xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 77648689ad2627911a3aa6fd69463e8043889532)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_PER_SEL,
111 	_RTC_SEL,
112 	_PARENT_SEL_NB,
113 	_UNKNOWN_SEL = 0xff,
114 };
115 
116 /* State the parent clock ID straight related to a clock */
117 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
118 	[_HSE] = CK_HSE,
119 	[_HSI] = CK_HSI,
120 	[_CSI] = CK_CSI,
121 	[_LSE] = CK_LSE,
122 	[_LSI] = CK_LSI,
123 	[_I2S_CKIN] = _UNKNOWN_ID,
124 	[_USB_PHY_48] = _UNKNOWN_ID,
125 	[_HSI_KER] = CK_HSI,
126 	[_HSE_KER] = CK_HSE,
127 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
128 	[_CSI_KER] = CK_CSI,
129 	[_PLL1_P] = PLL1_P,
130 	[_PLL1_Q] = PLL1_Q,
131 	[_PLL1_R] = PLL1_R,
132 	[_PLL2_P] = PLL2_P,
133 	[_PLL2_Q] = PLL2_Q,
134 	[_PLL2_R] = PLL2_R,
135 	[_PLL3_P] = PLL3_P,
136 	[_PLL3_Q] = PLL3_Q,
137 	[_PLL3_R] = PLL3_R,
138 	[_PLL4_P] = PLL4_P,
139 	[_PLL4_Q] = PLL4_Q,
140 	[_PLL4_R] = PLL4_R,
141 	[_ACLK] = CK_AXI,
142 	[_PCLK1] = CK_AXI,
143 	[_PCLK2] = CK_AXI,
144 	[_PCLK3] = CK_AXI,
145 	[_PCLK4] = CK_AXI,
146 	[_PCLK5] = CK_AXI,
147 	[_CK_PER] = CK_PER,
148 	[_CK_MPU] = CK_MPU,
149 	[_CK_MCU] = CK_MCU,
150 };
151 
152 static unsigned int clock_id2parent_id(unsigned long id)
153 {
154 	unsigned int n;
155 
156 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
157 		if (parent_id_clock_id[n] == id) {
158 			return n;
159 		}
160 	}
161 
162 	return _UNKNOWN_ID;
163 }
164 
165 enum stm32mp1_pll_id {
166 	_PLL1,
167 	_PLL2,
168 	_PLL3,
169 	_PLL4,
170 	_PLL_NB
171 };
172 
173 enum stm32mp1_div_id {
174 	_DIV_P,
175 	_DIV_Q,
176 	_DIV_R,
177 	_DIV_NB,
178 };
179 
180 enum stm32mp1_clksrc_id {
181 	CLKSRC_MPU,
182 	CLKSRC_AXI,
183 	CLKSRC_MCU,
184 	CLKSRC_PLL12,
185 	CLKSRC_PLL3,
186 	CLKSRC_PLL4,
187 	CLKSRC_RTC,
188 	CLKSRC_MCO1,
189 	CLKSRC_MCO2,
190 	CLKSRC_NB
191 };
192 
193 enum stm32mp1_clkdiv_id {
194 	CLKDIV_MPU,
195 	CLKDIV_AXI,
196 	CLKDIV_MCU,
197 	CLKDIV_APB1,
198 	CLKDIV_APB2,
199 	CLKDIV_APB3,
200 	CLKDIV_APB4,
201 	CLKDIV_APB5,
202 	CLKDIV_RTC,
203 	CLKDIV_MCO1,
204 	CLKDIV_MCO2,
205 	CLKDIV_NB
206 };
207 
208 enum stm32mp1_pllcfg {
209 	PLLCFG_M,
210 	PLLCFG_N,
211 	PLLCFG_P,
212 	PLLCFG_Q,
213 	PLLCFG_R,
214 	PLLCFG_O,
215 	PLLCFG_NB
216 };
217 
218 enum stm32mp1_pllcsg {
219 	PLLCSG_MOD_PER,
220 	PLLCSG_INC_STEP,
221 	PLLCSG_SSCG_MODE,
222 	PLLCSG_NB
223 };
224 
225 enum stm32mp1_plltype {
226 	PLL_800,
227 	PLL_1600,
228 	PLL_TYPE_NB
229 };
230 
231 struct stm32mp1_pll {
232 	uint8_t refclk_min;
233 	uint8_t refclk_max;
234 	uint8_t divn_max;
235 };
236 
237 struct stm32mp1_clk_gate {
238 	uint16_t offset;
239 	uint8_t bit;
240 	uint8_t index;
241 	uint8_t set_clr;
242 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
243 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
244 };
245 
246 struct stm32mp1_clk_sel {
247 	uint16_t offset;
248 	uint8_t src;
249 	uint8_t msk;
250 	uint8_t nb_parent;
251 	const uint8_t *parent;
252 };
253 
254 #define REFCLK_SIZE 4
255 struct stm32mp1_clk_pll {
256 	enum stm32mp1_plltype plltype;
257 	uint16_t rckxselr;
258 	uint16_t pllxcfgr1;
259 	uint16_t pllxcfgr2;
260 	uint16_t pllxfracr;
261 	uint16_t pllxcr;
262 	uint16_t pllxcsgr;
263 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
264 };
265 
266 /* Clocks with selectable source and non set/clr register access */
267 #define _CLK_SELEC(off, b, idx, s)			\
268 	{						\
269 		.offset = (off),			\
270 		.bit = (b),				\
271 		.index = (idx),				\
272 		.set_clr = 0,				\
273 		.sel = (s),				\
274 		.fixed = _UNKNOWN_ID,			\
275 	}
276 
277 /* Clocks with fixed source and non set/clr register access */
278 #define _CLK_FIXED(off, b, idx, f)			\
279 	{						\
280 		.offset = (off),			\
281 		.bit = (b),				\
282 		.index = (idx),				\
283 		.set_clr = 0,				\
284 		.sel = _UNKNOWN_SEL,			\
285 		.fixed = (f),				\
286 	}
287 
288 /* Clocks with selectable source and set/clr register access */
289 #define _CLK_SC_SELEC(off, b, idx, s)			\
290 	{						\
291 		.offset = (off),			\
292 		.bit = (b),				\
293 		.index = (idx),				\
294 		.set_clr = 1,				\
295 		.sel = (s),				\
296 		.fixed = _UNKNOWN_ID,			\
297 	}
298 
299 /* Clocks with fixed source and set/clr register access */
300 #define _CLK_SC_FIXED(off, b, idx, f)			\
301 	{						\
302 		.offset = (off),			\
303 		.bit = (b),				\
304 		.index = (idx),				\
305 		.set_clr = 1,				\
306 		.sel = _UNKNOWN_SEL,			\
307 		.fixed = (f),				\
308 	}
309 
310 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
311 	[_ ## _label ## _SEL] = {				\
312 		.offset = _rcc_selr,				\
313 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
314 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
315 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
316 		.parent = (_parents),				\
317 		.nb_parent = ARRAY_SIZE(_parents)		\
318 	}
319 
320 #define _CLK_PLL(idx, type, off1, off2, off3,		\
321 		 off4, off5, off6,			\
322 		 p1, p2, p3, p4)			\
323 	[(idx)] = {					\
324 		.plltype = (type),			\
325 		.rckxselr = (off1),			\
326 		.pllxcfgr1 = (off2),			\
327 		.pllxcfgr2 = (off3),			\
328 		.pllxfracr = (off4),			\
329 		.pllxcr = (off5),			\
330 		.pllxcsgr = (off6),			\
331 		.refclk[0] = (p1),			\
332 		.refclk[1] = (p2),			\
333 		.refclk[2] = (p3),			\
334 		.refclk[3] = (p4),			\
335 	}
336 
337 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
338 
339 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
340 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
341 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
342 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
343 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
344 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
345 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
346 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
347 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
348 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
349 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
350 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
351 
352 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
353 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
354 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
361 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
362 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
363 
364 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
365 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
366 
367 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
368 
369 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
370 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
371 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
372 
373 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
374 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
375 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
376 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
377 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
378 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
381 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
382 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
383 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
384 
385 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
386 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
387 
388 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
389 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
397 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
398 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
399 
400 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
401 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
402 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
403 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
404 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
405 
406 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
407 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
409 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
410 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
411 
412 	_CLK_SELEC(RCC_BDCR, 20, RTC, _RTC_SEL),
413 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
414 };
415 
416 static const uint8_t i2c12_parents[] = {
417 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
418 };
419 
420 static const uint8_t i2c35_parents[] = {
421 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
422 };
423 
424 static const uint8_t stgen_parents[] = {
425 	_HSI_KER, _HSE_KER
426 };
427 
428 static const uint8_t i2c46_parents[] = {
429 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
430 };
431 
432 static const uint8_t spi6_parents[] = {
433 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
434 };
435 
436 static const uint8_t usart1_parents[] = {
437 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
438 };
439 
440 static const uint8_t rng1_parents[] = {
441 	_CSI, _PLL4_R, _LSE, _LSI
442 };
443 
444 static const uint8_t uart6_parents[] = {
445 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
446 };
447 
448 static const uint8_t uart234578_parents[] = {
449 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
450 };
451 
452 static const uint8_t sdmmc12_parents[] = {
453 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
454 };
455 
456 static const uint8_t sdmmc3_parents[] = {
457 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
458 };
459 
460 static const uint8_t qspi_parents[] = {
461 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
462 };
463 
464 static const uint8_t fmc_parents[] = {
465 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
466 };
467 
468 static const uint8_t ass_parents[] = {
469 	_HSI, _HSE, _PLL2
470 };
471 
472 static const uint8_t mss_parents[] = {
473 	_HSI, _HSE, _CSI, _PLL3
474 };
475 
476 static const uint8_t usbphy_parents[] = {
477 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
478 };
479 
480 static const uint8_t usbo_parents[] = {
481 	_PLL4_R, _USB_PHY_48
482 };
483 
484 static const uint8_t mpu_parents[] = {
485 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
486 };
487 
488 static const uint8_t per_parents[] = {
489 	_HSI, _HSE, _CSI,
490 };
491 
492 static const uint8_t rtc_parents[] = {
493 	_UNKNOWN_ID, _LSE, _LSI, _HSE
494 };
495 
496 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
497 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
498 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
499 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
500 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
501 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
502 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
503 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
504 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
505 	_CLK_PARENT_SEL(PER, RCC_CPERCKSELR, per_parents),
506 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
507 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
508 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
509 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
510 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
511 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
512 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
513 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
514 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
515 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
516 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
517 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
518 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
519 };
520 
521 /* Define characteristic of PLL according type */
522 #define DIVN_MIN	24
523 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
524 	[PLL_800] = {
525 		.refclk_min = 4,
526 		.refclk_max = 16,
527 		.divn_max = 99,
528 	},
529 	[PLL_1600] = {
530 		.refclk_min = 8,
531 		.refclk_max = 16,
532 		.divn_max = 199,
533 	},
534 };
535 
536 /* PLLNCFGR2 register divider by output */
537 static const uint8_t pllncfgr2[_DIV_NB] = {
538 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
539 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
540 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
541 };
542 
543 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
544 	_CLK_PLL(_PLL1, PLL_1600,
545 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
546 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
547 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
548 	_CLK_PLL(_PLL2, PLL_1600,
549 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
550 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
551 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
552 	_CLK_PLL(_PLL3, PLL_800,
553 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
554 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
555 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
556 	_CLK_PLL(_PLL4, PLL_800,
557 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
558 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
559 		 _HSI, _HSE, _CSI, _I2S_CKIN),
560 };
561 
562 /* Prescaler table lookups for clock computation */
563 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
564 static const uint8_t stm32mp1_mcu_div[16] = {
565 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
566 };
567 
568 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
569 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
570 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
571 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
572 	0, 1, 2, 3, 4, 4, 4, 4
573 };
574 
575 /* div = /1 /2 /3 /4 */
576 static const uint8_t stm32mp1_axi_div[8] = {
577 	1, 2, 3, 4, 4, 4, 4, 4
578 };
579 
580 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
581 	[_HSI] = "HSI",
582 	[_HSE] = "HSE",
583 	[_CSI] = "CSI",
584 	[_LSI] = "LSI",
585 	[_LSE] = "LSE",
586 	[_I2S_CKIN] = "I2S_CKIN",
587 	[_HSI_KER] = "HSI_KER",
588 	[_HSE_KER] = "HSE_KER",
589 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
590 	[_CSI_KER] = "CSI_KER",
591 	[_PLL1_P] = "PLL1_P",
592 	[_PLL1_Q] = "PLL1_Q",
593 	[_PLL1_R] = "PLL1_R",
594 	[_PLL2_P] = "PLL2_P",
595 	[_PLL2_Q] = "PLL2_Q",
596 	[_PLL2_R] = "PLL2_R",
597 	[_PLL3_P] = "PLL3_P",
598 	[_PLL3_Q] = "PLL3_Q",
599 	[_PLL3_R] = "PLL3_R",
600 	[_PLL4_P] = "PLL4_P",
601 	[_PLL4_Q] = "PLL4_Q",
602 	[_PLL4_R] = "PLL4_R",
603 	[_ACLK] = "ACLK",
604 	[_PCLK1] = "PCLK1",
605 	[_PCLK2] = "PCLK2",
606 	[_PCLK3] = "PCLK3",
607 	[_PCLK4] = "PCLK4",
608 	[_PCLK5] = "PCLK5",
609 	[_HCLK6] = "KCLK6",
610 	[_HCLK2] = "HCLK2",
611 	[_CK_PER] = "CK_PER",
612 	[_CK_MPU] = "CK_MPU",
613 	[_CK_MCU] = "CK_MCU",
614 	[_USB_PHY_48] = "USB_PHY_48",
615 };
616 
617 /* RCC clock device driver private */
618 static unsigned long stm32mp1_osc[NB_OSC];
619 static struct spinlock reg_lock;
620 static unsigned int gate_refcounts[NB_GATES];
621 static struct spinlock refcount_lock;
622 
623 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
624 {
625 	return &stm32mp1_clk_gate[idx];
626 }
627 
628 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
629 {
630 	return &stm32mp1_clk_sel[idx];
631 }
632 
633 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
634 {
635 	return &stm32mp1_clk_pll[idx];
636 }
637 
638 static void stm32mp1_clk_lock(struct spinlock *lock)
639 {
640 	if (stm32mp_lock_available()) {
641 		/* Assume interrupts are masked */
642 		spin_lock(lock);
643 	}
644 }
645 
646 static void stm32mp1_clk_unlock(struct spinlock *lock)
647 {
648 	if (stm32mp_lock_available()) {
649 		spin_unlock(lock);
650 	}
651 }
652 
653 bool stm32mp1_rcc_is_secure(void)
654 {
655 	uintptr_t rcc_base = stm32mp_rcc_base();
656 
657 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
658 }
659 
660 bool stm32mp1_rcc_is_mckprot(void)
661 {
662 	uintptr_t rcc_base = stm32mp_rcc_base();
663 
664 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_MCKPROT) != 0;
665 }
666 
667 void stm32mp1_clk_rcc_regs_lock(void)
668 {
669 	stm32mp1_clk_lock(&reg_lock);
670 }
671 
672 void stm32mp1_clk_rcc_regs_unlock(void)
673 {
674 	stm32mp1_clk_unlock(&reg_lock);
675 }
676 
677 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
678 {
679 	if (idx >= NB_OSC) {
680 		return 0;
681 	}
682 
683 	return stm32mp1_osc[idx];
684 }
685 
686 static int stm32mp1_clk_get_gated_id(unsigned long id)
687 {
688 	unsigned int i;
689 
690 	for (i = 0U; i < NB_GATES; i++) {
691 		if (gate_ref(i)->index == id) {
692 			return i;
693 		}
694 	}
695 
696 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
697 
698 	return -EINVAL;
699 }
700 
701 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
702 {
703 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
704 }
705 
706 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
707 {
708 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
709 }
710 
711 static int stm32mp1_clk_get_parent(unsigned long id)
712 {
713 	const struct stm32mp1_clk_sel *sel;
714 	uint32_t p_sel;
715 	int i;
716 	enum stm32mp1_parent_id p;
717 	enum stm32mp1_parent_sel s;
718 	uintptr_t rcc_base = stm32mp_rcc_base();
719 
720 	/* Few non gateable clock have a static parent ID, find them */
721 	i = (int)clock_id2parent_id(id);
722 	if (i != _UNKNOWN_ID) {
723 		return i;
724 	}
725 
726 	i = stm32mp1_clk_get_gated_id(id);
727 	if (i < 0) {
728 		panic();
729 	}
730 
731 	p = stm32mp1_clk_get_fixed_parent(i);
732 	if (p < _PARENT_NB) {
733 		return (int)p;
734 	}
735 
736 	s = stm32mp1_clk_get_sel(i);
737 	if (s == _UNKNOWN_SEL) {
738 		return -EINVAL;
739 	}
740 	if (s >= _PARENT_SEL_NB) {
741 		panic();
742 	}
743 
744 	sel = clk_sel_ref(s);
745 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
746 		 (sel->msk << sel->src)) >> sel->src;
747 	if (p_sel < sel->nb_parent) {
748 		return (int)sel->parent[p_sel];
749 	}
750 
751 	return -EINVAL;
752 }
753 
754 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
755 {
756 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
757 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
758 
759 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
760 }
761 
762 /*
763  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
764  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
765  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
766  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
767  */
768 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
769 {
770 	unsigned long refclk, fvco;
771 	uint32_t cfgr1, fracr, divm, divn;
772 	uintptr_t rcc_base = stm32mp_rcc_base();
773 
774 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
775 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
776 
777 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
778 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
779 
780 	refclk = stm32mp1_pll_get_fref(pll);
781 
782 	/*
783 	 * With FRACV :
784 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
785 	 * Without FRACV
786 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
787 	 */
788 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
789 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
790 				 RCC_PLLNFRACR_FRACV_SHIFT;
791 		unsigned long long numerator, denominator;
792 
793 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
794 		numerator = refclk * numerator;
795 		denominator = ((unsigned long long)divm + 1U) << 13;
796 		fvco = (unsigned long)(numerator / denominator);
797 	} else {
798 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
799 	}
800 
801 	return fvco;
802 }
803 
804 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
805 					    enum stm32mp1_div_id div_id)
806 {
807 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
808 	unsigned long dfout;
809 	uint32_t cfgr2, divy;
810 
811 	if (div_id >= _DIV_NB) {
812 		return 0;
813 	}
814 
815 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
816 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
817 
818 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
819 
820 	return dfout;
821 }
822 
823 static unsigned long get_clock_rate(int p)
824 {
825 	uint32_t reg, clkdiv;
826 	unsigned long clock = 0;
827 	uintptr_t rcc_base = stm32mp_rcc_base();
828 
829 	switch (p) {
830 	case _CK_MPU:
831 	/* MPU sub system */
832 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
833 		switch (reg & RCC_SELR_SRC_MASK) {
834 		case RCC_MPCKSELR_HSI:
835 			clock = stm32mp1_clk_get_fixed(_HSI);
836 			break;
837 		case RCC_MPCKSELR_HSE:
838 			clock = stm32mp1_clk_get_fixed(_HSE);
839 			break;
840 		case RCC_MPCKSELR_PLL:
841 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
842 			break;
843 		case RCC_MPCKSELR_PLL_MPUDIV:
844 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
845 
846 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
847 			clkdiv = reg & RCC_MPUDIV_MASK;
848 			if (clkdiv != 0U) {
849 				clock /= stm32mp1_mpu_div[clkdiv];
850 			}
851 			break;
852 		default:
853 			break;
854 		}
855 		break;
856 	/* AXI sub system */
857 	case _ACLK:
858 	case _HCLK2:
859 	case _HCLK6:
860 	case _PCLK4:
861 	case _PCLK5:
862 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
863 		switch (reg & RCC_SELR_SRC_MASK) {
864 		case RCC_ASSCKSELR_HSI:
865 			clock = stm32mp1_clk_get_fixed(_HSI);
866 			break;
867 		case RCC_ASSCKSELR_HSE:
868 			clock = stm32mp1_clk_get_fixed(_HSE);
869 			break;
870 		case RCC_ASSCKSELR_PLL:
871 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
872 			break;
873 		default:
874 			break;
875 		}
876 
877 		/* System clock divider */
878 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
879 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
880 
881 		switch (p) {
882 		case _PCLK4:
883 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
884 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
885 			break;
886 		case _PCLK5:
887 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
888 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
889 			break;
890 		default:
891 			break;
892 		}
893 		break;
894 	/* MCU sub system */
895 	case _CK_MCU:
896 	case _PCLK1:
897 	case _PCLK2:
898 	case _PCLK3:
899 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
900 		switch (reg & RCC_SELR_SRC_MASK) {
901 		case RCC_MSSCKSELR_HSI:
902 			clock = stm32mp1_clk_get_fixed(_HSI);
903 			break;
904 		case RCC_MSSCKSELR_HSE:
905 			clock = stm32mp1_clk_get_fixed(_HSE);
906 			break;
907 		case RCC_MSSCKSELR_CSI:
908 			clock = stm32mp1_clk_get_fixed(_CSI);
909 			break;
910 		case RCC_MSSCKSELR_PLL:
911 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
912 			break;
913 		default:
914 			break;
915 		}
916 
917 		/* MCU clock divider */
918 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
919 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
920 
921 		switch (p) {
922 		case _PCLK1:
923 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
924 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
925 			break;
926 		case _PCLK2:
927 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
928 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
929 			break;
930 		case _PCLK3:
931 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
932 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
933 			break;
934 		case _CK_MCU:
935 		default:
936 			break;
937 		}
938 		break;
939 	case _CK_PER:
940 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
941 		switch (reg & RCC_SELR_SRC_MASK) {
942 		case RCC_CPERCKSELR_HSI:
943 			clock = stm32mp1_clk_get_fixed(_HSI);
944 			break;
945 		case RCC_CPERCKSELR_HSE:
946 			clock = stm32mp1_clk_get_fixed(_HSE);
947 			break;
948 		case RCC_CPERCKSELR_CSI:
949 			clock = stm32mp1_clk_get_fixed(_CSI);
950 			break;
951 		default:
952 			break;
953 		}
954 		break;
955 	case _HSI:
956 	case _HSI_KER:
957 		clock = stm32mp1_clk_get_fixed(_HSI);
958 		break;
959 	case _CSI:
960 	case _CSI_KER:
961 		clock = stm32mp1_clk_get_fixed(_CSI);
962 		break;
963 	case _HSE:
964 	case _HSE_KER:
965 		clock = stm32mp1_clk_get_fixed(_HSE);
966 		break;
967 	case _HSE_KER_DIV2:
968 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
969 		break;
970 	case _LSI:
971 		clock = stm32mp1_clk_get_fixed(_LSI);
972 		break;
973 	case _LSE:
974 		clock = stm32mp1_clk_get_fixed(_LSE);
975 		break;
976 	/* PLL */
977 	case _PLL1_P:
978 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
979 		break;
980 	case _PLL1_Q:
981 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
982 		break;
983 	case _PLL1_R:
984 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
985 		break;
986 	case _PLL2_P:
987 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
988 		break;
989 	case _PLL2_Q:
990 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
991 		break;
992 	case _PLL2_R:
993 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
994 		break;
995 	case _PLL3_P:
996 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
997 		break;
998 	case _PLL3_Q:
999 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1000 		break;
1001 	case _PLL3_R:
1002 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1003 		break;
1004 	case _PLL4_P:
1005 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1006 		break;
1007 	case _PLL4_Q:
1008 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1009 		break;
1010 	case _PLL4_R:
1011 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1012 		break;
1013 	/* Other */
1014 	case _USB_PHY_48:
1015 		clock = USB_PHY_48_MHZ;
1016 		break;
1017 	default:
1018 		break;
1019 	}
1020 
1021 	return clock;
1022 }
1023 
1024 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1025 {
1026 	uintptr_t rcc_base = stm32mp_rcc_base();
1027 
1028 	VERBOSE("Enable clock %u\n", gate->index);
1029 
1030 	if (gate->set_clr != 0U) {
1031 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1032 	} else {
1033 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1034 	}
1035 }
1036 
1037 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1038 {
1039 	uintptr_t rcc_base = stm32mp_rcc_base();
1040 
1041 	VERBOSE("Disable clock %u\n", gate->index);
1042 
1043 	if (gate->set_clr != 0U) {
1044 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1045 			      BIT(gate->bit));
1046 	} else {
1047 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1048 	}
1049 }
1050 
1051 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1052 {
1053 	uintptr_t rcc_base = stm32mp_rcc_base();
1054 
1055 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1056 }
1057 
1058 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1059 {
1060 	int i = stm32mp1_clk_get_gated_id(id);
1061 
1062 	if (i < 0) {
1063 		panic();
1064 	}
1065 
1066 	return gate_refcounts[i];
1067 }
1068 
1069 /* Oscillators and PLLs are not gated at runtime */
1070 static bool clock_is_always_on(unsigned long id)
1071 {
1072 	switch (id) {
1073 	case CK_HSE:
1074 	case CK_CSI:
1075 	case CK_LSI:
1076 	case CK_LSE:
1077 	case CK_HSI:
1078 	case CK_HSE_DIV2:
1079 	case PLL1_Q:
1080 	case PLL1_R:
1081 	case PLL2_P:
1082 	case PLL2_Q:
1083 	case PLL2_R:
1084 	case PLL3_P:
1085 	case PLL3_Q:
1086 	case PLL3_R:
1087 		return true;
1088 	default:
1089 		return false;
1090 	}
1091 }
1092 
1093 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1094 {
1095 	const struct stm32mp1_clk_gate *gate;
1096 	int i;
1097 	unsigned int *refcnt;
1098 
1099 	if (clock_is_always_on(id)) {
1100 		return;
1101 	}
1102 
1103 	i = stm32mp1_clk_get_gated_id(id);
1104 	if (i < 0) {
1105 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1106 		panic();
1107 	}
1108 
1109 	gate = gate_ref(i);
1110 	refcnt = &gate_refcounts[i];
1111 
1112 	stm32mp1_clk_lock(&refcount_lock);
1113 
1114 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1115 		__clk_enable(gate);
1116 	}
1117 
1118 	stm32mp1_clk_unlock(&refcount_lock);
1119 }
1120 
1121 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1122 {
1123 	const struct stm32mp1_clk_gate *gate;
1124 	int i;
1125 	unsigned int *refcnt;
1126 
1127 	if (clock_is_always_on(id)) {
1128 		return;
1129 	}
1130 
1131 	i = stm32mp1_clk_get_gated_id(id);
1132 	if (i < 0) {
1133 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1134 		panic();
1135 	}
1136 
1137 	gate = gate_ref(i);
1138 	refcnt = &gate_refcounts[i];
1139 
1140 	stm32mp1_clk_lock(&refcount_lock);
1141 
1142 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1143 		__clk_disable(gate);
1144 	}
1145 
1146 	stm32mp1_clk_unlock(&refcount_lock);
1147 }
1148 
1149 void stm32mp_clk_enable(unsigned long id)
1150 {
1151 	__stm32mp1_clk_enable(id, true);
1152 }
1153 
1154 void stm32mp_clk_disable(unsigned long id)
1155 {
1156 	__stm32mp1_clk_disable(id, true);
1157 }
1158 
1159 bool stm32mp_clk_is_enabled(unsigned long id)
1160 {
1161 	int i;
1162 
1163 	if (clock_is_always_on(id)) {
1164 		return true;
1165 	}
1166 
1167 	i = stm32mp1_clk_get_gated_id(id);
1168 	if (i < 0) {
1169 		panic();
1170 	}
1171 
1172 	return __clk_is_enabled(gate_ref(i));
1173 }
1174 
1175 unsigned long stm32mp_clk_get_rate(unsigned long id)
1176 {
1177 	int p = stm32mp1_clk_get_parent(id);
1178 
1179 	if (p < 0) {
1180 		return 0;
1181 	}
1182 
1183 	return get_clock_rate(p);
1184 }
1185 
1186 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1187 {
1188 	uintptr_t address = stm32mp_rcc_base() + offset;
1189 
1190 	if (enable) {
1191 		mmio_setbits_32(address, mask_on);
1192 	} else {
1193 		mmio_clrbits_32(address, mask_on);
1194 	}
1195 }
1196 
1197 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1198 {
1199 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1200 	uintptr_t address = stm32mp_rcc_base() + offset;
1201 
1202 	mmio_write_32(address, mask_on);
1203 }
1204 
1205 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1206 {
1207 	uint64_t timeout;
1208 	uint32_t mask_test;
1209 	uintptr_t address = stm32mp_rcc_base() + offset;
1210 
1211 	if (enable) {
1212 		mask_test = mask_rdy;
1213 	} else {
1214 		mask_test = 0;
1215 	}
1216 
1217 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1218 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1219 		if (timeout_elapsed(timeout)) {
1220 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1221 			      mask_rdy, address, enable, mmio_read_32(address));
1222 			return -ETIMEDOUT;
1223 		}
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1230 {
1231 	uint32_t value;
1232 	uintptr_t rcc_base = stm32mp_rcc_base();
1233 
1234 	if (digbyp) {
1235 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1236 	}
1237 
1238 	if (bypass || digbyp) {
1239 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1240 	}
1241 
1242 	/*
1243 	 * Warning: not recommended to switch directly from "high drive"
1244 	 * to "medium low drive", and vice-versa.
1245 	 */
1246 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1247 		RCC_BDCR_LSEDRV_SHIFT;
1248 
1249 	while (value != lsedrv) {
1250 		if (value > lsedrv) {
1251 			value--;
1252 		} else {
1253 			value++;
1254 		}
1255 
1256 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1257 				   RCC_BDCR_LSEDRV_MASK,
1258 				   value << RCC_BDCR_LSEDRV_SHIFT);
1259 	}
1260 
1261 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1262 }
1263 
1264 static void stm32mp1_lse_wait(void)
1265 {
1266 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1267 		VERBOSE("%s: failed\n", __func__);
1268 	}
1269 }
1270 
1271 static void stm32mp1_lsi_set(bool enable)
1272 {
1273 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1274 
1275 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1276 		VERBOSE("%s: failed\n", __func__);
1277 	}
1278 }
1279 
1280 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1281 {
1282 	uintptr_t rcc_base = stm32mp_rcc_base();
1283 
1284 	if (digbyp) {
1285 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1286 	}
1287 
1288 	if (bypass || digbyp) {
1289 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1290 	}
1291 
1292 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1293 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1294 		VERBOSE("%s: failed\n", __func__);
1295 	}
1296 
1297 	if (css) {
1298 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1299 	}
1300 }
1301 
1302 static void stm32mp1_csi_set(bool enable)
1303 {
1304 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1305 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1306 		VERBOSE("%s: failed\n", __func__);
1307 	}
1308 }
1309 
1310 static void stm32mp1_hsi_set(bool enable)
1311 {
1312 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1313 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1314 		VERBOSE("%s: failed\n", __func__);
1315 	}
1316 }
1317 
1318 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1319 {
1320 	uint64_t timeout;
1321 	uintptr_t rcc_base = stm32mp_rcc_base();
1322 	uintptr_t address = rcc_base + RCC_OCRDYR;
1323 
1324 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1325 			   RCC_HSICFGR_HSIDIV_MASK,
1326 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1327 
1328 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1329 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1330 		if (timeout_elapsed(timeout)) {
1331 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1332 			      address, mmio_read_32(address));
1333 			return -ETIMEDOUT;
1334 		}
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static int stm32mp1_hsidiv(unsigned long hsifreq)
1341 {
1342 	uint8_t hsidiv;
1343 	uint32_t hsidivfreq = MAX_HSI_HZ;
1344 
1345 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1346 		if (hsidivfreq == hsifreq) {
1347 			break;
1348 		}
1349 
1350 		hsidivfreq /= 2U;
1351 	}
1352 
1353 	if (hsidiv == 4U) {
1354 		ERROR("Invalid clk-hsi frequency\n");
1355 		return -1;
1356 	}
1357 
1358 	if (hsidiv != 0U) {
1359 		return stm32mp1_set_hsidiv(hsidiv);
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1366 				    unsigned int clksrc,
1367 				    uint32_t *pllcfg, int plloff)
1368 {
1369 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1370 	uintptr_t rcc_base = stm32mp_rcc_base();
1371 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1372 	enum stm32mp1_plltype type = pll->plltype;
1373 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1374 	unsigned long refclk;
1375 	uint32_t ifrge = 0U;
1376 	uint32_t src, value, fracv = 0;
1377 	void *fdt;
1378 
1379 	/* Check PLL output */
1380 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1381 		return false;
1382 	}
1383 
1384 	/* Check current clksrc */
1385 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1386 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1387 		return false;
1388 	}
1389 
1390 	/* Check Div */
1391 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1392 
1393 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1394 		 (pllcfg[PLLCFG_M] + 1U);
1395 
1396 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1397 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1398 		return false;
1399 	}
1400 
1401 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1402 		ifrge = 1U;
1403 	}
1404 
1405 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1406 		RCC_PLLNCFGR1_DIVN_MASK;
1407 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1408 		 RCC_PLLNCFGR1_DIVM_MASK;
1409 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1410 		 RCC_PLLNCFGR1_IFRGE_MASK;
1411 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1412 		return false;
1413 	}
1414 
1415 	/* Fractional configuration */
1416 	if (fdt_get_address(&fdt) == 1) {
1417 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1418 	}
1419 
1420 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1421 	value |= RCC_PLLNFRACR_FRACLE;
1422 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1423 		return false;
1424 	}
1425 
1426 	/* Output config */
1427 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1428 		RCC_PLLNCFGR2_DIVP_MASK;
1429 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1430 		 RCC_PLLNCFGR2_DIVQ_MASK;
1431 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1432 		 RCC_PLLNCFGR2_DIVR_MASK;
1433 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1434 		return false;
1435 	}
1436 
1437 	return true;
1438 }
1439 
1440 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1441 {
1442 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1443 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1444 
1445 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1446 	mmio_clrsetbits_32(pllxcr,
1447 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1448 			   RCC_PLLNCR_DIVREN,
1449 			   RCC_PLLNCR_PLLON);
1450 }
1451 
1452 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1453 {
1454 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1455 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1456 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1457 
1458 	/* Wait PLL lock */
1459 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1460 		if (timeout_elapsed(timeout)) {
1461 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1462 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1463 			return -ETIMEDOUT;
1464 		}
1465 	}
1466 
1467 	/* Start the requested output */
1468 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1469 
1470 	return 0;
1471 }
1472 
1473 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1474 {
1475 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1476 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1477 	uint64_t timeout;
1478 
1479 	/* Stop all output */
1480 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1481 			RCC_PLLNCR_DIVREN);
1482 
1483 	/* Stop PLL */
1484 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1485 
1486 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1487 	/* Wait PLL stopped */
1488 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1489 		if (timeout_elapsed(timeout)) {
1490 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1491 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1492 			return -ETIMEDOUT;
1493 		}
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1500 				       uint32_t *pllcfg)
1501 {
1502 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1503 	uintptr_t rcc_base = stm32mp_rcc_base();
1504 	uint32_t value;
1505 
1506 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1507 		RCC_PLLNCFGR2_DIVP_MASK;
1508 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1509 		 RCC_PLLNCFGR2_DIVQ_MASK;
1510 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1511 		 RCC_PLLNCFGR2_DIVR_MASK;
1512 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1513 }
1514 
1515 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1516 			       uint32_t *pllcfg, uint32_t fracv)
1517 {
1518 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1519 	uintptr_t rcc_base = stm32mp_rcc_base();
1520 	enum stm32mp1_plltype type = pll->plltype;
1521 	unsigned long refclk;
1522 	uint32_t ifrge = 0;
1523 	uint32_t src, value;
1524 
1525 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1526 		RCC_SELR_REFCLK_SRC_MASK;
1527 
1528 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1529 		 (pllcfg[PLLCFG_M] + 1U);
1530 
1531 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1532 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1533 		return -EINVAL;
1534 	}
1535 
1536 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1537 		ifrge = 1U;
1538 	}
1539 
1540 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1541 		RCC_PLLNCFGR1_DIVN_MASK;
1542 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1543 		 RCC_PLLNCFGR1_DIVM_MASK;
1544 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1545 		 RCC_PLLNCFGR1_IFRGE_MASK;
1546 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1547 
1548 	/* Fractional configuration */
1549 	value = 0;
1550 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1551 
1552 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1553 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1554 
1555 	value |= RCC_PLLNFRACR_FRACLE;
1556 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1557 
1558 	stm32mp1_pll_config_output(pll_id, pllcfg);
1559 
1560 	return 0;
1561 }
1562 
1563 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1564 {
1565 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1566 	uint32_t pllxcsg = 0;
1567 
1568 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1569 		    RCC_PLLNCSGR_MOD_PER_MASK;
1570 
1571 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1572 		    RCC_PLLNCSGR_INC_STEP_MASK;
1573 
1574 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1575 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1576 
1577 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1578 
1579 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1580 			RCC_PLLNCR_SSCG_CTRL);
1581 }
1582 
1583 static int stm32mp1_set_clksrc(unsigned int clksrc)
1584 {
1585 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1586 	uint64_t timeout;
1587 
1588 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1589 			   clksrc & RCC_SELR_SRC_MASK);
1590 
1591 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1592 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1593 		if (timeout_elapsed(timeout)) {
1594 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1595 			      clksrc_address, mmio_read_32(clksrc_address));
1596 			return -ETIMEDOUT;
1597 		}
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1604 {
1605 	uint64_t timeout;
1606 
1607 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1608 			   clkdiv & RCC_DIVR_DIV_MASK);
1609 
1610 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1611 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1612 		if (timeout_elapsed(timeout)) {
1613 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1614 			      clkdiv, address, mmio_read_32(address));
1615 			return -ETIMEDOUT;
1616 		}
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1623 {
1624 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1625 
1626 	/*
1627 	 * Binding clksrc :
1628 	 *      bit15-4 offset
1629 	 *      bit3:   disable
1630 	 *      bit2-0: MCOSEL[2:0]
1631 	 */
1632 	if ((clksrc & 0x8U) != 0U) {
1633 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1634 	} else {
1635 		mmio_clrsetbits_32(clksrc_address,
1636 				   RCC_MCOCFG_MCOSRC_MASK,
1637 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1638 		mmio_clrsetbits_32(clksrc_address,
1639 				   RCC_MCOCFG_MCODIV_MASK,
1640 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1641 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1642 	}
1643 }
1644 
1645 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1646 {
1647 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1648 
1649 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1650 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1651 		mmio_clrsetbits_32(address,
1652 				   RCC_BDCR_RTCSRC_MASK,
1653 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1654 
1655 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1656 	}
1657 
1658 	if (lse_css) {
1659 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1660 	}
1661 }
1662 
1663 static void stm32mp1_stgen_config(void)
1664 {
1665 	uintptr_t stgen;
1666 	uint32_t cntfid0;
1667 	unsigned long rate;
1668 	unsigned long long counter;
1669 
1670 	stgen = fdt_get_stgen_base();
1671 	cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
1672 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1673 
1674 	if (cntfid0 == rate) {
1675 		return;
1676 	}
1677 
1678 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1679 	counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
1680 	counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
1681 	counter = (counter * rate / cntfid0);
1682 
1683 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
1684 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
1685 	mmio_write_32(stgen + CNTFID_OFF, rate);
1686 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1687 
1688 	write_cntfrq((u_register_t)rate);
1689 
1690 	/* Need to update timer with new frequency */
1691 	generic_delay_timer_init();
1692 }
1693 
1694 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1695 {
1696 	uintptr_t stgen;
1697 	unsigned long long cnt;
1698 
1699 	stgen = fdt_get_stgen_base();
1700 
1701 	cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
1702 		mmio_read_32(stgen + CNTCVL_OFF);
1703 
1704 	cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
1705 
1706 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1707 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
1708 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1709 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1710 }
1711 
1712 static void stm32mp1_pkcs_config(uint32_t pkcs)
1713 {
1714 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1715 	uint32_t value = pkcs & 0xFU;
1716 	uint32_t mask = 0xFU;
1717 
1718 	if ((pkcs & BIT(31)) != 0U) {
1719 		mask <<= 4;
1720 		value <<= 4;
1721 	}
1722 
1723 	mmio_clrsetbits_32(address, mask, value);
1724 }
1725 
1726 int stm32mp1_clk_init(void)
1727 {
1728 	uintptr_t rcc_base = stm32mp_rcc_base();
1729 	unsigned int clksrc[CLKSRC_NB];
1730 	unsigned int clkdiv[CLKDIV_NB];
1731 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1732 	int plloff[_PLL_NB];
1733 	int ret, len;
1734 	enum stm32mp1_pll_id i;
1735 	bool lse_css = false;
1736 	bool pll3_preserve = false;
1737 	bool pll4_preserve = false;
1738 	bool pll4_bootrom = false;
1739 	const fdt32_t *pkcs_cell;
1740 	void *fdt;
1741 
1742 	if (fdt_get_address(&fdt) == 0) {
1743 		return false;
1744 	}
1745 
1746 	/* Check status field to disable security */
1747 	if (!fdt_get_rcc_secure_status()) {
1748 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1749 	}
1750 
1751 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1752 					clksrc);
1753 	if (ret < 0) {
1754 		return -FDT_ERR_NOTFOUND;
1755 	}
1756 
1757 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1758 					clkdiv);
1759 	if (ret < 0) {
1760 		return -FDT_ERR_NOTFOUND;
1761 	}
1762 
1763 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1764 		char name[12];
1765 
1766 		snprintf(name, sizeof(name), "st,pll@%d", i);
1767 		plloff[i] = fdt_rcc_subnode_offset(name);
1768 
1769 		if (!fdt_check_node(plloff[i])) {
1770 			continue;
1771 		}
1772 
1773 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1774 					    (int)PLLCFG_NB, pllcfg[i]);
1775 		if (ret < 0) {
1776 			return -FDT_ERR_NOTFOUND;
1777 		}
1778 	}
1779 
1780 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1781 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1782 
1783 	/*
1784 	 * Switch ON oscillator found in device-tree.
1785 	 * Note: HSI already ON after BootROM stage.
1786 	 */
1787 	if (stm32mp1_osc[_LSI] != 0U) {
1788 		stm32mp1_lsi_set(true);
1789 	}
1790 	if (stm32mp1_osc[_LSE] != 0U) {
1791 		bool bypass, digbyp;
1792 		uint32_t lsedrv;
1793 
1794 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1795 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1796 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1797 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1798 						     LSEDRV_MEDIUM_HIGH);
1799 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1800 	}
1801 	if (stm32mp1_osc[_HSE] != 0U) {
1802 		bool bypass, digbyp, css;
1803 
1804 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1805 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1806 		css = fdt_osc_read_bool(_HSE, "st,css");
1807 		stm32mp1_hse_enable(bypass, digbyp, css);
1808 	}
1809 	/*
1810 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1811 	 * => switch on CSI even if node is not present in device tree
1812 	 */
1813 	stm32mp1_csi_set(true);
1814 
1815 	/* Come back to HSI */
1816 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1817 	if (ret != 0) {
1818 		return ret;
1819 	}
1820 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1821 	if (ret != 0) {
1822 		return ret;
1823 	}
1824 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1825 	if (ret != 0) {
1826 		return ret;
1827 	}
1828 
1829 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1830 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1831 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1832 							clksrc[CLKSRC_PLL3],
1833 							pllcfg[_PLL3],
1834 							plloff[_PLL3]);
1835 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1836 							clksrc[CLKSRC_PLL4],
1837 							pllcfg[_PLL4],
1838 							plloff[_PLL4]);
1839 	}
1840 
1841 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1842 		if (((i == _PLL3) && pll3_preserve) ||
1843 		    ((i == _PLL4) && pll4_preserve)) {
1844 			continue;
1845 		}
1846 
1847 		ret = stm32mp1_pll_stop(i);
1848 		if (ret != 0) {
1849 			return ret;
1850 		}
1851 	}
1852 
1853 	/* Configure HSIDIV */
1854 	if (stm32mp1_osc[_HSI] != 0U) {
1855 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1856 		if (ret != 0) {
1857 			return ret;
1858 		}
1859 		stm32mp1_stgen_config();
1860 	}
1861 
1862 	/* Select DIV */
1863 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1864 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1865 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1866 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1867 	if (ret != 0) {
1868 		return ret;
1869 	}
1870 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1871 	if (ret != 0) {
1872 		return ret;
1873 	}
1874 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1875 	if (ret != 0) {
1876 		return ret;
1877 	}
1878 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1879 	if (ret != 0) {
1880 		return ret;
1881 	}
1882 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1883 	if (ret != 0) {
1884 		return ret;
1885 	}
1886 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1887 	if (ret != 0) {
1888 		return ret;
1889 	}
1890 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1891 	if (ret != 0) {
1892 		return ret;
1893 	}
1894 
1895 	/* No ready bit for RTC */
1896 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1897 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1898 
1899 	/* Configure PLLs source */
1900 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1901 	if (ret != 0) {
1902 		return ret;
1903 	}
1904 
1905 	if (!pll3_preserve) {
1906 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1907 		if (ret != 0) {
1908 			return ret;
1909 		}
1910 	}
1911 
1912 	if (!pll4_preserve) {
1913 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1914 		if (ret != 0) {
1915 			return ret;
1916 		}
1917 	}
1918 
1919 	/* Configure and start PLLs */
1920 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1921 		uint32_t fracv;
1922 		uint32_t csg[PLLCSG_NB];
1923 
1924 		if (((i == _PLL3) && pll3_preserve) ||
1925 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1926 			continue;
1927 		}
1928 
1929 		if (!fdt_check_node(plloff[i])) {
1930 			continue;
1931 		}
1932 
1933 		if ((i == _PLL4) && pll4_bootrom) {
1934 			/* Set output divider if not done by the Bootrom */
1935 			stm32mp1_pll_config_output(i, pllcfg[i]);
1936 			continue;
1937 		}
1938 
1939 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1940 
1941 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1942 		if (ret != 0) {
1943 			return ret;
1944 		}
1945 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1946 					    (uint32_t)PLLCSG_NB, csg);
1947 		if (ret == 0) {
1948 			stm32mp1_pll_csg(i, csg);
1949 		} else if (ret != -FDT_ERR_NOTFOUND) {
1950 			return ret;
1951 		}
1952 
1953 		stm32mp1_pll_start(i);
1954 	}
1955 	/* Wait and start PLLs ouptut when ready */
1956 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1957 		if (!fdt_check_node(plloff[i])) {
1958 			continue;
1959 		}
1960 
1961 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1962 		if (ret != 0) {
1963 			return ret;
1964 		}
1965 	}
1966 	/* Wait LSE ready before to use it */
1967 	if (stm32mp1_osc[_LSE] != 0U) {
1968 		stm32mp1_lse_wait();
1969 	}
1970 
1971 	/* Configure with expected clock source */
1972 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1973 	if (ret != 0) {
1974 		return ret;
1975 	}
1976 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1977 	if (ret != 0) {
1978 		return ret;
1979 	}
1980 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1981 	if (ret != 0) {
1982 		return ret;
1983 	}
1984 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1985 
1986 	/* Configure PKCK */
1987 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1988 	if (pkcs_cell != NULL) {
1989 		bool ckper_disabled = false;
1990 		uint32_t j;
1991 
1992 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1993 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1994 
1995 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1996 				ckper_disabled = true;
1997 				continue;
1998 			}
1999 			stm32mp1_pkcs_config(pkcs);
2000 		}
2001 
2002 		/*
2003 		 * CKPER is source for some peripheral clocks
2004 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2005 		 * only if previous clock is still ON
2006 		 * => deactivated CKPER only after switching clock
2007 		 */
2008 		if (ckper_disabled) {
2009 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2010 		}
2011 	}
2012 
2013 	/* Switch OFF HSI if not found in device-tree */
2014 	if (stm32mp1_osc[_HSI] == 0U) {
2015 		stm32mp1_hsi_set(false);
2016 	}
2017 	stm32mp1_stgen_config();
2018 
2019 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2020 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2021 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2022 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2023 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2024 
2025 	return 0;
2026 }
2027 
2028 static void stm32mp1_osc_clk_init(const char *name,
2029 				  enum stm32mp_osc_id index)
2030 {
2031 	uint32_t frequency;
2032 
2033 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2034 		stm32mp1_osc[index] = frequency;
2035 	}
2036 }
2037 
2038 static void stm32mp1_osc_init(void)
2039 {
2040 	enum stm32mp_osc_id i;
2041 
2042 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2043 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2044 	}
2045 }
2046 
2047 #ifdef STM32MP_SHARED_RESOURCES
2048 /*
2049  * Get the parent ID of the target parent clock, for tagging as secure
2050  * shared clock dependencies.
2051  */
2052 static int get_parent_id_parent(unsigned int parent_id)
2053 {
2054 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2055 	enum stm32mp1_pll_id pll_id;
2056 	uint32_t p_sel;
2057 	uintptr_t rcc_base = stm32mp_rcc_base();
2058 
2059 	switch (parent_id) {
2060 	case _ACLK:
2061 	case _PCLK4:
2062 	case _PCLK5:
2063 		s = _AXIS_SEL;
2064 		break;
2065 	case _PLL1_P:
2066 	case _PLL1_Q:
2067 	case _PLL1_R:
2068 		pll_id = _PLL1;
2069 		break;
2070 	case _PLL2_P:
2071 	case _PLL2_Q:
2072 	case _PLL2_R:
2073 		pll_id = _PLL2;
2074 		break;
2075 	case _PLL3_P:
2076 	case _PLL3_Q:
2077 	case _PLL3_R:
2078 		pll_id = _PLL3;
2079 		break;
2080 	case _PLL4_P:
2081 	case _PLL4_Q:
2082 	case _PLL4_R:
2083 		pll_id = _PLL4;
2084 		break;
2085 	case _PCLK1:
2086 	case _PCLK2:
2087 	case _HCLK2:
2088 	case _HCLK6:
2089 	case _CK_PER:
2090 	case _CK_MPU:
2091 	case _CK_MCU:
2092 	case _USB_PHY_48:
2093 		/* We do not expect to access these */
2094 		panic();
2095 		break;
2096 	default:
2097 		/* Other parents have no parent */
2098 		return -1;
2099 	}
2100 
2101 	if (s != _UNKNOWN_SEL) {
2102 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2103 
2104 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2105 			sel->msk;
2106 
2107 		if (p_sel < sel->nb_parent) {
2108 			return (int)sel->parent[p_sel];
2109 		}
2110 	} else {
2111 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2112 
2113 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2114 			RCC_SELR_REFCLK_SRC_MASK;
2115 
2116 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2117 			return (int)pll->refclk[p_sel];
2118 		}
2119 	}
2120 
2121 	VERBOSE("No parent selected for %s\n",
2122 		stm32mp1_clk_parent_name[parent_id]);
2123 
2124 	return -1;
2125 }
2126 
2127 static void secure_parent_clocks(unsigned long parent_id)
2128 {
2129 	int grandparent_id;
2130 
2131 	switch (parent_id) {
2132 	case _PLL3_P:
2133 	case _PLL3_Q:
2134 	case _PLL3_R:
2135 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2136 		break;
2137 
2138 	/* These clocks are always secure when RCC is secure */
2139 	case _ACLK:
2140 	case _HCLK2:
2141 	case _HCLK6:
2142 	case _PCLK4:
2143 	case _PCLK5:
2144 	case _PLL1_P:
2145 	case _PLL1_Q:
2146 	case _PLL1_R:
2147 	case _PLL2_P:
2148 	case _PLL2_Q:
2149 	case _PLL2_R:
2150 	case _HSI:
2151 	case _HSI_KER:
2152 	case _LSI:
2153 	case _CSI:
2154 	case _CSI_KER:
2155 	case _HSE:
2156 	case _HSE_KER:
2157 	case _HSE_KER_DIV2:
2158 	case _LSE:
2159 		break;
2160 
2161 	default:
2162 		VERBOSE("Cannot secure parent clock %s\n",
2163 			stm32mp1_clk_parent_name[parent_id]);
2164 		panic();
2165 	}
2166 
2167 	grandparent_id = get_parent_id_parent(parent_id);
2168 	if (grandparent_id >= 0) {
2169 		secure_parent_clocks(grandparent_id);
2170 	}
2171 }
2172 
2173 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2174 {
2175 	int parent_id;
2176 
2177 	if (!stm32mp1_rcc_is_secure()) {
2178 		return;
2179 	}
2180 
2181 	switch (clock_id) {
2182 	case PLL1:
2183 	case PLL2:
2184 		/* PLL1/PLL2 are always secure: nothing to do */
2185 		break;
2186 	case PLL3:
2187 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2188 		break;
2189 	case PLL4:
2190 		ERROR("PLL4 cannot be secured\n");
2191 		panic();
2192 		break;
2193 	default:
2194 		/* Others are expected gateable clock */
2195 		parent_id = stm32mp1_clk_get_parent(clock_id);
2196 		if (parent_id < 0) {
2197 			INFO("No parent found for clock %lu\n", clock_id);
2198 		} else {
2199 			secure_parent_clocks(parent_id);
2200 		}
2201 		break;
2202 	}
2203 }
2204 #endif /* STM32MP_SHARED_RESOURCES */
2205 
2206 static void sync_earlyboot_clocks_state(void)
2207 {
2208 	unsigned int idx;
2209 	const unsigned long secure_enable[] = {
2210 		AXIDCG,
2211 		BSEC,
2212 		DDRC1, DDRC1LP,
2213 		DDRC2, DDRC2LP,
2214 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2215 		DDRPHYC, DDRPHYCLP,
2216 		TZC1, TZC2,
2217 		TZPC,
2218 		STGEN_K,
2219 	};
2220 
2221 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2222 		stm32mp_clk_enable(secure_enable[idx]);
2223 	}
2224 
2225 	if (!stm32mp_is_single_core()) {
2226 		stm32mp1_clk_enable_secure(RTCAPB);
2227 	}
2228 }
2229 
2230 int stm32mp1_clk_probe(void)
2231 {
2232 	stm32mp1_osc_init();
2233 
2234 	sync_earlyboot_clocks_state();
2235 
2236 	return 0;
2237 }
2238