xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 8ae08dcd19ef5f027163e57d197b7690443927d2)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_PER_SEL,
111 	_PARENT_SEL_NB,
112 	_UNKNOWN_SEL = 0xff,
113 };
114 
115 /* State the parent clock ID straight related to a clock */
116 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
117 	[_HSE] = CK_HSE,
118 	[_HSI] = CK_HSI,
119 	[_CSI] = CK_CSI,
120 	[_LSE] = CK_LSE,
121 	[_LSI] = CK_LSI,
122 	[_I2S_CKIN] = _UNKNOWN_ID,
123 	[_USB_PHY_48] = _UNKNOWN_ID,
124 	[_HSI_KER] = CK_HSI,
125 	[_HSE_KER] = CK_HSE,
126 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
127 	[_CSI_KER] = CK_CSI,
128 	[_PLL1_P] = PLL1_P,
129 	[_PLL1_Q] = PLL1_Q,
130 	[_PLL1_R] = PLL1_R,
131 	[_PLL2_P] = PLL2_P,
132 	[_PLL2_Q] = PLL2_Q,
133 	[_PLL2_R] = PLL2_R,
134 	[_PLL3_P] = PLL3_P,
135 	[_PLL3_Q] = PLL3_Q,
136 	[_PLL3_R] = PLL3_R,
137 	[_PLL4_P] = PLL4_P,
138 	[_PLL4_Q] = PLL4_Q,
139 	[_PLL4_R] = PLL4_R,
140 	[_ACLK] = CK_AXI,
141 	[_PCLK1] = CK_AXI,
142 	[_PCLK2] = CK_AXI,
143 	[_PCLK3] = CK_AXI,
144 	[_PCLK4] = CK_AXI,
145 	[_PCLK5] = CK_AXI,
146 	[_CK_PER] = CK_PER,
147 	[_CK_MPU] = CK_MPU,
148 	[_CK_MCU] = CK_MCU,
149 };
150 
151 static unsigned int clock_id2parent_id(unsigned long id)
152 {
153 	unsigned int n;
154 
155 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
156 		if (parent_id_clock_id[n] == id) {
157 			return n;
158 		}
159 	}
160 
161 	return _UNKNOWN_ID;
162 }
163 
164 enum stm32mp1_pll_id {
165 	_PLL1,
166 	_PLL2,
167 	_PLL3,
168 	_PLL4,
169 	_PLL_NB
170 };
171 
172 enum stm32mp1_div_id {
173 	_DIV_P,
174 	_DIV_Q,
175 	_DIV_R,
176 	_DIV_NB,
177 };
178 
179 enum stm32mp1_clksrc_id {
180 	CLKSRC_MPU,
181 	CLKSRC_AXI,
182 	CLKSRC_MCU,
183 	CLKSRC_PLL12,
184 	CLKSRC_PLL3,
185 	CLKSRC_PLL4,
186 	CLKSRC_RTC,
187 	CLKSRC_MCO1,
188 	CLKSRC_MCO2,
189 	CLKSRC_NB
190 };
191 
192 enum stm32mp1_clkdiv_id {
193 	CLKDIV_MPU,
194 	CLKDIV_AXI,
195 	CLKDIV_MCU,
196 	CLKDIV_APB1,
197 	CLKDIV_APB2,
198 	CLKDIV_APB3,
199 	CLKDIV_APB4,
200 	CLKDIV_APB5,
201 	CLKDIV_RTC,
202 	CLKDIV_MCO1,
203 	CLKDIV_MCO2,
204 	CLKDIV_NB
205 };
206 
207 enum stm32mp1_pllcfg {
208 	PLLCFG_M,
209 	PLLCFG_N,
210 	PLLCFG_P,
211 	PLLCFG_Q,
212 	PLLCFG_R,
213 	PLLCFG_O,
214 	PLLCFG_NB
215 };
216 
217 enum stm32mp1_pllcsg {
218 	PLLCSG_MOD_PER,
219 	PLLCSG_INC_STEP,
220 	PLLCSG_SSCG_MODE,
221 	PLLCSG_NB
222 };
223 
224 enum stm32mp1_plltype {
225 	PLL_800,
226 	PLL_1600,
227 	PLL_TYPE_NB
228 };
229 
230 struct stm32mp1_pll {
231 	uint8_t refclk_min;
232 	uint8_t refclk_max;
233 	uint8_t divn_max;
234 };
235 
236 struct stm32mp1_clk_gate {
237 	uint16_t offset;
238 	uint8_t bit;
239 	uint8_t index;
240 	uint8_t set_clr;
241 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
242 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
243 };
244 
245 struct stm32mp1_clk_sel {
246 	uint16_t offset;
247 	uint8_t src;
248 	uint8_t msk;
249 	uint8_t nb_parent;
250 	const uint8_t *parent;
251 };
252 
253 #define REFCLK_SIZE 4
254 struct stm32mp1_clk_pll {
255 	enum stm32mp1_plltype plltype;
256 	uint16_t rckxselr;
257 	uint16_t pllxcfgr1;
258 	uint16_t pllxcfgr2;
259 	uint16_t pllxfracr;
260 	uint16_t pllxcr;
261 	uint16_t pllxcsgr;
262 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
263 };
264 
265 /* Clocks with selectable source and non set/clr register access */
266 #define _CLK_SELEC(off, b, idx, s)			\
267 	{						\
268 		.offset = (off),			\
269 		.bit = (b),				\
270 		.index = (idx),				\
271 		.set_clr = 0,				\
272 		.sel = (s),				\
273 		.fixed = _UNKNOWN_ID,			\
274 	}
275 
276 /* Clocks with fixed source and non set/clr register access */
277 #define _CLK_FIXED(off, b, idx, f)			\
278 	{						\
279 		.offset = (off),			\
280 		.bit = (b),				\
281 		.index = (idx),				\
282 		.set_clr = 0,				\
283 		.sel = _UNKNOWN_SEL,			\
284 		.fixed = (f),				\
285 	}
286 
287 /* Clocks with selectable source and set/clr register access */
288 #define _CLK_SC_SELEC(off, b, idx, s)			\
289 	{						\
290 		.offset = (off),			\
291 		.bit = (b),				\
292 		.index = (idx),				\
293 		.set_clr = 1,				\
294 		.sel = (s),				\
295 		.fixed = _UNKNOWN_ID,			\
296 	}
297 
298 /* Clocks with fixed source and set/clr register access */
299 #define _CLK_SC_FIXED(off, b, idx, f)			\
300 	{						\
301 		.offset = (off),			\
302 		.bit = (b),				\
303 		.index = (idx),				\
304 		.set_clr = 1,				\
305 		.sel = _UNKNOWN_SEL,			\
306 		.fixed = (f),				\
307 	}
308 
309 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
310 	[_ ## _label ## _SEL] = {				\
311 		.offset = _rcc_selr,				\
312 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
313 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
314 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
315 		.parent = (_parents),				\
316 		.nb_parent = ARRAY_SIZE(_parents)		\
317 	}
318 
319 #define _CLK_PLL(idx, type, off1, off2, off3,		\
320 		 off4, off5, off6,			\
321 		 p1, p2, p3, p4)			\
322 	[(idx)] = {					\
323 		.plltype = (type),			\
324 		.rckxselr = (off1),			\
325 		.pllxcfgr1 = (off2),			\
326 		.pllxcfgr2 = (off3),			\
327 		.pllxfracr = (off4),			\
328 		.pllxcr = (off5),			\
329 		.pllxcsgr = (off6),			\
330 		.refclk[0] = (p1),			\
331 		.refclk[1] = (p2),			\
332 		.refclk[2] = (p3),			\
333 		.refclk[3] = (p4),			\
334 	}
335 
336 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
337 
338 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
339 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
340 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
341 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
342 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
343 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
344 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
345 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
346 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
347 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
348 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
349 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
350 
351 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
352 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
353 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
354 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
361 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
362 
363 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
364 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
365 
366 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
367 
368 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
369 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
370 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
371 
372 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
373 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
374 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
375 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
376 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
377 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
378 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
381 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
382 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
383 
384 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
385 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
386 
387 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
388 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
389 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
397 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
398 
399 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
400 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
401 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
402 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
403 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
404 
405 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
406 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
407 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
409 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
410 
411 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
412 };
413 
414 static const uint8_t i2c12_parents[] = {
415 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
416 };
417 
418 static const uint8_t i2c35_parents[] = {
419 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
420 };
421 
422 static const uint8_t stgen_parents[] = {
423 	_HSI_KER, _HSE_KER
424 };
425 
426 static const uint8_t i2c46_parents[] = {
427 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
428 };
429 
430 static const uint8_t spi6_parents[] = {
431 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
432 };
433 
434 static const uint8_t usart1_parents[] = {
435 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
436 };
437 
438 static const uint8_t rng1_parents[] = {
439 	_CSI, _PLL4_R, _LSE, _LSI
440 };
441 
442 static const uint8_t uart6_parents[] = {
443 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
444 };
445 
446 static const uint8_t uart234578_parents[] = {
447 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
448 };
449 
450 static const uint8_t sdmmc12_parents[] = {
451 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
452 };
453 
454 static const uint8_t sdmmc3_parents[] = {
455 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
456 };
457 
458 static const uint8_t qspi_parents[] = {
459 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
460 };
461 
462 static const uint8_t fmc_parents[] = {
463 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
464 };
465 
466 static const uint8_t ass_parents[] = {
467 	_HSI, _HSE, _PLL2
468 };
469 
470 static const uint8_t mss_parents[] = {
471 	_HSI, _HSE, _CSI, _PLL3
472 };
473 
474 static const uint8_t usbphy_parents[] = {
475 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
476 };
477 
478 static const uint8_t usbo_parents[] = {
479 	_PLL4_R, _USB_PHY_48
480 };
481 
482 static const uint8_t mpu_parents[] = {
483 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
484 };
485 
486 static const uint8_t per_parents[] = {
487 	_HSI, _HSE, _CSI,
488 };
489 
490 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
491 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
492 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
493 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
494 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
495 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
496 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
497 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
498 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
499 	_CLK_PARENT_SEL(PER, RCC_CPERCKSELR, per_parents),
500 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
501 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
502 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
503 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
504 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
505 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
506 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
507 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
508 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
509 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
510 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
511 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
512 };
513 
514 /* Define characteristic of PLL according type */
515 #define DIVN_MIN	24
516 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
517 	[PLL_800] = {
518 		.refclk_min = 4,
519 		.refclk_max = 16,
520 		.divn_max = 99,
521 	},
522 	[PLL_1600] = {
523 		.refclk_min = 8,
524 		.refclk_max = 16,
525 		.divn_max = 199,
526 	},
527 };
528 
529 /* PLLNCFGR2 register divider by output */
530 static const uint8_t pllncfgr2[_DIV_NB] = {
531 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
532 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
533 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
534 };
535 
536 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
537 	_CLK_PLL(_PLL1, PLL_1600,
538 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
539 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
540 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
541 	_CLK_PLL(_PLL2, PLL_1600,
542 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
543 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
544 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
545 	_CLK_PLL(_PLL3, PLL_800,
546 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
547 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
548 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
549 	_CLK_PLL(_PLL4, PLL_800,
550 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
551 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
552 		 _HSI, _HSE, _CSI, _I2S_CKIN),
553 };
554 
555 /* Prescaler table lookups for clock computation */
556 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
557 static const uint8_t stm32mp1_mcu_div[16] = {
558 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
559 };
560 
561 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
562 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
563 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
564 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
565 	0, 1, 2, 3, 4, 4, 4, 4
566 };
567 
568 /* div = /1 /2 /3 /4 */
569 static const uint8_t stm32mp1_axi_div[8] = {
570 	1, 2, 3, 4, 4, 4, 4, 4
571 };
572 
573 /* RCC clock device driver private */
574 static unsigned long stm32mp1_osc[NB_OSC];
575 static struct spinlock reg_lock;
576 static unsigned int gate_refcounts[NB_GATES];
577 static struct spinlock refcount_lock;
578 
579 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
580 {
581 	return &stm32mp1_clk_gate[idx];
582 }
583 
584 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
585 {
586 	return &stm32mp1_clk_sel[idx];
587 }
588 
589 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
590 {
591 	return &stm32mp1_clk_pll[idx];
592 }
593 
594 static void stm32mp1_clk_lock(struct spinlock *lock)
595 {
596 	if (stm32mp_lock_available()) {
597 		/* Assume interrupts are masked */
598 		spin_lock(lock);
599 	}
600 }
601 
602 static void stm32mp1_clk_unlock(struct spinlock *lock)
603 {
604 	if (stm32mp_lock_available()) {
605 		spin_unlock(lock);
606 	}
607 }
608 
609 bool stm32mp1_rcc_is_secure(void)
610 {
611 	uintptr_t rcc_base = stm32mp_rcc_base();
612 
613 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
614 }
615 
616 bool stm32mp1_rcc_is_mckprot(void)
617 {
618 	uintptr_t rcc_base = stm32mp_rcc_base();
619 
620 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_MCKPROT) != 0;
621 }
622 
623 void stm32mp1_clk_rcc_regs_lock(void)
624 {
625 	stm32mp1_clk_lock(&reg_lock);
626 }
627 
628 void stm32mp1_clk_rcc_regs_unlock(void)
629 {
630 	stm32mp1_clk_unlock(&reg_lock);
631 }
632 
633 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
634 {
635 	if (idx >= NB_OSC) {
636 		return 0;
637 	}
638 
639 	return stm32mp1_osc[idx];
640 }
641 
642 static int stm32mp1_clk_get_gated_id(unsigned long id)
643 {
644 	unsigned int i;
645 
646 	for (i = 0U; i < NB_GATES; i++) {
647 		if (gate_ref(i)->index == id) {
648 			return i;
649 		}
650 	}
651 
652 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
653 
654 	return -EINVAL;
655 }
656 
657 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
658 {
659 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
660 }
661 
662 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
663 {
664 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
665 }
666 
667 static int stm32mp1_clk_get_parent(unsigned long id)
668 {
669 	const struct stm32mp1_clk_sel *sel;
670 	uint32_t p_sel;
671 	int i;
672 	enum stm32mp1_parent_id p;
673 	enum stm32mp1_parent_sel s;
674 	uintptr_t rcc_base = stm32mp_rcc_base();
675 
676 	/* Few non gateable clock have a static parent ID, find them */
677 	i = (int)clock_id2parent_id(id);
678 	if (i != _UNKNOWN_ID) {
679 		return i;
680 	}
681 
682 	i = stm32mp1_clk_get_gated_id(id);
683 	if (i < 0) {
684 		panic();
685 	}
686 
687 	p = stm32mp1_clk_get_fixed_parent(i);
688 	if (p < _PARENT_NB) {
689 		return (int)p;
690 	}
691 
692 	s = stm32mp1_clk_get_sel(i);
693 	if (s == _UNKNOWN_SEL) {
694 		return -EINVAL;
695 	}
696 	if (s >= _PARENT_SEL_NB) {
697 		panic();
698 	}
699 
700 	sel = clk_sel_ref(s);
701 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
702 		 (sel->msk << sel->src)) >> sel->src;
703 	if (p_sel < sel->nb_parent) {
704 		return (int)sel->parent[p_sel];
705 	}
706 
707 	return -EINVAL;
708 }
709 
710 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
711 {
712 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
713 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
714 
715 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
716 }
717 
718 /*
719  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
720  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
721  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
722  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
723  */
724 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
725 {
726 	unsigned long refclk, fvco;
727 	uint32_t cfgr1, fracr, divm, divn;
728 	uintptr_t rcc_base = stm32mp_rcc_base();
729 
730 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
731 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
732 
733 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
734 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
735 
736 	refclk = stm32mp1_pll_get_fref(pll);
737 
738 	/*
739 	 * With FRACV :
740 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
741 	 * Without FRACV
742 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
743 	 */
744 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
745 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
746 				 RCC_PLLNFRACR_FRACV_SHIFT;
747 		unsigned long long numerator, denominator;
748 
749 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
750 		numerator = refclk * numerator;
751 		denominator = ((unsigned long long)divm + 1U) << 13;
752 		fvco = (unsigned long)(numerator / denominator);
753 	} else {
754 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
755 	}
756 
757 	return fvco;
758 }
759 
760 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
761 					    enum stm32mp1_div_id div_id)
762 {
763 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
764 	unsigned long dfout;
765 	uint32_t cfgr2, divy;
766 
767 	if (div_id >= _DIV_NB) {
768 		return 0;
769 	}
770 
771 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
772 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
773 
774 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
775 
776 	return dfout;
777 }
778 
779 static unsigned long get_clock_rate(int p)
780 {
781 	uint32_t reg, clkdiv;
782 	unsigned long clock = 0;
783 	uintptr_t rcc_base = stm32mp_rcc_base();
784 
785 	switch (p) {
786 	case _CK_MPU:
787 	/* MPU sub system */
788 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
789 		switch (reg & RCC_SELR_SRC_MASK) {
790 		case RCC_MPCKSELR_HSI:
791 			clock = stm32mp1_clk_get_fixed(_HSI);
792 			break;
793 		case RCC_MPCKSELR_HSE:
794 			clock = stm32mp1_clk_get_fixed(_HSE);
795 			break;
796 		case RCC_MPCKSELR_PLL:
797 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
798 			break;
799 		case RCC_MPCKSELR_PLL_MPUDIV:
800 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
801 
802 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
803 			clkdiv = reg & RCC_MPUDIV_MASK;
804 			if (clkdiv != 0U) {
805 				clock /= stm32mp1_mpu_div[clkdiv];
806 			}
807 			break;
808 		default:
809 			break;
810 		}
811 		break;
812 	/* AXI sub system */
813 	case _ACLK:
814 	case _HCLK2:
815 	case _HCLK6:
816 	case _PCLK4:
817 	case _PCLK5:
818 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
819 		switch (reg & RCC_SELR_SRC_MASK) {
820 		case RCC_ASSCKSELR_HSI:
821 			clock = stm32mp1_clk_get_fixed(_HSI);
822 			break;
823 		case RCC_ASSCKSELR_HSE:
824 			clock = stm32mp1_clk_get_fixed(_HSE);
825 			break;
826 		case RCC_ASSCKSELR_PLL:
827 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
828 			break;
829 		default:
830 			break;
831 		}
832 
833 		/* System clock divider */
834 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
835 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
836 
837 		switch (p) {
838 		case _PCLK4:
839 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
840 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
841 			break;
842 		case _PCLK5:
843 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
844 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
845 			break;
846 		default:
847 			break;
848 		}
849 		break;
850 	/* MCU sub system */
851 	case _CK_MCU:
852 	case _PCLK1:
853 	case _PCLK2:
854 	case _PCLK3:
855 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
856 		switch (reg & RCC_SELR_SRC_MASK) {
857 		case RCC_MSSCKSELR_HSI:
858 			clock = stm32mp1_clk_get_fixed(_HSI);
859 			break;
860 		case RCC_MSSCKSELR_HSE:
861 			clock = stm32mp1_clk_get_fixed(_HSE);
862 			break;
863 		case RCC_MSSCKSELR_CSI:
864 			clock = stm32mp1_clk_get_fixed(_CSI);
865 			break;
866 		case RCC_MSSCKSELR_PLL:
867 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
868 			break;
869 		default:
870 			break;
871 		}
872 
873 		/* MCU clock divider */
874 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
875 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
876 
877 		switch (p) {
878 		case _PCLK1:
879 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
880 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
881 			break;
882 		case _PCLK2:
883 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
884 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
885 			break;
886 		case _PCLK3:
887 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
888 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
889 			break;
890 		case _CK_MCU:
891 		default:
892 			break;
893 		}
894 		break;
895 	case _CK_PER:
896 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
897 		switch (reg & RCC_SELR_SRC_MASK) {
898 		case RCC_CPERCKSELR_HSI:
899 			clock = stm32mp1_clk_get_fixed(_HSI);
900 			break;
901 		case RCC_CPERCKSELR_HSE:
902 			clock = stm32mp1_clk_get_fixed(_HSE);
903 			break;
904 		case RCC_CPERCKSELR_CSI:
905 			clock = stm32mp1_clk_get_fixed(_CSI);
906 			break;
907 		default:
908 			break;
909 		}
910 		break;
911 	case _HSI:
912 	case _HSI_KER:
913 		clock = stm32mp1_clk_get_fixed(_HSI);
914 		break;
915 	case _CSI:
916 	case _CSI_KER:
917 		clock = stm32mp1_clk_get_fixed(_CSI);
918 		break;
919 	case _HSE:
920 	case _HSE_KER:
921 		clock = stm32mp1_clk_get_fixed(_HSE);
922 		break;
923 	case _HSE_KER_DIV2:
924 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
925 		break;
926 	case _LSI:
927 		clock = stm32mp1_clk_get_fixed(_LSI);
928 		break;
929 	case _LSE:
930 		clock = stm32mp1_clk_get_fixed(_LSE);
931 		break;
932 	/* PLL */
933 	case _PLL1_P:
934 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
935 		break;
936 	case _PLL1_Q:
937 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
938 		break;
939 	case _PLL1_R:
940 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
941 		break;
942 	case _PLL2_P:
943 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
944 		break;
945 	case _PLL2_Q:
946 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
947 		break;
948 	case _PLL2_R:
949 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
950 		break;
951 	case _PLL3_P:
952 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
953 		break;
954 	case _PLL3_Q:
955 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
956 		break;
957 	case _PLL3_R:
958 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
959 		break;
960 	case _PLL4_P:
961 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
962 		break;
963 	case _PLL4_Q:
964 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
965 		break;
966 	case _PLL4_R:
967 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
968 		break;
969 	/* Other */
970 	case _USB_PHY_48:
971 		clock = USB_PHY_48_MHZ;
972 		break;
973 	default:
974 		break;
975 	}
976 
977 	return clock;
978 }
979 
980 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
981 {
982 	uintptr_t rcc_base = stm32mp_rcc_base();
983 
984 	if (gate->set_clr != 0U) {
985 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
986 	} else {
987 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
988 	}
989 
990 	VERBOSE("Clock %d has been enabled", gate->index);
991 }
992 
993 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
994 {
995 	uintptr_t rcc_base = stm32mp_rcc_base();
996 
997 	if (gate->set_clr != 0U) {
998 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
999 			      BIT(gate->bit));
1000 	} else {
1001 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1002 	}
1003 
1004 	VERBOSE("Clock %d has been disabled", gate->index);
1005 }
1006 
1007 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1008 {
1009 	uintptr_t rcc_base = stm32mp_rcc_base();
1010 
1011 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1012 }
1013 
1014 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1015 {
1016 	int i = stm32mp1_clk_get_gated_id(id);
1017 
1018 	if (i < 0) {
1019 		panic();
1020 	}
1021 
1022 	return gate_refcounts[i];
1023 }
1024 
1025 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1026 {
1027 	const struct stm32mp1_clk_gate *gate;
1028 	int i = stm32mp1_clk_get_gated_id(id);
1029 	unsigned int *refcnt;
1030 
1031 	if (i < 0) {
1032 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1033 		panic();
1034 	}
1035 
1036 	gate = gate_ref(i);
1037 	refcnt = &gate_refcounts[i];
1038 
1039 	stm32mp1_clk_lock(&refcount_lock);
1040 
1041 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1042 		__clk_enable(gate);
1043 	}
1044 
1045 	stm32mp1_clk_unlock(&refcount_lock);
1046 }
1047 
1048 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1049 {
1050 	const struct stm32mp1_clk_gate *gate;
1051 	int i = stm32mp1_clk_get_gated_id(id);
1052 	unsigned int *refcnt;
1053 
1054 	if (i < 0) {
1055 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1056 		panic();
1057 	}
1058 
1059 	gate = gate_ref(i);
1060 	refcnt = &gate_refcounts[i];
1061 
1062 	stm32mp1_clk_lock(&refcount_lock);
1063 
1064 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1065 		__clk_disable(gate);
1066 	}
1067 
1068 	stm32mp1_clk_unlock(&refcount_lock);
1069 }
1070 
1071 void stm32mp_clk_enable(unsigned long id)
1072 {
1073 	__stm32mp1_clk_enable(id, true);
1074 }
1075 
1076 void stm32mp_clk_disable(unsigned long id)
1077 {
1078 	__stm32mp1_clk_disable(id, true);
1079 }
1080 
1081 bool stm32mp_clk_is_enabled(unsigned long id)
1082 {
1083 	int i = stm32mp1_clk_get_gated_id(id);
1084 
1085 	if (i < 0) {
1086 		panic();
1087 	}
1088 
1089 	return __clk_is_enabled(gate_ref(i));
1090 }
1091 
1092 unsigned long stm32mp_clk_get_rate(unsigned long id)
1093 {
1094 	int p = stm32mp1_clk_get_parent(id);
1095 
1096 	if (p < 0) {
1097 		return 0;
1098 	}
1099 
1100 	return get_clock_rate(p);
1101 }
1102 
1103 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1104 {
1105 	uintptr_t address = stm32mp_rcc_base() + offset;
1106 
1107 	if (enable) {
1108 		mmio_setbits_32(address, mask_on);
1109 	} else {
1110 		mmio_clrbits_32(address, mask_on);
1111 	}
1112 }
1113 
1114 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1115 {
1116 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1117 	uintptr_t address = stm32mp_rcc_base() + offset;
1118 
1119 	mmio_write_32(address, mask_on);
1120 }
1121 
1122 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1123 {
1124 	uint64_t timeout;
1125 	uint32_t mask_test;
1126 	uintptr_t address = stm32mp_rcc_base() + offset;
1127 
1128 	if (enable) {
1129 		mask_test = mask_rdy;
1130 	} else {
1131 		mask_test = 0;
1132 	}
1133 
1134 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1135 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1136 		if (timeout_elapsed(timeout)) {
1137 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1138 			      mask_rdy, address, enable, mmio_read_32(address));
1139 			return -ETIMEDOUT;
1140 		}
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1147 {
1148 	uint32_t value;
1149 	uintptr_t rcc_base = stm32mp_rcc_base();
1150 
1151 	if (digbyp) {
1152 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1153 	}
1154 
1155 	if (bypass || digbyp) {
1156 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1157 	}
1158 
1159 	/*
1160 	 * Warning: not recommended to switch directly from "high drive"
1161 	 * to "medium low drive", and vice-versa.
1162 	 */
1163 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1164 		RCC_BDCR_LSEDRV_SHIFT;
1165 
1166 	while (value != lsedrv) {
1167 		if (value > lsedrv) {
1168 			value--;
1169 		} else {
1170 			value++;
1171 		}
1172 
1173 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1174 				   RCC_BDCR_LSEDRV_MASK,
1175 				   value << RCC_BDCR_LSEDRV_SHIFT);
1176 	}
1177 
1178 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1179 }
1180 
1181 static void stm32mp1_lse_wait(void)
1182 {
1183 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1184 		VERBOSE("%s: failed\n", __func__);
1185 	}
1186 }
1187 
1188 static void stm32mp1_lsi_set(bool enable)
1189 {
1190 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1191 
1192 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1193 		VERBOSE("%s: failed\n", __func__);
1194 	}
1195 }
1196 
1197 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1198 {
1199 	uintptr_t rcc_base = stm32mp_rcc_base();
1200 
1201 	if (digbyp) {
1202 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1203 	}
1204 
1205 	if (bypass || digbyp) {
1206 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1207 	}
1208 
1209 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1210 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1211 		VERBOSE("%s: failed\n", __func__);
1212 	}
1213 
1214 	if (css) {
1215 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1216 	}
1217 }
1218 
1219 static void stm32mp1_csi_set(bool enable)
1220 {
1221 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1222 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1223 		VERBOSE("%s: failed\n", __func__);
1224 	}
1225 }
1226 
1227 static void stm32mp1_hsi_set(bool enable)
1228 {
1229 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1230 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1231 		VERBOSE("%s: failed\n", __func__);
1232 	}
1233 }
1234 
1235 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1236 {
1237 	uint64_t timeout;
1238 	uintptr_t rcc_base = stm32mp_rcc_base();
1239 	uintptr_t address = rcc_base + RCC_OCRDYR;
1240 
1241 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1242 			   RCC_HSICFGR_HSIDIV_MASK,
1243 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1244 
1245 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1246 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1247 		if (timeout_elapsed(timeout)) {
1248 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1249 			      address, mmio_read_32(address));
1250 			return -ETIMEDOUT;
1251 		}
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int stm32mp1_hsidiv(unsigned long hsifreq)
1258 {
1259 	uint8_t hsidiv;
1260 	uint32_t hsidivfreq = MAX_HSI_HZ;
1261 
1262 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1263 		if (hsidivfreq == hsifreq) {
1264 			break;
1265 		}
1266 
1267 		hsidivfreq /= 2U;
1268 	}
1269 
1270 	if (hsidiv == 4U) {
1271 		ERROR("Invalid clk-hsi frequency\n");
1272 		return -1;
1273 	}
1274 
1275 	if (hsidiv != 0U) {
1276 		return stm32mp1_set_hsidiv(hsidiv);
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1283 				    unsigned int clksrc,
1284 				    uint32_t *pllcfg, int plloff)
1285 {
1286 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1287 	uintptr_t rcc_base = stm32mp_rcc_base();
1288 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1289 	enum stm32mp1_plltype type = pll->plltype;
1290 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1291 	unsigned long refclk;
1292 	uint32_t ifrge = 0U;
1293 	uint32_t src, value, fracv = 0;
1294 	void *fdt;
1295 
1296 	/* Check PLL output */
1297 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1298 		return false;
1299 	}
1300 
1301 	/* Check current clksrc */
1302 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1303 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1304 		return false;
1305 	}
1306 
1307 	/* Check Div */
1308 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1309 
1310 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1311 		 (pllcfg[PLLCFG_M] + 1U);
1312 
1313 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1314 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1315 		return false;
1316 	}
1317 
1318 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1319 		ifrge = 1U;
1320 	}
1321 
1322 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1323 		RCC_PLLNCFGR1_DIVN_MASK;
1324 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1325 		 RCC_PLLNCFGR1_DIVM_MASK;
1326 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1327 		 RCC_PLLNCFGR1_IFRGE_MASK;
1328 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1329 		return false;
1330 	}
1331 
1332 	/* Fractional configuration */
1333 	if (fdt_get_address(&fdt) == 1) {
1334 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1335 	}
1336 
1337 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1338 	value |= RCC_PLLNFRACR_FRACLE;
1339 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1340 		return false;
1341 	}
1342 
1343 	/* Output config */
1344 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1345 		RCC_PLLNCFGR2_DIVP_MASK;
1346 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1347 		 RCC_PLLNCFGR2_DIVQ_MASK;
1348 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1349 		 RCC_PLLNCFGR2_DIVR_MASK;
1350 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1351 		return false;
1352 	}
1353 
1354 	return true;
1355 }
1356 
1357 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1358 {
1359 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1360 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1361 
1362 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1363 	mmio_clrsetbits_32(pllxcr,
1364 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1365 			   RCC_PLLNCR_DIVREN,
1366 			   RCC_PLLNCR_PLLON);
1367 }
1368 
1369 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1370 {
1371 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1372 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1373 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1374 
1375 	/* Wait PLL lock */
1376 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1377 		if (timeout_elapsed(timeout)) {
1378 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1379 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1380 			return -ETIMEDOUT;
1381 		}
1382 	}
1383 
1384 	/* Start the requested output */
1385 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1386 
1387 	return 0;
1388 }
1389 
1390 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1391 {
1392 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1393 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1394 	uint64_t timeout;
1395 
1396 	/* Stop all output */
1397 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1398 			RCC_PLLNCR_DIVREN);
1399 
1400 	/* Stop PLL */
1401 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1402 
1403 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1404 	/* Wait PLL stopped */
1405 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1406 		if (timeout_elapsed(timeout)) {
1407 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1408 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1409 			return -ETIMEDOUT;
1410 		}
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1417 				       uint32_t *pllcfg)
1418 {
1419 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1420 	uintptr_t rcc_base = stm32mp_rcc_base();
1421 	uint32_t value;
1422 
1423 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1424 		RCC_PLLNCFGR2_DIVP_MASK;
1425 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1426 		 RCC_PLLNCFGR2_DIVQ_MASK;
1427 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1428 		 RCC_PLLNCFGR2_DIVR_MASK;
1429 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1430 }
1431 
1432 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1433 			       uint32_t *pllcfg, uint32_t fracv)
1434 {
1435 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1436 	uintptr_t rcc_base = stm32mp_rcc_base();
1437 	enum stm32mp1_plltype type = pll->plltype;
1438 	unsigned long refclk;
1439 	uint32_t ifrge = 0;
1440 	uint32_t src, value;
1441 
1442 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1443 		RCC_SELR_REFCLK_SRC_MASK;
1444 
1445 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1446 		 (pllcfg[PLLCFG_M] + 1U);
1447 
1448 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1449 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1450 		return -EINVAL;
1451 	}
1452 
1453 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1454 		ifrge = 1U;
1455 	}
1456 
1457 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1458 		RCC_PLLNCFGR1_DIVN_MASK;
1459 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1460 		 RCC_PLLNCFGR1_DIVM_MASK;
1461 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1462 		 RCC_PLLNCFGR1_IFRGE_MASK;
1463 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1464 
1465 	/* Fractional configuration */
1466 	value = 0;
1467 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1468 
1469 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1470 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1471 
1472 	value |= RCC_PLLNFRACR_FRACLE;
1473 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1474 
1475 	stm32mp1_pll_config_output(pll_id, pllcfg);
1476 
1477 	return 0;
1478 }
1479 
1480 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1481 {
1482 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1483 	uint32_t pllxcsg = 0;
1484 
1485 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1486 		    RCC_PLLNCSGR_MOD_PER_MASK;
1487 
1488 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1489 		    RCC_PLLNCSGR_INC_STEP_MASK;
1490 
1491 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1492 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1493 
1494 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1495 
1496 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1497 			RCC_PLLNCR_SSCG_CTRL);
1498 }
1499 
1500 static int stm32mp1_set_clksrc(unsigned int clksrc)
1501 {
1502 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1503 	uint64_t timeout;
1504 
1505 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1506 			   clksrc & RCC_SELR_SRC_MASK);
1507 
1508 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1509 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1510 		if (timeout_elapsed(timeout)) {
1511 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1512 			      clksrc_address, mmio_read_32(clksrc_address));
1513 			return -ETIMEDOUT;
1514 		}
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1521 {
1522 	uint64_t timeout;
1523 
1524 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1525 			   clkdiv & RCC_DIVR_DIV_MASK);
1526 
1527 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1528 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1529 		if (timeout_elapsed(timeout)) {
1530 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1531 			      clkdiv, address, mmio_read_32(address));
1532 			return -ETIMEDOUT;
1533 		}
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1540 {
1541 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1542 
1543 	/*
1544 	 * Binding clksrc :
1545 	 *      bit15-4 offset
1546 	 *      bit3:   disable
1547 	 *      bit2-0: MCOSEL[2:0]
1548 	 */
1549 	if ((clksrc & 0x8U) != 0U) {
1550 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1551 	} else {
1552 		mmio_clrsetbits_32(clksrc_address,
1553 				   RCC_MCOCFG_MCOSRC_MASK,
1554 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1555 		mmio_clrsetbits_32(clksrc_address,
1556 				   RCC_MCOCFG_MCODIV_MASK,
1557 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1558 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1559 	}
1560 }
1561 
1562 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1563 {
1564 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1565 
1566 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1567 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1568 		mmio_clrsetbits_32(address,
1569 				   RCC_BDCR_RTCSRC_MASK,
1570 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1571 
1572 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1573 	}
1574 
1575 	if (lse_css) {
1576 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1577 	}
1578 }
1579 
1580 static void stm32mp1_stgen_config(void)
1581 {
1582 	uintptr_t stgen;
1583 	uint32_t cntfid0;
1584 	unsigned long rate;
1585 	unsigned long long counter;
1586 
1587 	stgen = fdt_get_stgen_base();
1588 	cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
1589 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1590 
1591 	if (cntfid0 == rate) {
1592 		return;
1593 	}
1594 
1595 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1596 	counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
1597 	counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
1598 	counter = (counter * rate / cntfid0);
1599 
1600 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
1601 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
1602 	mmio_write_32(stgen + CNTFID_OFF, rate);
1603 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1604 
1605 	write_cntfrq((u_register_t)rate);
1606 
1607 	/* Need to update timer with new frequency */
1608 	generic_delay_timer_init();
1609 }
1610 
1611 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1612 {
1613 	uintptr_t stgen;
1614 	unsigned long long cnt;
1615 
1616 	stgen = fdt_get_stgen_base();
1617 
1618 	cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
1619 		mmio_read_32(stgen + CNTCVL_OFF);
1620 
1621 	cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
1622 
1623 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1624 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
1625 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1626 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1627 }
1628 
1629 static void stm32mp1_pkcs_config(uint32_t pkcs)
1630 {
1631 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1632 	uint32_t value = pkcs & 0xFU;
1633 	uint32_t mask = 0xFU;
1634 
1635 	if ((pkcs & BIT(31)) != 0U) {
1636 		mask <<= 4;
1637 		value <<= 4;
1638 	}
1639 
1640 	mmio_clrsetbits_32(address, mask, value);
1641 }
1642 
1643 int stm32mp1_clk_init(void)
1644 {
1645 	uintptr_t rcc_base = stm32mp_rcc_base();
1646 	unsigned int clksrc[CLKSRC_NB];
1647 	unsigned int clkdiv[CLKDIV_NB];
1648 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1649 	int plloff[_PLL_NB];
1650 	int ret, len;
1651 	enum stm32mp1_pll_id i;
1652 	bool lse_css = false;
1653 	bool pll3_preserve = false;
1654 	bool pll4_preserve = false;
1655 	bool pll4_bootrom = false;
1656 	const fdt32_t *pkcs_cell;
1657 	void *fdt;
1658 
1659 	if (fdt_get_address(&fdt) == 0) {
1660 		return false;
1661 	}
1662 
1663 	/* Check status field to disable security */
1664 	if (!fdt_get_rcc_secure_status()) {
1665 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1666 	}
1667 
1668 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1669 					clksrc);
1670 	if (ret < 0) {
1671 		return -FDT_ERR_NOTFOUND;
1672 	}
1673 
1674 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1675 					clkdiv);
1676 	if (ret < 0) {
1677 		return -FDT_ERR_NOTFOUND;
1678 	}
1679 
1680 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1681 		char name[12];
1682 
1683 		snprintf(name, sizeof(name), "st,pll@%d", i);
1684 		plloff[i] = fdt_rcc_subnode_offset(name);
1685 
1686 		if (!fdt_check_node(plloff[i])) {
1687 			continue;
1688 		}
1689 
1690 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1691 					    (int)PLLCFG_NB, pllcfg[i]);
1692 		if (ret < 0) {
1693 			return -FDT_ERR_NOTFOUND;
1694 		}
1695 	}
1696 
1697 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1698 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1699 
1700 	/*
1701 	 * Switch ON oscillator found in device-tree.
1702 	 * Note: HSI already ON after BootROM stage.
1703 	 */
1704 	if (stm32mp1_osc[_LSI] != 0U) {
1705 		stm32mp1_lsi_set(true);
1706 	}
1707 	if (stm32mp1_osc[_LSE] != 0U) {
1708 		bool bypass, digbyp;
1709 		uint32_t lsedrv;
1710 
1711 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1712 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1713 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1714 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1715 						     LSEDRV_MEDIUM_HIGH);
1716 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1717 	}
1718 	if (stm32mp1_osc[_HSE] != 0U) {
1719 		bool bypass, digbyp, css;
1720 
1721 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1722 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1723 		css = fdt_osc_read_bool(_HSE, "st,css");
1724 		stm32mp1_hse_enable(bypass, digbyp, css);
1725 	}
1726 	/*
1727 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1728 	 * => switch on CSI even if node is not present in device tree
1729 	 */
1730 	stm32mp1_csi_set(true);
1731 
1732 	/* Come back to HSI */
1733 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1734 	if (ret != 0) {
1735 		return ret;
1736 	}
1737 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1738 	if (ret != 0) {
1739 		return ret;
1740 	}
1741 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1742 	if (ret != 0) {
1743 		return ret;
1744 	}
1745 
1746 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1747 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1748 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1749 							clksrc[CLKSRC_PLL3],
1750 							pllcfg[_PLL3],
1751 							plloff[_PLL3]);
1752 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1753 							clksrc[CLKSRC_PLL4],
1754 							pllcfg[_PLL4],
1755 							plloff[_PLL4]);
1756 	}
1757 
1758 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1759 		if (((i == _PLL3) && pll3_preserve) ||
1760 		    ((i == _PLL4) && pll4_preserve)) {
1761 			continue;
1762 		}
1763 
1764 		ret = stm32mp1_pll_stop(i);
1765 		if (ret != 0) {
1766 			return ret;
1767 		}
1768 	}
1769 
1770 	/* Configure HSIDIV */
1771 	if (stm32mp1_osc[_HSI] != 0U) {
1772 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1773 		if (ret != 0) {
1774 			return ret;
1775 		}
1776 		stm32mp1_stgen_config();
1777 	}
1778 
1779 	/* Select DIV */
1780 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1781 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1782 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1783 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1784 	if (ret != 0) {
1785 		return ret;
1786 	}
1787 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1788 	if (ret != 0) {
1789 		return ret;
1790 	}
1791 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1792 	if (ret != 0) {
1793 		return ret;
1794 	}
1795 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1796 	if (ret != 0) {
1797 		return ret;
1798 	}
1799 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1800 	if (ret != 0) {
1801 		return ret;
1802 	}
1803 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1804 	if (ret != 0) {
1805 		return ret;
1806 	}
1807 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1808 	if (ret != 0) {
1809 		return ret;
1810 	}
1811 
1812 	/* No ready bit for RTC */
1813 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1814 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1815 
1816 	/* Configure PLLs source */
1817 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1818 	if (ret != 0) {
1819 		return ret;
1820 	}
1821 
1822 	if (!pll3_preserve) {
1823 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1824 		if (ret != 0) {
1825 			return ret;
1826 		}
1827 	}
1828 
1829 	if (!pll4_preserve) {
1830 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1831 		if (ret != 0) {
1832 			return ret;
1833 		}
1834 	}
1835 
1836 	/* Configure and start PLLs */
1837 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1838 		uint32_t fracv;
1839 		uint32_t csg[PLLCSG_NB];
1840 
1841 		if (((i == _PLL3) && pll3_preserve) ||
1842 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1843 			continue;
1844 		}
1845 
1846 		if (!fdt_check_node(plloff[i])) {
1847 			continue;
1848 		}
1849 
1850 		if ((i == _PLL4) && pll4_bootrom) {
1851 			/* Set output divider if not done by the Bootrom */
1852 			stm32mp1_pll_config_output(i, pllcfg[i]);
1853 			continue;
1854 		}
1855 
1856 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1857 
1858 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1859 		if (ret != 0) {
1860 			return ret;
1861 		}
1862 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1863 					    (uint32_t)PLLCSG_NB, csg);
1864 		if (ret == 0) {
1865 			stm32mp1_pll_csg(i, csg);
1866 		} else if (ret != -FDT_ERR_NOTFOUND) {
1867 			return ret;
1868 		}
1869 
1870 		stm32mp1_pll_start(i);
1871 	}
1872 	/* Wait and start PLLs ouptut when ready */
1873 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1874 		if (!fdt_check_node(plloff[i])) {
1875 			continue;
1876 		}
1877 
1878 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1879 		if (ret != 0) {
1880 			return ret;
1881 		}
1882 	}
1883 	/* Wait LSE ready before to use it */
1884 	if (stm32mp1_osc[_LSE] != 0U) {
1885 		stm32mp1_lse_wait();
1886 	}
1887 
1888 	/* Configure with expected clock source */
1889 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1890 	if (ret != 0) {
1891 		return ret;
1892 	}
1893 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1894 	if (ret != 0) {
1895 		return ret;
1896 	}
1897 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1898 	if (ret != 0) {
1899 		return ret;
1900 	}
1901 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1902 
1903 	/* Configure PKCK */
1904 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1905 	if (pkcs_cell != NULL) {
1906 		bool ckper_disabled = false;
1907 		uint32_t j;
1908 
1909 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1910 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1911 
1912 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1913 				ckper_disabled = true;
1914 				continue;
1915 			}
1916 			stm32mp1_pkcs_config(pkcs);
1917 		}
1918 
1919 		/*
1920 		 * CKPER is source for some peripheral clocks
1921 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1922 		 * only if previous clock is still ON
1923 		 * => deactivated CKPER only after switching clock
1924 		 */
1925 		if (ckper_disabled) {
1926 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
1927 		}
1928 	}
1929 
1930 	/* Switch OFF HSI if not found in device-tree */
1931 	if (stm32mp1_osc[_HSI] == 0U) {
1932 		stm32mp1_hsi_set(false);
1933 	}
1934 	stm32mp1_stgen_config();
1935 
1936 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1937 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
1938 			   RCC_DDRITFCR_DDRCKMOD_MASK,
1939 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
1940 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
1941 
1942 	return 0;
1943 }
1944 
1945 static void stm32mp1_osc_clk_init(const char *name,
1946 				  enum stm32mp_osc_id index)
1947 {
1948 	uint32_t frequency;
1949 
1950 	if (fdt_osc_read_freq(name, &frequency) == 0) {
1951 		stm32mp1_osc[index] = frequency;
1952 	}
1953 }
1954 
1955 static void stm32mp1_osc_init(void)
1956 {
1957 	enum stm32mp_osc_id i;
1958 
1959 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
1960 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
1961 	}
1962 }
1963 
1964 static void sync_earlyboot_clocks_state(void)
1965 {
1966 	if (!stm32mp_is_single_core()) {
1967 		stm32mp1_clk_enable_secure(RTCAPB);
1968 	}
1969 }
1970 
1971 int stm32mp1_clk_probe(void)
1972 {
1973 	stm32mp1_osc_init();
1974 
1975 	sync_earlyboot_clocks_state();
1976 
1977 	return 0;
1978 }
1979