endif
1395 
1396 	stm32mp1_clk_lock(&refcount_lock);
1397 
1398 	if (gate_refcounts[i] == 0U) {
1399 		__clk_enable(gate);
1400 	}
1401 
1402 	gate_refcounts[i]++;
1403 	if (gate_refcounts[i] == UINT_MAX) {
1404 		ERROR("Clock %lu refcount reached max value\n", id);
1405 		panic();
1406 	}
1407 
1408 	stm32mp1_clk_unlock(&refcount_lock);
1409 }
1410 
1411 static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
1412 {
1413 	const struct stm32mp1_clk_gate *gate;
1414 	int i;
1415 
1416 	if (clock_is_always_on(id)) {
1417 		return;
1418 	}
1419 
1420 	i = stm32mp1_clk_get_gated_id(id);
1421 	if (i < 0) {
1422 		ERROR("Clock %lu can't be disabled\n", id);
1423 		panic();
1424 	}
1425 
1426 	gate = gate_ref(i);
1427 
1428 	if (!with_refcnt) {
1429 		__clk_disable(gate);
1430 		return;
1431 	}
1432 
1433 #if defined(IMAGE_BL32)
1434 	if (gate_is_non_secure(gate)) {
1435 		/* Don't disable non-secure clocks */
1436 		return;
1437 	}
1438 #endif
1439 
1440 	stm32mp1_clk_lock(&refcount_lock);
1441 
1442 	if (gate_refcounts[i] == 0U) {
1443 		ERROR("Clock %lu refcount reached 0\n", id);
1444 		panic();
1445 	}
1446 	gate_refcounts[i]--;
1447 
1448 	if (gate_refcounts[i] == 0U) {
1449 		__clk_disable(gate);
1450 	}
1451 
1452 	stm32mp1_clk_unlock(&refcount_lock);
1453 }
1454 
1455 static int stm32mp_clk_enable(unsigned long id)
1456 {
1457 	__stm32mp1_clk_enable(id, true);
1458 
1459 	return 0;
1460 }
1461 
1462 static void stm32mp_clk_disable(unsigned long id)
1463 {
1464 	__stm32mp1_clk_disable(id, true);
1465 }
1466 
1467 static bool stm32mp_clk_is_enabled(unsigned long id)
1468 {
1469 	int i;
1470 
1471 	if (clock_is_always_on(id)) {
1472 		return true;
1473 	}
1474 
1475 	i = stm32mp1_clk_get_gated_id(id);
1476 	if (i < 0) {
1477 		panic();
1478 	}
1479 
1480 	return __clk_is_enabled(gate_ref(i));
1481 }
1482 
1483 static unsigned long stm32mp_clk_get_rate(unsigned long id)
1484 {
1485 	uintptr_t rcc_base = stm32mp_rcc_base();
1486 	int p = stm32mp1_clk_get_parent(id);
1487 	uint32_t prescaler, timpre;
1488 	unsigned long parent_rate;
1489 
1490 	if (p < 0) {
1491 		return 0;
1492 	}
1493 
1494 	parent_rate = get_clock_rate(p);
1495 
1496 	switch (id) {
1497 	case TIM2_K:
1498 	case TIM3_K:
1499 	case TIM4_K:
1500 	case TIM5_K:
1501 	case TIM6_K:
1502 	case TIM7_K:
1503 	case TIM12_K:
1504 	case TIM13_K:
1505 	case TIM14_K:
1506 		prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
1507 			    RCC_APBXDIV_MASK;
1508 		timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
1509 			 RCC_TIMGXPRER_TIMGXPRE;
1510 		break;
1511 
1512 	case TIM1_K:
1513 	case TIM8_K:
1514 	case TIM15_K:
1515 	case TIM16_K:
1516 	case TIM17_K:
1517 		prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
1518 			    RCC_APBXDIV_MASK;
1519 		timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
1520 			 RCC_TIMGXPRER_TIMGXPRE;
1521 		break;
1522 
1523 	default:
1524 		return parent_rate;
1525 	}
1526 
1527 	if (prescaler == 0U) {
1528 		return parent_rate;
1529 	}
1530 
1531 	return parent_rate * (timpre + 1U) * 2U;
1532 }
1533 
1534 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1535 {
1536 	uintptr_t address = stm32mp_rcc_base() + offset;
1537 
1538 	if (enable) {
1539 		mmio_setbits_32(address, mask_on);
1540 	} else {
1541 		mmio_clrbits_32(address, mask_on);
1542 	}
1543 }
1544 
1545 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1546 {
1547 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1548 	uintptr_t address = stm32mp_rcc_base() + offset;
1549 
1550 	mmio_write_32(address, mask_on);
1551 }
1552 
1553 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1554 {
1555 	uint64_t timeout;
1556 	uint32_t mask_test;
1557 	uintptr_t address = stm32mp_rcc_base() + offset;
1558 
1559 	if (enable) {
1560 		mask_test = mask_rdy;
1561 	} else {
1562 		mask_test = 0;
1563 	}
1564 
1565 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1566 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1567 		if (timeout_elapsed(timeout)) {
1568 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1569 			      mask_rdy, address, enable, mmio_read_32(address));
1570 			return -ETIMEDOUT;
1571 		}
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1578 {
1579 	uint32_t value;
1580 	uintptr_t rcc_base = stm32mp_rcc_base();
1581 
1582 	/* Do not reconfigure LSE if it is already ON */
1583 	if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) {
1584 		return;
1585 	}
1586 
1587 	if (digbyp) {
1588 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1589 	}
1590 
1591 	if (bypass || digbyp) {
1592 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1593 	}
1594 
1595 	/*
1596 	 * Warning: not recommended to switch directly from "high drive"
1597 	 * to "medium low drive", and vice-versa.
1598 	 */
1599 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1600 		RCC_BDCR_LSEDRV_SHIFT;
1601 
1602 	while (value != lsedrv) {
1603 		if (value > lsedrv) {
1604 			value--;
1605 		} else {
1606 			value++;
1607 		}
1608 
1609 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1610 				   RCC_BDCR_LSEDRV_MASK,
1611 				   value << RCC_BDCR_LSEDRV_SHIFT);
1612 	}
1613 
1614 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1615 }
1616 
1617 static void stm32mp1_lse_wait(void)
1618 {
1619 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1620 		EARLY_ERROR("%s: failed\n", __func__);
1621 	}
1622 }
1623 
1624 static void stm32mp1_lsi_set(bool enable)
1625 {
1626 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1627 
1628 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1629 		EARLY_ERROR("%s: failed\n", __func__);
1630 	}
1631 }
1632 
1633 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1634 {
1635 	uintptr_t rcc_base = stm32mp_rcc_base();
1636 
1637 	if (digbyp) {
1638 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1639 	}
1640 
1641 	if (bypass || digbyp) {
1642 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1643 	}
1644 
1645 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1646 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1647 		EARLY_ERROR("%s: failed\n", __func__);
1648 	}
1649 
1650 	if (css) {
1651 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1652 	}
1653 
1654 #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
1655 	if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
1656 	    (!(digbyp || bypass))) {
1657 		panic();
1658 	}
1659 #endif
1660 }
1661 
1662 static void stm32mp1_csi_set(bool enable)
1663 {
1664 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1665 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1666 		EARLY_ERROR("%s: failed\n", __func__);
1667 	}
1668 }
1669 
1670 static void stm32mp1_hsi_set(bool enable)
1671 {
1672 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1673 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1674 		EARLY_ERROR("%s: failed\n", __func__);
1675 	}
1676 }
1677 
1678 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1679 {
1680 	uint64_t timeout;
1681 	uintptr_t rcc_base = stm32mp_rcc_base();
1682 	uintptr_t address = rcc_base + RCC_OCRDYR;
1683 
1684 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1685 			   RCC_HSICFGR_HSIDIV_MASK,
1686 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1687 
1688 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1689 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1690 		if (timeout_elapsed(timeout)) {
1691 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1692 			      address, mmio_read_32(address));
1693 			return -ETIMEDOUT;
1694 		}
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 static int stm32mp1_hsidiv(unsigned long hsifreq)
1701 {
1702 	uint8_t hsidiv;
1703 	uint32_t hsidivfreq = MAX_HSI_HZ;
1704 
1705 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1706 		if (hsidivfreq == hsifreq) {
1707 			break;
1708 		}
1709 
1710 		hsidivfreq /= 2U;
1711 	}
1712 
1713 	if (hsidiv == 4U) {
1714 		EARLY_ERROR("Invalid clk-hsi frequency\n");
1715 		return -1;
1716 	}
1717 
1718 	if (hsidiv != 0U) {
1719 		return stm32mp1_set_hsidiv(hsidiv);
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1726 				    unsigned int clksrc,
1727 				    uint32_t *pllcfg, uint32_t fracv)
1728 {
1729 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1730 	uintptr_t rcc_base = stm32mp_rcc_base();
1731 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1732 	enum stm32mp1_plltype type = pll->plltype;
1733 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1734 	unsigned long refclk;
1735 	uint32_t ifrge = 0U;
1736 	uint32_t src, value;
1737 
1738 	/* Check PLL output */
1739 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1740 		return false;
1741 	}
1742 
1743 	/* Check current clksrc */
1744 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1745 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1746 		return false;
1747 	}
1748 
1749 	/* Check Div */
1750 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1751 
1752 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1753 		 (pllcfg[PLLCFG_M] + 1U);
1754 
1755 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1756 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1757 		return false;
1758 	}
1759 
1760 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1761 		ifrge = 1U;
1762 	}
1763 
1764 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1765 		RCC_PLLNCFGR1_DIVN_MASK;
1766 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1767 		 RCC_PLLNCFGR1_DIVM_MASK;
1768 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1769 		 RCC_PLLNCFGR1_IFRGE_MASK;
1770 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1771 		return false;
1772 	}
1773 
1774 	/* Fractional configuration */
1775 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1776 	value |= RCC_PLLNFRACR_FRACLE;
1777 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1778 		return false;
1779 	}
1780 
1781 	/* Output config */
1782 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1783 		RCC_PLLNCFGR2_DIVP_MASK;
1784 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1785 		 RCC_PLLNCFGR2_DIVQ_MASK;
1786 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1787 		 RCC_PLLNCFGR2_DIVR_MASK;
1788 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1789 		return false;
1790 	}
1791 
1792 	return true;
1793 }
1794 
1795 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1796 {
1797 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1798 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1799 
1800 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1801 	mmio_clrsetbits_32(pllxcr,
1802 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1803 			   RCC_PLLNCR_DIVREN,
1804 			   RCC_PLLNCR_PLLON);
1805 }
1806 
1807 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1808 {
1809 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1810 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1811 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1812 
1813 	/* Wait PLL lock */
1814 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1815 		if (timeout_elapsed(timeout)) {
1816 			EARLY_ERROR("PLL%u start failed @ 0x%lx: 0x%x\n",
1817 				    pll_id, pllxcr, mmio_read_32(pllxcr));
1818 			return -ETIMEDOUT;
1819 		}
1820 	}
1821 
1822 	/* Start the requested output */
1823 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1824 
1825 	return 0;
1826 }
1827 
1828 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1829 {
1830 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1831 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1832 	uint64_t timeout;
1833 
1834 	/* Stop all output */
1835 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1836 			RCC_PLLNCR_DIVREN);
1837 
1838 	/* Stop PLL */
1839 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1840 
1841 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1842 	/* Wait PLL stopped */
1843 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1844 		if (timeout_elapsed(timeout)) {
1845 			EARLY_ERROR("PLL%u stop failed @ 0x%lx: 0x%x\n",
1846 				    pll_id, pllxcr, mmio_read_32(pllxcr));
1847 			return -ETIMEDOUT;
1848 		}
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1855 				       uint32_t *pllcfg)
1856 {
1857 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1858 	uintptr_t rcc_base = stm32mp_rcc_base();
1859 	uint32_t value;
1860 
1861 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1862 		RCC_PLLNCFGR2_DIVP_MASK;
1863 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1864 		 RCC_PLLNCFGR2_DIVQ_MASK;
1865 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1866 		 RCC_PLLNCFGR2_DIVR_MASK;
1867 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1868 }
1869 
1870 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1871 			       uint32_t *pllcfg, uint32_t fracv)
1872 {
1873 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1874 	uintptr_t rcc_base = stm32mp_rcc_base();
1875 	enum stm32mp1_plltype type = pll->plltype;
1876 	unsigned long refclk;
1877 	uint32_t ifrge = 0;
1878 	uint32_t src, value;
1879 
1880 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1881 		RCC_SELR_REFCLK_SRC_MASK;
1882 
1883 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1884 		 (pllcfg[PLLCFG_M] + 1U);
1885 
1886 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1887 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1888 		return -EINVAL;
1889 	}
1890 
1891 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1892 		ifrge = 1U;
1893 	}
1894 
1895 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1896 		RCC_PLLNCFGR1_DIVN_MASK;
1897 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1898 		 RCC_PLLNCFGR1_DIVM_MASK;
1899 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1900 		 RCC_PLLNCFGR1_IFRGE_MASK;
1901 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1902 
1903 	/* Fractional configuration */
1904 	value = 0;
1905 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1906 
1907 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1908 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1909 
1910 	value |= RCC_PLLNFRACR_FRACLE;
1911 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1912 
1913 	stm32mp1_pll_config_output(pll_id, pllcfg);
1914 
1915 	return 0;
1916 }
1917 
1918 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1919 {
1920 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1921 	uint32_t pllxcsg = 0;
1922 
1923 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1924 		    RCC_PLLNCSGR_MOD_PER_MASK;
1925 
1926 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1927 		    RCC_PLLNCSGR_INC_STEP_MASK;
1928 
1929 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1930 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1931 
1932 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1933 
1934 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1935 			RCC_PLLNCR_SSCG_CTRL);
1936 }
1937 
1938 static int clk_compute_pll1_settings(unsigned long input_freq,
1939 				     uint32_t freq_khz,
1940 				     uint32_t *pllcfg, uint32_t *fracv)
1941 {
1942 	unsigned long long best_diff = ULLONG_MAX;
1943 	unsigned int divm;
1944 
1945 	/* Following parameters have always the same value */
1946 	pllcfg[PLLCFG_Q] = 0U;
1947 	pllcfg[PLLCFG_R] = 0U;
1948 	pllcfg[PLLCFG_O] = PQR(1, 0, 0);
1949 
1950 	for (divm = (DIVM_MAX + 1U); divm != DIVM_MIN; divm--) {
1951 		unsigned long post_divm = input_freq / divm;
1952 		unsigned int divp;
1953 
1954 		if ((post_divm < POST_DIVM_MIN) || (post_divm > POST_DIVM_MAX)) {
1955 			continue;
1956 		}
1957 
1958 		for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
1959 			unsigned long long output_freq = freq_khz * 1000ULL;
1960 			unsigned long long freq;
1961 			unsigned long long divn;
1962 			unsigned long long frac;
1963 			unsigned int i;
1964 
1965 			freq = output_freq * divm * (divp + 1U);
1966 
1967 			divn = (freq / input_freq) - 1U;
1968 			if ((divn < DIVN_MIN) || (divn > DIVN_MAX)) {
1969 				continue;
1970 			}
1971 
1972 			frac = ((freq * FRAC_MAX) / input_freq) - ((divn + 1U) * FRAC_MAX);
1973 
1974 			/* 2 loops to refine the fractional part */
1975 			for (i = 2U; i != 0U; i--) {
1976 				unsigned long long diff;
1977 				unsigned long long vco;
1978 
1979 				if (frac > FRAC_MAX) {
1980 					break;
1981 				}
1982 
1983 				vco = (post_divm * (divn + 1U)) + ((post_divm * frac) / FRAC_MAX);
1984 
1985 				if ((vco < (VCO_MIN / 2U)) || (vco > (VCO_MAX / 2U))) {
1986 					frac++;
1987 					continue;
1988 				}
1989 
1990 				freq = vco / (divp + 1U);
1991 				if (output_freq < freq) {
1992 					diff = freq - output_freq;
1993 				} else {
1994 					diff = output_freq - freq;
1995 				}
1996 
1997 				if (diff < best_diff)  {
1998 					pllcfg[PLLCFG_M] = divm - 1U;
1999 					pllcfg[PLLCFG_N] = (uint32_t)divn;
2000 					pllcfg[PLLCFG_P] = divp;
2001 					*fracv = (uint32_t)frac;
2002 
2003 					if (diff == 0U) {
2004 						return 0;
2005 					}
2006 
2007 					best_diff = diff;
2008 				}
2009 
2010 				frac++;
2011 			}
2012 		}
2013 	}
2014 
2015 	if (best_diff == ULLONG_MAX) {
2016 		return -EINVAL;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 static int clk_get_pll1_settings(uint32_t clksrc, uint32_t freq_khz,
2023 				 uint32_t *pllcfg, uint32_t *fracv)
2024 {
2025 	unsigned long input_freq = 0UL;
2026 
2027 	assert(pllcfg != NULL);
2028 	assert(fracv != NULL);
2029 
2030 	switch (clksrc) {
2031 	case CLK_PLL12_HSI:
2032 		input_freq = stm32mp_clk_get_rate(CK_HSI);
2033 		break;
2034 	case CLK_PLL12_HSE:
2035 		input_freq = stm32mp_clk_get_rate(CK_HSE);
2036 		break;
2037 	default:
2038 		break;
2039 	}
2040 
2041 	if (input_freq == 0UL) {
2042 		panic();
2043 	}
2044 
2045 	return clk_compute_pll1_settings(input_freq, freq_khz, pllcfg, fracv);
2046 }
2047 
2048 static int stm32_clk_dividers_configure(struct stm32_clk_priv *priv)
2049 {
2050 	struct stm32_clk_platdata *pdata = priv->pdata;
2051 	uint32_t i;
2052 
2053 	for (i = 0U; i < pdata->nclkdiv; i++) {
2054 		uint32_t div_id, div_n;
2055 		uint32_t val;
2056 		int ret;
2057 
2058 		val = pdata->clkdiv[i] & CMD_DATA_MASK;
2059 		div_id = (val & DIV_ID_MASK) >> DIV_ID_SHIFT;
2060 		div_n = (val & DIV_DIVN_MASK) >> DIV_DIVN_SHIFT;
2061 
2062 		ret = clk_stm32_set_div(priv, div_id, div_n);
2063 		if (ret != 0) {
2064 			return ret;
2065 		}
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 static int stm32_clk_configure_clk(struct stm32_clk_priv *priv, uint32_t data)
2072 {
2073 	uint32_t sel = (data & CLK_SEL_MASK) >> CLK_SEL_SHIFT;
2074 	uint32_t enable = (data & CLK_ON_MASK) >> CLK_ON_SHIFT;
2075 	unsigned long binding_id = ((unsigned long)data & CLK_ID_MASK) >> CLK_ID_SHIFT;
2076 	struct stm32_clk_platdata *pdata = priv->pdata;
2077 
2078 	if (binding_id == RTC) {
2079 		uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
2080 
2081 		if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) || (enable != 0U)) {
2082 			mmio_clrsetbits_32(address, RCC_BDCR_RTCSRC_MASK,
2083 					   (sel & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
2084 
2085 			mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
2086 			/* Configure LSE CSS */
2087 			if (pdata->lse_css) {
2088 				mmio_setbits_32(priv->base + RCC_BDCR, RCC_BDCR_LSECSSON);
2089 			}
2090 		}
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 static int stm32_clk_configure_by_addr_val(struct stm32_clk_priv *priv,
2097 					   uint32_t data)
2098 {
2099 	uint32_t addr = data >> CLK_ADDR_SHIFT;
2100 	uint32_t val = data & CLK_ADDR_VAL_MASK;
2101 
2102 	mmio_setbits_32(priv->base + addr, val);
2103 
2104 	return 0;
2105 }
2106 
2107 static int stm32_clk_source_configure(struct stm32_clk_priv *priv)
2108 {
2109 	struct stm32_clk_platdata *pdata = priv->pdata;
2110 	bool ckper_disabled = false;
2111 	uint32_t i;
2112 
2113 	for (i = 0U; i < pdata->nclksrc; i++) {
2114 		uint32_t val = pdata->clksrc[i];
2115 		uint32_t cmd, cmd_data;
2116 		int ret;
2117 
2118 		if (val & CMD_ADDR_BIT) {
2119 			ret = stm32_clk_configure_by_addr_val(priv, val & ~CMD_ADDR_BIT);
2120 			if (ret != 0) {
2121 				return ret;
2122 			}
2123 
2124 			continue;
2125 		}
2126 
2127 		if (val == (uint32_t)CLK_CKPER_DISABLED) {
2128 			ckper_disabled = true;
2129 			continue;
2130 		}
2131 
2132 		cmd = (val & CMD_MASK) >> CMD_SHIFT;
2133 		cmd_data = val & ~CMD_MASK;
2134 
2135 		switch (cmd) {
2136 		case CMD_MUX:
2137 			ret = stm32_clk_configure_mux(priv, cmd_data);
2138 			break;
2139 
2140 		case CMD_CLK:
2141 			ret = stm32_clk_configure_clk(priv, cmd_data);
2142 			break;
2143 		default:
2144 			ret = -EINVAL;
2145 			break;
2146 		}
2147 
2148 		if (ret != 0) {
2149 			return ret;
2150 		}
2151 	}
2152 
2153 	/*
2154 	 * CKPER is source for some peripheral clocks
2155 	 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2156 	 * only if previous clock is still ON
2157 	 * => deactivate CKPER only after switching clock
2158 	 */
2159 	if (!ckper_disabled) {
2160 		return 0;
2161 	}
2162 
2163 	return stm32_clk_configure_mux(priv, CLK_CKPER_DISABLED);
2164 }
2165 
2166 static int stm32mp1_pll_configure_src(struct stm32_clk_priv *priv, int pll_idx)
2167 {
2168 	struct stm32_clk_platdata *pdata = priv->pdata;
2169 	struct stm32_pll_dt_cfg *pll_conf = &pdata->pll[pll_idx];
2170 
2171 	if (!pll_conf->status) {
2172 		return 0;
2173 	}
2174 
2175 	return stm32_clk_configure_mux(priv, pll_conf->src);
2176 }
2177 
2178 int stm32mp1_clk_init(void)
2179 {
2180 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
2181 	struct stm32_clk_platdata *pdata = priv->pdata;
2182 	struct stm32_pll_dt_cfg *pll_conf = pdata->pll;
2183 	int ret;
2184 	enum stm32mp1_pll_id i;
2185 	bool pll3_preserve = false;
2186 	bool pll4_preserve = false;
2187 	bool pll4_bootrom = false;
2188 	int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
2189 	int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
2190 	uint32_t usbreg_bootrom = 0U;
2191 
2192 	if (!pll_conf[_PLL1].status) {
2193 		ret = clk_get_pll1_settings(pll_conf[_PLL2].src, PLL1_NOMINAL_FREQ_IN_KHZ,
2194 					    pll_conf[_PLL1].cfg, &pll_conf[_PLL1].frac);
2195 		if (ret != 0) {
2196 			return ret;
2197 		}
2198 
2199 		pll_conf[_PLL1].status = true;
2200 		pll_conf[_PLL1].src = pll_conf[_PLL2].src;
2201 	}
2202 
2203 	/*
2204 	 * Switch ON oscillator found in device-tree.
2205 	 * Note: HSI already ON after BootROM stage.
2206 	 */
2207 	if (stm32mp1_osc[_LSI] != 0U) {
2208 		stm32mp1_lsi_set(true);
2209 	}
2210 	if (stm32mp1_osc[_LSE] != 0U) {
2211 		const char *name = stm32mp_osc_node_label[_LSE];
2212 		bool bypass, digbyp;
2213 		uint32_t lsedrv;
2214 
2215 		bypass = fdt_clk_read_bool(name, "st,bypass");
2216 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
2217 		pdata->lse_css = fdt_clk_read_bool(name, "st,css");
2218 		lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
2219 						     LSEDRV_MEDIUM_HIGH);
2220 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
2221 	}
2222 	if (stm32mp1_osc[_HSE] != 0U) {
2223 		const char *name = stm32mp_osc_node_label[_HSE];
2224 		bool bypass, digbyp, css;
2225 
2226 		bypass = fdt_clk_read_bool(name, "st,bypass");
2227 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
2228 		css = fdt_clk_read_bool(name, "st,css");
2229 		stm32mp1_hse_enable(bypass, digbyp, css);
2230 	}
2231 	/*
2232 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
2233 	 * => switch on CSI even if node is not present in device tree
2234 	 */
2235 	stm32mp1_csi_set(true);
2236 
2237 	/* Come back to HSI */
2238 	ret = stm32_clk_configure_mux(priv, CLK_MPU_HSI);
2239 	if (ret != 0) {
2240 		return ret;
2241 	}
2242 	ret = stm32_clk_configure_mux(priv, CLK_AXI_HSI);
2243 	if (ret != 0) {
2244 		return ret;
2245 	}
2246 	ret = stm32_clk_configure_mux(priv, CLK_MCU_HSI);
2247 	if (ret != 0) {
2248 		return ret;
2249 	}
2250 	if ((mmio_read_32(priv->base + RCC_MP_RSTSCLRR) &
2251 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
2252 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
2253 							pll_conf[_PLL3].src,
2254 							pll_conf[_PLL3].cfg,
2255 							pll_conf[_PLL3].frac);
2256 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
2257 							pll_conf[_PLL4].src,
2258 							pll_conf[_PLL4].cfg,
2259 							pll_conf[_PLL4].frac);
2260 	}
2261 	/* Don't initialize PLL4, when used by BOOTROM */
2262 	if ((stm32mp_get_boot_itf_selected() ==
2263 	     BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
2264 	    ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
2265 		pll4_bootrom = true;
2266 		pll4_preserve = true;
2267 	}
2268 
2269 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2270 		if (((i == _PLL3) && pll3_preserve) ||
2271 		    ((i == _PLL4) && pll4_preserve)) {
2272 			continue;
2273 		}
2274 
2275 		ret = stm32mp1_pll_stop(i);
2276 		if (ret != 0) {
2277 			return ret;
2278 		}
2279 	}
2280 
2281 	/* Configure HSIDIV */
2282 	if (stm32mp1_osc[_HSI] != 0U) {
2283 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
2284 		if (ret != 0) {
2285 			return ret;
2286 		}
2287 
2288 		stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2289 	}
2290 
2291 	/* Configure dividers */
2292 	ret = stm32_clk_dividers_configure(priv);
2293 	if (ret != 0) {
2294 		return ret;
2295 	}
2296 
2297 	/* Configure PLLs source */
2298 	ret = stm32mp1_pll_configure_src(priv, _PLL1);
2299 	if (ret != 0) {
2300 		return ret;
2301 	}
2302 
2303 	if (!pll3_preserve) {
2304 		ret = stm32mp1_pll_configure_src(priv, _PLL3);
2305 		if (ret != 0) {
2306 			return ret;
2307 		}
2308 	}
2309 
2310 	if (!pll4_preserve) {
2311 		ret = stm32mp1_pll_configure_src(priv, _PLL4);
2312 		if (ret != 0) {
2313 			return ret;
2314 		}
2315 	}
2316 
2317 	/* Configure and start PLLs */
2318 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2319 		if (((i == _PLL3) && pll3_preserve) ||
2320 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
2321 			continue;
2322 		}
2323 
2324 		if (!pll_conf[i].status) {
2325 			continue;
2326 		}
2327 
2328 		if ((i == _PLL4) && pll4_bootrom) {
2329 			/* Set output divider if not done by the Bootrom */
2330 			stm32mp1_pll_config_output(i, pll_conf[i].cfg);
2331 			continue;
2332 		}
2333 
2334 		ret = stm32mp1_pll_config(i, pll_conf[i].cfg, pll_conf[i].frac);
2335 		if (ret != 0) {
2336 			return ret;
2337 		}
2338 
2339 		if (pll_conf[i].csg_enabled) {
2340 			stm32mp1_pll_csg(i, pll_conf[i].csg);
2341 		}
2342 
2343 		stm32mp1_pll_start(i);
2344 	}
2345 	/* Wait and start PLLs output when ready */
2346 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2347 		if (!pll_conf[i].status) {
2348 			continue;
2349 		}
2350 
2351 		ret = stm32mp1_pll_output(i, pll_conf[i].cfg[PLLCFG_O]);
2352 		if (ret != 0) {
2353 			return ret;
2354 		}
2355 	}
2356 	/* Wait LSE ready before to use it */
2357 	if (stm32mp1_osc[_LSE] != 0U) {
2358 		stm32mp1_lse_wait();
2359 	}
2360 
2361 	if (pll4_bootrom) {
2362 		usbreg_bootrom = mmio_read_32(priv->base + RCC_USBCKSELR);
2363 	}
2364 
2365 	/* Configure with expected clock source */
2366 	ret = stm32_clk_source_configure(priv);
2367 	if (ret != 0) {
2368 		panic();
2369 	}
2370 
2371 	if (pll4_bootrom) {
2372 		uint32_t usbreg_value, usbreg_mask;
2373 		const struct stm32mp1_clk_sel *sel;
2374 
2375 		sel = clk_sel_ref(_USBPHY_SEL);
2376 		usbreg_mask = (uint32_t)sel->msk << sel->src;
2377 		sel = clk_sel_ref(_USBO_SEL);
2378 		usbreg_mask |= (uint32_t)sel->msk << sel->src;
2379 
2380 		usbreg_value = mmio_read_32(priv->base + RCC_USBCKSELR) &
2381 			       usbreg_mask;
2382 		usbreg_bootrom &= usbreg_mask;
2383 		if (usbreg_bootrom != usbreg_value) {
2384 			EARLY_ERROR("forbidden new USB clk path\n");
2385 			EARLY_ERROR("vs bootrom on USB boot\n");
2386 			return -FDT_ERR_BADVALUE;
2387 		}
2388 	}
2389 
2390 	/* Switch OFF HSI if not found in device-tree */
2391 	if (stm32mp1_osc[_HSI] == 0U) {
2392 		stm32mp1_hsi_set(false);
2393 	}
2394 
2395 	stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2396 
2397 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2398 	mmio_clrsetbits_32(priv->base + RCC_DDRITFCR,
2399 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2400 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2401 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2402 
2403 	return 0;
2404 }
2405 
2406 static void stm32mp1_osc_clk_init(const char *name,
2407 				  enum stm32mp_osc_id index)
2408 {
2409 	uint32_t frequency;
2410 
2411 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2412 		stm32mp1_osc[index] = frequency;
2413 	}
2414 }
2415 
2416 static void stm32mp1_osc_init(void)
2417 {
2418 	enum stm32mp_osc_id i;
2419 
2420 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2421 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2422 	}
2423 }
2424 
2425 #ifdef STM32MP_SHARED_RESOURCES
2426 /*
2427  * Get the parent ID of the target parent clock, for tagging as secure
2428  * shared clock dependencies.
2429  */
2430 static int get_parent_id_parent(unsigned int parent_id)
2431 {
2432 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2433 	enum stm32mp1_pll_id pll_id;
2434 	uint32_t p_sel;
2435 	uintptr_t rcc_base = stm32mp_rcc_base();
2436 
2437 	switch (parent_id) {
2438 	case _ACLK:
2439 	case _PCLK4:
2440 	case _PCLK5:
2441 		s = _AXIS_SEL;
2442 		break;
2443 	case _PLL1_P:
2444 	case _PLL1_Q:
2445 	case _PLL1_R:
2446 		pll_id = _PLL1;
2447 		break;
2448 	case _PLL2_P:
2449 	case _PLL2_Q:
2450 	case _PLL2_R:
2451 		pll_id = _PLL2;
2452 		break;
2453 	case _PLL3_P:
2454 	case _PLL3_Q:
2455 	case _PLL3_R:
2456 		pll_id = _PLL3;
2457 		break;
2458 	case _PLL4_P:
2459 	case _PLL4_Q:
2460 	case _PLL4_R:
2461 		pll_id = _PLL4;
2462 		break;
2463 	case _PCLK1:
2464 	case _PCLK2:
2465 	case _HCLK2:
2466 	case _HCLK6:
2467 	case _CK_PER:
2468 	case _CK_MPU:
2469 	case _CK_MCU:
2470 	case _USB_PHY_48:
2471 		/* We do not expect to access these */
2472 		panic();
2473 		break;
2474 	default:
2475 		/* Other parents have no parent */
2476 		return -1;
2477 	}
2478 
2479 	if (s != _UNKNOWN_SEL) {
2480 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2481 
2482 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2483 			sel->msk;
2484 
2485 		if (p_sel < sel->nb_parent) {
2486 			return (int)sel->parent[p_sel];
2487 		}
2488 	} else {
2489 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2490 
2491 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2492 			RCC_SELR_REFCLK_SRC_MASK;
2493 
2494 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2495 			return (int)pll->refclk[p_sel];
2496 		}
2497 	}
2498 
2499 	VERBOSE("No parent selected for %s\n",
2500 		stm32mp1_clk_parent_name[parent_id]);
2501 
2502 	return -1;
2503 }
2504 
2505 static void secure_parent_clocks(unsigned long parent_id)
2506 {
2507 	int grandparent_id;
2508 
2509 	switch (parent_id) {
2510 	case _PLL3_P:
2511 	case _PLL3_Q:
2512 	case _PLL3_R:
2513 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2514 		break;
2515 
2516 	/* These clocks are always secure when RCC is secure */
2517 	case _ACLK:
2518 	case _HCLK2:
2519 	case _HCLK6:
2520 	case _PCLK4:
2521 	case _PCLK5:
2522 	case _PLL1_P:
2523 	case _PLL1_Q:
2524 	case _PLL1_R:
2525 	case _PLL2_P:
2526 	case _PLL2_Q:
2527 	case _PLL2_R:
2528 	case _HSI:
2529 	case _HSI_KER:
2530 	case _LSI:
2531 	case _CSI:
2532 	case _CSI_KER:
2533 	case _HSE:
2534 	case _HSE_KER:
2535 	case _HSE_KER_DIV2:
2536 	case _HSE_RTC:
2537 	case _LSE:
2538 		break;
2539 
2540 	default:
2541 		VERBOSE("Cannot secure parent clock %s\n",
2542 			stm32mp1_clk_parent_name[parent_id]);
2543 		panic();
2544 	}
2545 
2546 	grandparent_id = get_parent_id_parent(parent_id);
2547 	if (grandparent_id >= 0) {
2548 		secure_parent_clocks(grandparent_id);
2549 	}
2550 }
2551 
2552 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2553 {
2554 	int parent_id;
2555 
2556 	if (!stm32mp1_rcc_is_secure()) {
2557 		return;
2558 	}
2559 
2560 	switch (clock_id) {
2561 	case PLL1:
2562 	case PLL2:
2563 		/* PLL1/PLL2 are always secure: nothing to do */
2564 		break;
2565 	case PLL3:
2566 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2567 		break;
2568 	case PLL4:
2569 		ERROR("PLL4 cannot be secured\n");
2570 		panic();
2571 		break;
2572 	default:
2573 		/* Others are expected gateable clock */
2574 		parent_id = stm32mp1_clk_get_parent(clock_id);
2575 		if (parent_id < 0) {
2576 			INFO("No parent found for clock %lu\n", clock_id);
2577 		} else {
2578 			secure_parent_clocks(parent_id);
2579 		}
2580 		break;
2581 	}
2582 }
2583 #endif /* STM32MP_SHARED_RESOURCES */
2584 
2585 void stm32mp1_clk_mcuss_protect(bool enable)
2586 {
2587 	uintptr_t rcc_base = stm32mp_rcc_base();
2588 
2589 	if (enable) {
2590 		mmio_setbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2591 	} else {
2592 		mmio_clrbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2593 	}
2594 }
2595 
2596 static void sync_earlyboot_clocks_state(void)
2597 {
2598 	unsigned int idx;
2599 	const unsigned long secure_enable[] = {
2600 		AXIDCG,
2601 		BSEC,
2602 		DDRC1, DDRC1LP,
2603 		DDRC2, DDRC2LP,
2604 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2605 		DDRPHYC, DDRPHYCLP,
2606 		RTCAPB,
2607 		TZC1, TZC2,
2608 		TZPC,
2609 		STGEN_K,
2610 	};
2611 
2612 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2613 		stm32mp_clk_enable(secure_enable[idx]);
2614 	}
2615 }
2616 
2617 static const struct clk_ops stm32mp_clk_ops = {
2618 	.enable		= stm32mp_clk_enable,
2619 	.disable	= stm32mp_clk_disable,
2620 	.is_enabled	= stm32mp_clk_is_enabled,
2621 	.get_rate	= stm32mp_clk_get_rate,
2622 	.get_parent	= stm32mp1_clk_get_parent,
2623 };
2624 
2625 struct stm32_pll_dt_cfg mp15_pll[_PLL_NB];
2626 uint32_t mp15_clksrc[MUX_NB];
2627 uint32_t mp15_clkdiv[DIV_NB];
2628 
2629 struct stm32_clk_platdata stm32mp15_clock_pdata = {
2630 	.pll		= mp15_pll,
2631 	.npll		= _PLL_NB,
2632 	.clksrc		= mp15_clksrc,
2633 	.nclksrc	= MUX_NB,
2634 	.clkdiv		= mp15_clkdiv,
2635 	.nclkdiv	= DIV_NB,
2636 };
2637 
2638 static struct stm32_clk_priv stm32mp15_clock_data = {
2639 	.base		= RCC_BASE,
2640 	.parents	= parent_mp15,
2641 	.nb_parents	= ARRAY_SIZE(parent_mp15),
2642 	.div		= dividers_mp15,
2643 	.nb_div		= ARRAY_SIZE(dividers_mp15),
2644 	.pdata		= &stm32mp15_clock_pdata,
2645 };
2646 
2647 static int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name,
2648 				       uint32_t *tab, uint32_t *nb)
2649 {
2650 	const fdt32_t *cell;
2651 	int len = 0;
2652 	uint32_t i;
2653 
2654 	cell = fdt_getprop(fdt, node, name, &len);
2655 	if (cell == NULL) {
2656 		*nb = 0U;
2657 		return 0;
2658 	}
2659 
2660 	for (i = 0U; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
2661 		tab[i] = fdt32_to_cpu(cell[i]);
2662 	}
2663 
2664 	*nb = (uint32_t)len / sizeof(uint32_t);
2665 
2666 	return 0;
2667 }
2668 
2669 #define RCC_PLL_NAME_SIZE 12
2670 
2671 static int clk_stm32_load_vco_config(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
2672 {
2673 	int err;
2674 
2675 	err = fdt_read_uint32_array(fdt, subnode, "divmn", (int)PLL_DIV_MN_NB, &pll->cfg[PLLCFG_M]);
2676 	if (err != 0) {
2677 		return err;
2678 	}
2679 
2680 	err = fdt_read_uint32_array(fdt, subnode, "csg", (int)PLLCSG_NB, pll->csg);
2681 	if (err == 0) {
2682 		pll->csg_enabled = true;
2683 	} else if (err == -FDT_ERR_NOTFOUND) {
2684 		pll->csg_enabled = false;
2685 	} else {
2686 		return err;
2687 	}
2688 
2689 	pll->status = true;
2690 
2691 	pll->frac = fdt_read_uint32_default(fdt, subnode, "frac", 0);
2692 
2693 	pll->src = fdt_read_uint32_default(fdt, subnode, "src", UINT32_MAX);
2694 
2695 	return 0;
2696 }
2697 
2698 static int clk_stm32_load_output_config(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
2699 {
2700 	int err;
2701 
2702 	err = fdt_read_uint32_array(fdt, subnode, "st,pll_div_pqr", (int)PLL_DIV_PQR_NB,
2703 				    &pll->cfg[PLLCFG_P]);
2704 	if (err != 0) {
2705 		return err;
2706 	}
2707 
2708 	pll->cfg[PLLCFG_O] = PQR(1, 1, 1);
2709 
2710 	return 0;
2711 }
2712 
2713 static int clk_stm32_parse_pll_fdt(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
2714 {
2715 	const fdt32_t *cuint;
2716 	int subnode_pll;
2717 	int subnode_vco;
2718 	int err;
2719 
2720 	cuint = fdt_getprop(fdt, subnode, "st,pll", NULL);
2721 	if (cuint == NULL) {
2722 		/* Case of no pll is defined */
2723 		return 0;
2724 	}
2725 
2726 	subnode_pll = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
2727 	if (subnode_pll < 0) {
2728 		return -FDT_ERR_NOTFOUND;
2729 	}
2730 
2731 	cuint = fdt_getprop(fdt, subnode_pll, "st,pll_vco", NULL);
2732 	if (cuint == NULL) {
2733 		return -FDT_ERR_NOTFOUND;
2734 	}
2735 
2736 	subnode_vco = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
2737 	if (subnode_vco < 0) {
2738 		return -FDT_ERR_NOTFOUND;
2739 	}
2740 
2741 	err = clk_stm32_load_vco_config(fdt, subnode_vco, pll);
2742 	if (err != 0) {
2743 		return err;
2744 	}
2745 
2746 	err = clk_stm32_load_output_config(fdt, subnode_pll, pll);
2747 	if (err != 0) {
2748 		return err;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 static int stm32_clk_parse_fdt_all_pll(void *fdt, int node, struct stm32_clk_platdata *pdata)
2755 {
2756 	size_t i = 0U;
2757 
2758 	for (i = _PLL1; i < pdata->npll; i++) {
2759 		struct stm32_pll_dt_cfg *pll = pdata->pll + i;
2760 		char name[RCC_PLL_NAME_SIZE];
2761 		int subnode;
2762 		int err;
2763 
2764 		snprintf(name, sizeof(name), "st,pll@%u", i);
2765 
2766 		subnode = fdt_subnode_offset(fdt, node, name);
2767 		if (!fdt_check_node(subnode)) {
2768 			continue;
2769 		}
2770 
2771 		err = clk_stm32_parse_pll_fdt(fdt, subnode, pll);
2772 		if (err != 0) {
2773 			panic();
2774 		}
2775 	}
2776 
2777 	return 0;
2778 }
2779 
2780 static int stm32_clk_parse_fdt(struct stm32_clk_platdata *pdata)
2781 {
2782 	void *fdt = NULL;
2783 	int node;
2784 	uint32_t err;
2785 
2786 	if (fdt_get_address(&fdt) == 0) {
2787 		return -ENOENT;
2788 	}
2789 
2790 	node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
2791 	if (node < 0) {
2792 		panic();
2793 	}
2794 
2795 	err = stm32_clk_parse_fdt_all_pll(fdt, node, pdata);
2796 	if (err != 0) {
2797 		return err;
2798 	}
2799 
2800 	err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clkdiv", pdata->clkdiv, &pdata->nclkdiv);
2801 	if (err != 0) {
2802 		return err;
2803 	}
2804 
2805 	err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clksrc", pdata->clksrc, &pdata->nclksrc);
2806 	if (err != 0) {
2807 		return err;
2808 	}
2809 
2810 	return 0;
2811 }
2812 
2813 int stm32mp1_clk_probe(void)
2814 {
2815 	uintptr_t base = RCC_BASE;
2816 	int ret;
2817 
2818 #if defined(IMAGE_BL32)
2819 	if (!fdt_get_rcc_secure_state()) {
2820 		mmio_write_32(stm32mp_rcc_base() + RCC_TZCR, 0U);
2821 	}
2822 #endif
2823 
2824 	stm32mp1_osc_init();
2825 
2826 	ret = stm32_clk_parse_fdt(&stm32mp15_clock_pdata);
2827 	if (ret != 0) {
2828 		return ret;
2829 	}
2830 
2831 	ret = clk_stm32_init(&stm32mp15_clock_data, base);
2832 	if (ret != 0) {
2833 		return ret;
2834 	}
2835 
2836 	sync_earlyboot_clocks_state();
2837 
2838 	clk_register(&stm32mp_clk_ops);
2839 
2840 	return 0;
2841 }
2842