xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 602ae2f23c2bc9d79a9ab2b7c5dde1932fffc984)
1 /*
2  * Copyright (C) 2018-2021, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_HSE_RTC,
60 	_CSI_KER,
61 	_PLL1_P,
62 	_PLL1_Q,
63 	_PLL1_R,
64 	_PLL2_P,
65 	_PLL2_Q,
66 	_PLL2_R,
67 	_PLL3_P,
68 	_PLL3_Q,
69 	_PLL3_R,
70 	_PLL4_P,
71 	_PLL4_Q,
72 	_PLL4_R,
73 	_ACLK,
74 	_PCLK1,
75 	_PCLK2,
76 	_PCLK3,
77 	_PCLK4,
78 	_PCLK5,
79 	_HCLK6,
80 	_HCLK2,
81 	_CK_PER,
82 	_CK_MPU,
83 	_CK_MCU,
84 	_USB_PHY_48,
85 	_PARENT_NB,
86 	_UNKNOWN_ID = 0xff,
87 };
88 
89 /* Lists only the parent clock we are interested in */
90 enum stm32mp1_parent_sel {
91 	_I2C12_SEL,
92 	_I2C35_SEL,
93 	_STGEN_SEL,
94 	_I2C46_SEL,
95 	_SPI6_SEL,
96 	_UART1_SEL,
97 	_RNG1_SEL,
98 	_UART6_SEL,
99 	_UART24_SEL,
100 	_UART35_SEL,
101 	_UART78_SEL,
102 	_SDMMC12_SEL,
103 	_SDMMC3_SEL,
104 	_QSPI_SEL,
105 	_FMC_SEL,
106 	_AXIS_SEL,
107 	_MCUS_SEL,
108 	_USBPHY_SEL,
109 	_USBO_SEL,
110 	_MPU_SEL,
111 	_CKPER_SEL,
112 	_RTC_SEL,
113 	_PARENT_SEL_NB,
114 	_UNKNOWN_SEL = 0xff,
115 };
116 
117 /* State the parent clock ID straight related to a clock */
118 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
119 	[_HSE] = CK_HSE,
120 	[_HSI] = CK_HSI,
121 	[_CSI] = CK_CSI,
122 	[_LSE] = CK_LSE,
123 	[_LSI] = CK_LSI,
124 	[_I2S_CKIN] = _UNKNOWN_ID,
125 	[_USB_PHY_48] = _UNKNOWN_ID,
126 	[_HSI_KER] = CK_HSI,
127 	[_HSE_KER] = CK_HSE,
128 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
129 	[_HSE_RTC] = _UNKNOWN_ID,
130 	[_CSI_KER] = CK_CSI,
131 	[_PLL1_P] = PLL1_P,
132 	[_PLL1_Q] = PLL1_Q,
133 	[_PLL1_R] = PLL1_R,
134 	[_PLL2_P] = PLL2_P,
135 	[_PLL2_Q] = PLL2_Q,
136 	[_PLL2_R] = PLL2_R,
137 	[_PLL3_P] = PLL3_P,
138 	[_PLL3_Q] = PLL3_Q,
139 	[_PLL3_R] = PLL3_R,
140 	[_PLL4_P] = PLL4_P,
141 	[_PLL4_Q] = PLL4_Q,
142 	[_PLL4_R] = PLL4_R,
143 	[_ACLK] = CK_AXI,
144 	[_PCLK1] = CK_AXI,
145 	[_PCLK2] = CK_AXI,
146 	[_PCLK3] = CK_AXI,
147 	[_PCLK4] = CK_AXI,
148 	[_PCLK5] = CK_AXI,
149 	[_CK_PER] = CK_PER,
150 	[_CK_MPU] = CK_MPU,
151 	[_CK_MCU] = CK_MCU,
152 };
153 
154 static unsigned int clock_id2parent_id(unsigned long id)
155 {
156 	unsigned int n;
157 
158 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
159 		if (parent_id_clock_id[n] == id) {
160 			return n;
161 		}
162 	}
163 
164 	return _UNKNOWN_ID;
165 }
166 
167 enum stm32mp1_pll_id {
168 	_PLL1,
169 	_PLL2,
170 	_PLL3,
171 	_PLL4,
172 	_PLL_NB
173 };
174 
175 enum stm32mp1_div_id {
176 	_DIV_P,
177 	_DIV_Q,
178 	_DIV_R,
179 	_DIV_NB,
180 };
181 
182 enum stm32mp1_clksrc_id {
183 	CLKSRC_MPU,
184 	CLKSRC_AXI,
185 	CLKSRC_MCU,
186 	CLKSRC_PLL12,
187 	CLKSRC_PLL3,
188 	CLKSRC_PLL4,
189 	CLKSRC_RTC,
190 	CLKSRC_MCO1,
191 	CLKSRC_MCO2,
192 	CLKSRC_NB
193 };
194 
195 enum stm32mp1_clkdiv_id {
196 	CLKDIV_MPU,
197 	CLKDIV_AXI,
198 	CLKDIV_MCU,
199 	CLKDIV_APB1,
200 	CLKDIV_APB2,
201 	CLKDIV_APB3,
202 	CLKDIV_APB4,
203 	CLKDIV_APB5,
204 	CLKDIV_RTC,
205 	CLKDIV_MCO1,
206 	CLKDIV_MCO2,
207 	CLKDIV_NB
208 };
209 
210 enum stm32mp1_pllcfg {
211 	PLLCFG_M,
212 	PLLCFG_N,
213 	PLLCFG_P,
214 	PLLCFG_Q,
215 	PLLCFG_R,
216 	PLLCFG_O,
217 	PLLCFG_NB
218 };
219 
220 enum stm32mp1_pllcsg {
221 	PLLCSG_MOD_PER,
222 	PLLCSG_INC_STEP,
223 	PLLCSG_SSCG_MODE,
224 	PLLCSG_NB
225 };
226 
227 enum stm32mp1_plltype {
228 	PLL_800,
229 	PLL_1600,
230 	PLL_TYPE_NB
231 };
232 
233 struct stm32mp1_pll {
234 	uint8_t refclk_min;
235 	uint8_t refclk_max;
236 	uint8_t divn_max;
237 };
238 
239 struct stm32mp1_clk_gate {
240 	uint16_t offset;
241 	uint8_t bit;
242 	uint8_t index;
243 	uint8_t set_clr;
244 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
245 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
246 };
247 
248 struct stm32mp1_clk_sel {
249 	uint16_t offset;
250 	uint8_t src;
251 	uint8_t msk;
252 	uint8_t nb_parent;
253 	const uint8_t *parent;
254 };
255 
256 #define REFCLK_SIZE 4
257 struct stm32mp1_clk_pll {
258 	enum stm32mp1_plltype plltype;
259 	uint16_t rckxselr;
260 	uint16_t pllxcfgr1;
261 	uint16_t pllxcfgr2;
262 	uint16_t pllxfracr;
263 	uint16_t pllxcr;
264 	uint16_t pllxcsgr;
265 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
266 };
267 
268 /* Clocks with selectable source and non set/clr register access */
269 #define _CLK_SELEC(off, b, idx, s)			\
270 	{						\
271 		.offset = (off),			\
272 		.bit = (b),				\
273 		.index = (idx),				\
274 		.set_clr = 0,				\
275 		.sel = (s),				\
276 		.fixed = _UNKNOWN_ID,			\
277 	}
278 
279 /* Clocks with fixed source and non set/clr register access */
280 #define _CLK_FIXED(off, b, idx, f)			\
281 	{						\
282 		.offset = (off),			\
283 		.bit = (b),				\
284 		.index = (idx),				\
285 		.set_clr = 0,				\
286 		.sel = _UNKNOWN_SEL,			\
287 		.fixed = (f),				\
288 	}
289 
290 /* Clocks with selectable source and set/clr register access */
291 #define _CLK_SC_SELEC(off, b, idx, s)			\
292 	{						\
293 		.offset = (off),			\
294 		.bit = (b),				\
295 		.index = (idx),				\
296 		.set_clr = 1,				\
297 		.sel = (s),				\
298 		.fixed = _UNKNOWN_ID,			\
299 	}
300 
301 /* Clocks with fixed source and set/clr register access */
302 #define _CLK_SC_FIXED(off, b, idx, f)			\
303 	{						\
304 		.offset = (off),			\
305 		.bit = (b),				\
306 		.index = (idx),				\
307 		.set_clr = 1,				\
308 		.sel = _UNKNOWN_SEL,			\
309 		.fixed = (f),				\
310 	}
311 
312 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
313 	[_ ## _label ## _SEL] = {				\
314 		.offset = _rcc_selr,				\
315 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
316 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
317 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
318 		.parent = (_parents),				\
319 		.nb_parent = ARRAY_SIZE(_parents)		\
320 	}
321 
322 #define _CLK_PLL(idx, type, off1, off2, off3,		\
323 		 off4, off5, off6,			\
324 		 p1, p2, p3, p4)			\
325 	[(idx)] = {					\
326 		.plltype = (type),			\
327 		.rckxselr = (off1),			\
328 		.pllxcfgr1 = (off2),			\
329 		.pllxcfgr2 = (off3),			\
330 		.pllxfracr = (off4),			\
331 		.pllxcr = (off5),			\
332 		.pllxcsgr = (off6),			\
333 		.refclk[0] = (p1),			\
334 		.refclk[1] = (p2),			\
335 		.refclk[2] = (p3),			\
336 		.refclk[3] = (p4),			\
337 	}
338 
339 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
340 
341 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
342 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
343 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
344 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
345 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
346 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
347 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
348 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
349 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
350 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
351 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
352 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
353 
354 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
361 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
362 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
363 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
364 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
365 
366 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
367 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
368 
369 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
370 
371 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
372 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
373 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
374 
375 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
376 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
377 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
378 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
381 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
382 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
383 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
384 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
385 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
386 
387 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
388 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
389 
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
397 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
398 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
399 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
400 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
401 
402 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
403 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
404 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
405 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
406 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
407 
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
409 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
410 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
411 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
412 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
413 
414 	_CLK_SELEC(RCC_BDCR, 20, RTC, _RTC_SEL),
415 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
416 };
417 
418 static const uint8_t i2c12_parents[] = {
419 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
420 };
421 
422 static const uint8_t i2c35_parents[] = {
423 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
424 };
425 
426 static const uint8_t stgen_parents[] = {
427 	_HSI_KER, _HSE_KER
428 };
429 
430 static const uint8_t i2c46_parents[] = {
431 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
432 };
433 
434 static const uint8_t spi6_parents[] = {
435 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
436 };
437 
438 static const uint8_t usart1_parents[] = {
439 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
440 };
441 
442 static const uint8_t rng1_parents[] = {
443 	_CSI, _PLL4_R, _LSE, _LSI
444 };
445 
446 static const uint8_t uart6_parents[] = {
447 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
448 };
449 
450 static const uint8_t uart234578_parents[] = {
451 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
452 };
453 
454 static const uint8_t sdmmc12_parents[] = {
455 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
456 };
457 
458 static const uint8_t sdmmc3_parents[] = {
459 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
460 };
461 
462 static const uint8_t qspi_parents[] = {
463 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
464 };
465 
466 static const uint8_t fmc_parents[] = {
467 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
468 };
469 
470 static const uint8_t axiss_parents[] = {
471 	_HSI, _HSE, _PLL2_P
472 };
473 
474 static const uint8_t mcuss_parents[] = {
475 	_HSI, _HSE, _CSI, _PLL3_P
476 };
477 
478 static const uint8_t usbphy_parents[] = {
479 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
480 };
481 
482 static const uint8_t usbo_parents[] = {
483 	_PLL4_R, _USB_PHY_48
484 };
485 
486 static const uint8_t mpu_parents[] = {
487 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
488 };
489 
490 static const uint8_t per_parents[] = {
491 	_HSI, _HSE, _CSI,
492 };
493 
494 static const uint8_t rtc_parents[] = {
495 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
496 };
497 
498 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
499 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
500 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
501 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
502 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
503 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
504 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
505 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
506 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
507 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
508 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
509 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
510 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
511 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
512 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
513 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
514 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
515 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
516 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
517 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
518 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
519 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
520 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
521 };
522 
523 /* Define characteristic of PLL according type */
524 #define DIVN_MIN	24
525 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
526 	[PLL_800] = {
527 		.refclk_min = 4,
528 		.refclk_max = 16,
529 		.divn_max = 99,
530 	},
531 	[PLL_1600] = {
532 		.refclk_min = 8,
533 		.refclk_max = 16,
534 		.divn_max = 199,
535 	},
536 };
537 
538 /* PLLNCFGR2 register divider by output */
539 static const uint8_t pllncfgr2[_DIV_NB] = {
540 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
541 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
542 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
543 };
544 
545 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
546 	_CLK_PLL(_PLL1, PLL_1600,
547 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
548 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
549 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
550 	_CLK_PLL(_PLL2, PLL_1600,
551 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
552 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
553 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
554 	_CLK_PLL(_PLL3, PLL_800,
555 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
556 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
557 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
558 	_CLK_PLL(_PLL4, PLL_800,
559 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
560 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
561 		 _HSI, _HSE, _CSI, _I2S_CKIN),
562 };
563 
564 /* Prescaler table lookups for clock computation */
565 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
566 static const uint8_t stm32mp1_mcu_div[16] = {
567 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
568 };
569 
570 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
571 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
572 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
573 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
574 	0, 1, 2, 3, 4, 4, 4, 4
575 };
576 
577 /* div = /1 /2 /3 /4 */
578 static const uint8_t stm32mp1_axi_div[8] = {
579 	1, 2, 3, 4, 4, 4, 4, 4
580 };
581 
582 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
583 	[_HSI] = "HSI",
584 	[_HSE] = "HSE",
585 	[_CSI] = "CSI",
586 	[_LSI] = "LSI",
587 	[_LSE] = "LSE",
588 	[_I2S_CKIN] = "I2S_CKIN",
589 	[_HSI_KER] = "HSI_KER",
590 	[_HSE_KER] = "HSE_KER",
591 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
592 	[_HSE_RTC] = "HSE_RTC",
593 	[_CSI_KER] = "CSI_KER",
594 	[_PLL1_P] = "PLL1_P",
595 	[_PLL1_Q] = "PLL1_Q",
596 	[_PLL1_R] = "PLL1_R",
597 	[_PLL2_P] = "PLL2_P",
598 	[_PLL2_Q] = "PLL2_Q",
599 	[_PLL2_R] = "PLL2_R",
600 	[_PLL3_P] = "PLL3_P",
601 	[_PLL3_Q] = "PLL3_Q",
602 	[_PLL3_R] = "PLL3_R",
603 	[_PLL4_P] = "PLL4_P",
604 	[_PLL4_Q] = "PLL4_Q",
605 	[_PLL4_R] = "PLL4_R",
606 	[_ACLK] = "ACLK",
607 	[_PCLK1] = "PCLK1",
608 	[_PCLK2] = "PCLK2",
609 	[_PCLK3] = "PCLK3",
610 	[_PCLK4] = "PCLK4",
611 	[_PCLK5] = "PCLK5",
612 	[_HCLK6] = "KCLK6",
613 	[_HCLK2] = "HCLK2",
614 	[_CK_PER] = "CK_PER",
615 	[_CK_MPU] = "CK_MPU",
616 	[_CK_MCU] = "CK_MCU",
617 	[_USB_PHY_48] = "USB_PHY_48",
618 };
619 
620 /* RCC clock device driver private */
621 static unsigned long stm32mp1_osc[NB_OSC];
622 static struct spinlock reg_lock;
623 static unsigned int gate_refcounts[NB_GATES];
624 static struct spinlock refcount_lock;
625 
626 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
627 {
628 	return &stm32mp1_clk_gate[idx];
629 }
630 
631 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
632 {
633 	return &stm32mp1_clk_sel[idx];
634 }
635 
636 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
637 {
638 	return &stm32mp1_clk_pll[idx];
639 }
640 
641 static void stm32mp1_clk_lock(struct spinlock *lock)
642 {
643 	if (stm32mp_lock_available()) {
644 		/* Assume interrupts are masked */
645 		spin_lock(lock);
646 	}
647 }
648 
649 static void stm32mp1_clk_unlock(struct spinlock *lock)
650 {
651 	if (stm32mp_lock_available()) {
652 		spin_unlock(lock);
653 	}
654 }
655 
656 bool stm32mp1_rcc_is_secure(void)
657 {
658 	uintptr_t rcc_base = stm32mp_rcc_base();
659 	uint32_t mask = RCC_TZCR_TZEN;
660 
661 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
662 }
663 
664 bool stm32mp1_rcc_is_mckprot(void)
665 {
666 	uintptr_t rcc_base = stm32mp_rcc_base();
667 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
668 
669 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
670 }
671 
672 void stm32mp1_clk_rcc_regs_lock(void)
673 {
674 	stm32mp1_clk_lock(&reg_lock);
675 }
676 
677 void stm32mp1_clk_rcc_regs_unlock(void)
678 {
679 	stm32mp1_clk_unlock(&reg_lock);
680 }
681 
682 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
683 {
684 	if (idx >= NB_OSC) {
685 		return 0;
686 	}
687 
688 	return stm32mp1_osc[idx];
689 }
690 
691 static int stm32mp1_clk_get_gated_id(unsigned long id)
692 {
693 	unsigned int i;
694 
695 	for (i = 0U; i < NB_GATES; i++) {
696 		if (gate_ref(i)->index == id) {
697 			return i;
698 		}
699 	}
700 
701 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
702 
703 	return -EINVAL;
704 }
705 
706 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
707 {
708 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
709 }
710 
711 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
712 {
713 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
714 }
715 
716 static int stm32mp1_clk_get_parent(unsigned long id)
717 {
718 	const struct stm32mp1_clk_sel *sel;
719 	uint32_t p_sel;
720 	int i;
721 	enum stm32mp1_parent_id p;
722 	enum stm32mp1_parent_sel s;
723 	uintptr_t rcc_base = stm32mp_rcc_base();
724 
725 	/* Few non gateable clock have a static parent ID, find them */
726 	i = (int)clock_id2parent_id(id);
727 	if (i != _UNKNOWN_ID) {
728 		return i;
729 	}
730 
731 	i = stm32mp1_clk_get_gated_id(id);
732 	if (i < 0) {
733 		panic();
734 	}
735 
736 	p = stm32mp1_clk_get_fixed_parent(i);
737 	if (p < _PARENT_NB) {
738 		return (int)p;
739 	}
740 
741 	s = stm32mp1_clk_get_sel(i);
742 	if (s == _UNKNOWN_SEL) {
743 		return -EINVAL;
744 	}
745 	if (s >= _PARENT_SEL_NB) {
746 		panic();
747 	}
748 
749 	sel = clk_sel_ref(s);
750 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
751 		 (sel->msk << sel->src)) >> sel->src;
752 	if (p_sel < sel->nb_parent) {
753 		return (int)sel->parent[p_sel];
754 	}
755 
756 	return -EINVAL;
757 }
758 
759 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
760 {
761 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
762 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
763 
764 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
765 }
766 
767 /*
768  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
769  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
770  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
771  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
772  */
773 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
774 {
775 	unsigned long refclk, fvco;
776 	uint32_t cfgr1, fracr, divm, divn;
777 	uintptr_t rcc_base = stm32mp_rcc_base();
778 
779 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
780 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
781 
782 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
783 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
784 
785 	refclk = stm32mp1_pll_get_fref(pll);
786 
787 	/*
788 	 * With FRACV :
789 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
790 	 * Without FRACV
791 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
792 	 */
793 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
794 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
795 				 RCC_PLLNFRACR_FRACV_SHIFT;
796 		unsigned long long numerator, denominator;
797 
798 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
799 		numerator = refclk * numerator;
800 		denominator = ((unsigned long long)divm + 1U) << 13;
801 		fvco = (unsigned long)(numerator / denominator);
802 	} else {
803 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
804 	}
805 
806 	return fvco;
807 }
808 
809 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
810 					    enum stm32mp1_div_id div_id)
811 {
812 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
813 	unsigned long dfout;
814 	uint32_t cfgr2, divy;
815 
816 	if (div_id >= _DIV_NB) {
817 		return 0;
818 	}
819 
820 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
821 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
822 
823 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
824 
825 	return dfout;
826 }
827 
828 static unsigned long get_clock_rate(int p)
829 {
830 	uint32_t reg, clkdiv;
831 	unsigned long clock = 0;
832 	uintptr_t rcc_base = stm32mp_rcc_base();
833 
834 	switch (p) {
835 	case _CK_MPU:
836 	/* MPU sub system */
837 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
838 		switch (reg & RCC_SELR_SRC_MASK) {
839 		case RCC_MPCKSELR_HSI:
840 			clock = stm32mp1_clk_get_fixed(_HSI);
841 			break;
842 		case RCC_MPCKSELR_HSE:
843 			clock = stm32mp1_clk_get_fixed(_HSE);
844 			break;
845 		case RCC_MPCKSELR_PLL:
846 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
847 			break;
848 		case RCC_MPCKSELR_PLL_MPUDIV:
849 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
850 
851 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
852 			clkdiv = reg & RCC_MPUDIV_MASK;
853 			clock >>= stm32mp1_mpu_div[clkdiv];
854 			break;
855 		default:
856 			break;
857 		}
858 		break;
859 	/* AXI sub system */
860 	case _ACLK:
861 	case _HCLK2:
862 	case _HCLK6:
863 	case _PCLK4:
864 	case _PCLK5:
865 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
866 		switch (reg & RCC_SELR_SRC_MASK) {
867 		case RCC_ASSCKSELR_HSI:
868 			clock = stm32mp1_clk_get_fixed(_HSI);
869 			break;
870 		case RCC_ASSCKSELR_HSE:
871 			clock = stm32mp1_clk_get_fixed(_HSE);
872 			break;
873 		case RCC_ASSCKSELR_PLL:
874 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
875 			break;
876 		default:
877 			break;
878 		}
879 
880 		/* System clock divider */
881 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
882 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
883 
884 		switch (p) {
885 		case _PCLK4:
886 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
887 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
888 			break;
889 		case _PCLK5:
890 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
891 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
892 			break;
893 		default:
894 			break;
895 		}
896 		break;
897 	/* MCU sub system */
898 	case _CK_MCU:
899 	case _PCLK1:
900 	case _PCLK2:
901 	case _PCLK3:
902 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
903 		switch (reg & RCC_SELR_SRC_MASK) {
904 		case RCC_MSSCKSELR_HSI:
905 			clock = stm32mp1_clk_get_fixed(_HSI);
906 			break;
907 		case RCC_MSSCKSELR_HSE:
908 			clock = stm32mp1_clk_get_fixed(_HSE);
909 			break;
910 		case RCC_MSSCKSELR_CSI:
911 			clock = stm32mp1_clk_get_fixed(_CSI);
912 			break;
913 		case RCC_MSSCKSELR_PLL:
914 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
915 			break;
916 		default:
917 			break;
918 		}
919 
920 		/* MCU clock divider */
921 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
922 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
923 
924 		switch (p) {
925 		case _PCLK1:
926 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
927 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
928 			break;
929 		case _PCLK2:
930 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
931 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
932 			break;
933 		case _PCLK3:
934 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
935 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
936 			break;
937 		case _CK_MCU:
938 		default:
939 			break;
940 		}
941 		break;
942 	case _CK_PER:
943 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
944 		switch (reg & RCC_SELR_SRC_MASK) {
945 		case RCC_CPERCKSELR_HSI:
946 			clock = stm32mp1_clk_get_fixed(_HSI);
947 			break;
948 		case RCC_CPERCKSELR_HSE:
949 			clock = stm32mp1_clk_get_fixed(_HSE);
950 			break;
951 		case RCC_CPERCKSELR_CSI:
952 			clock = stm32mp1_clk_get_fixed(_CSI);
953 			break;
954 		default:
955 			break;
956 		}
957 		break;
958 	case _HSI:
959 	case _HSI_KER:
960 		clock = stm32mp1_clk_get_fixed(_HSI);
961 		break;
962 	case _CSI:
963 	case _CSI_KER:
964 		clock = stm32mp1_clk_get_fixed(_CSI);
965 		break;
966 	case _HSE:
967 	case _HSE_KER:
968 		clock = stm32mp1_clk_get_fixed(_HSE);
969 		break;
970 	case _HSE_KER_DIV2:
971 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
972 		break;
973 	case _HSE_RTC:
974 		clock = stm32mp1_clk_get_fixed(_HSE);
975 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
976 		break;
977 	case _LSI:
978 		clock = stm32mp1_clk_get_fixed(_LSI);
979 		break;
980 	case _LSE:
981 		clock = stm32mp1_clk_get_fixed(_LSE);
982 		break;
983 	/* PLL */
984 	case _PLL1_P:
985 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
986 		break;
987 	case _PLL1_Q:
988 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
989 		break;
990 	case _PLL1_R:
991 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
992 		break;
993 	case _PLL2_P:
994 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
995 		break;
996 	case _PLL2_Q:
997 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
998 		break;
999 	case _PLL2_R:
1000 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1001 		break;
1002 	case _PLL3_P:
1003 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1004 		break;
1005 	case _PLL3_Q:
1006 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1007 		break;
1008 	case _PLL3_R:
1009 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1010 		break;
1011 	case _PLL4_P:
1012 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1013 		break;
1014 	case _PLL4_Q:
1015 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1016 		break;
1017 	case _PLL4_R:
1018 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1019 		break;
1020 	/* Other */
1021 	case _USB_PHY_48:
1022 		clock = USB_PHY_48_MHZ;
1023 		break;
1024 	default:
1025 		break;
1026 	}
1027 
1028 	return clock;
1029 }
1030 
1031 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1032 {
1033 	uintptr_t rcc_base = stm32mp_rcc_base();
1034 
1035 	VERBOSE("Enable clock %u\n", gate->index);
1036 
1037 	if (gate->set_clr != 0U) {
1038 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1039 	} else {
1040 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1041 	}
1042 }
1043 
1044 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1045 {
1046 	uintptr_t rcc_base = stm32mp_rcc_base();
1047 
1048 	VERBOSE("Disable clock %u\n", gate->index);
1049 
1050 	if (gate->set_clr != 0U) {
1051 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1052 			      BIT(gate->bit));
1053 	} else {
1054 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1055 	}
1056 }
1057 
1058 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1059 {
1060 	uintptr_t rcc_base = stm32mp_rcc_base();
1061 
1062 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1063 }
1064 
1065 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1066 {
1067 	int i = stm32mp1_clk_get_gated_id(id);
1068 
1069 	if (i < 0) {
1070 		panic();
1071 	}
1072 
1073 	return gate_refcounts[i];
1074 }
1075 
1076 /* Oscillators and PLLs are not gated at runtime */
1077 static bool clock_is_always_on(unsigned long id)
1078 {
1079 	switch (id) {
1080 	case CK_HSE:
1081 	case CK_CSI:
1082 	case CK_LSI:
1083 	case CK_LSE:
1084 	case CK_HSI:
1085 	case CK_HSE_DIV2:
1086 	case PLL1_Q:
1087 	case PLL1_R:
1088 	case PLL2_P:
1089 	case PLL2_Q:
1090 	case PLL2_R:
1091 	case PLL3_P:
1092 	case PLL3_Q:
1093 	case PLL3_R:
1094 		return true;
1095 	default:
1096 		return false;
1097 	}
1098 }
1099 
1100 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1101 {
1102 	const struct stm32mp1_clk_gate *gate;
1103 	int i;
1104 	unsigned int *refcnt;
1105 
1106 	if (clock_is_always_on(id)) {
1107 		return;
1108 	}
1109 
1110 	i = stm32mp1_clk_get_gated_id(id);
1111 	if (i < 0) {
1112 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1113 		panic();
1114 	}
1115 
1116 	gate = gate_ref(i);
1117 	refcnt = &gate_refcounts[i];
1118 
1119 	stm32mp1_clk_lock(&refcount_lock);
1120 
1121 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1122 		__clk_enable(gate);
1123 	}
1124 
1125 	stm32mp1_clk_unlock(&refcount_lock);
1126 }
1127 
1128 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1129 {
1130 	const struct stm32mp1_clk_gate *gate;
1131 	int i;
1132 	unsigned int *refcnt;
1133 
1134 	if (clock_is_always_on(id)) {
1135 		return;
1136 	}
1137 
1138 	i = stm32mp1_clk_get_gated_id(id);
1139 	if (i < 0) {
1140 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1141 		panic();
1142 	}
1143 
1144 	gate = gate_ref(i);
1145 	refcnt = &gate_refcounts[i];
1146 
1147 	stm32mp1_clk_lock(&refcount_lock);
1148 
1149 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1150 		__clk_disable(gate);
1151 	}
1152 
1153 	stm32mp1_clk_unlock(&refcount_lock);
1154 }
1155 
1156 void stm32mp_clk_enable(unsigned long id)
1157 {
1158 	__stm32mp1_clk_enable(id, true);
1159 }
1160 
1161 void stm32mp_clk_disable(unsigned long id)
1162 {
1163 	__stm32mp1_clk_disable(id, true);
1164 }
1165 
1166 bool stm32mp_clk_is_enabled(unsigned long id)
1167 {
1168 	int i;
1169 
1170 	if (clock_is_always_on(id)) {
1171 		return true;
1172 	}
1173 
1174 	i = stm32mp1_clk_get_gated_id(id);
1175 	if (i < 0) {
1176 		panic();
1177 	}
1178 
1179 	return __clk_is_enabled(gate_ref(i));
1180 }
1181 
1182 unsigned long stm32mp_clk_get_rate(unsigned long id)
1183 {
1184 	int p = stm32mp1_clk_get_parent(id);
1185 
1186 	if (p < 0) {
1187 		return 0;
1188 	}
1189 
1190 	return get_clock_rate(p);
1191 }
1192 
1193 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1194 {
1195 	uintptr_t address = stm32mp_rcc_base() + offset;
1196 
1197 	if (enable) {
1198 		mmio_setbits_32(address, mask_on);
1199 	} else {
1200 		mmio_clrbits_32(address, mask_on);
1201 	}
1202 }
1203 
1204 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1205 {
1206 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1207 	uintptr_t address = stm32mp_rcc_base() + offset;
1208 
1209 	mmio_write_32(address, mask_on);
1210 }
1211 
1212 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1213 {
1214 	uint64_t timeout;
1215 	uint32_t mask_test;
1216 	uintptr_t address = stm32mp_rcc_base() + offset;
1217 
1218 	if (enable) {
1219 		mask_test = mask_rdy;
1220 	} else {
1221 		mask_test = 0;
1222 	}
1223 
1224 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1225 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1226 		if (timeout_elapsed(timeout)) {
1227 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1228 			      mask_rdy, address, enable, mmio_read_32(address));
1229 			return -ETIMEDOUT;
1230 		}
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1237 {
1238 	uint32_t value;
1239 	uintptr_t rcc_base = stm32mp_rcc_base();
1240 
1241 	if (digbyp) {
1242 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1243 	}
1244 
1245 	if (bypass || digbyp) {
1246 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1247 	}
1248 
1249 	/*
1250 	 * Warning: not recommended to switch directly from "high drive"
1251 	 * to "medium low drive", and vice-versa.
1252 	 */
1253 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1254 		RCC_BDCR_LSEDRV_SHIFT;
1255 
1256 	while (value != lsedrv) {
1257 		if (value > lsedrv) {
1258 			value--;
1259 		} else {
1260 			value++;
1261 		}
1262 
1263 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1264 				   RCC_BDCR_LSEDRV_MASK,
1265 				   value << RCC_BDCR_LSEDRV_SHIFT);
1266 	}
1267 
1268 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1269 }
1270 
1271 static void stm32mp1_lse_wait(void)
1272 {
1273 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1274 		VERBOSE("%s: failed\n", __func__);
1275 	}
1276 }
1277 
1278 static void stm32mp1_lsi_set(bool enable)
1279 {
1280 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1281 
1282 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1283 		VERBOSE("%s: failed\n", __func__);
1284 	}
1285 }
1286 
1287 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1288 {
1289 	uintptr_t rcc_base = stm32mp_rcc_base();
1290 
1291 	if (digbyp) {
1292 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1293 	}
1294 
1295 	if (bypass || digbyp) {
1296 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1297 	}
1298 
1299 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1300 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1301 		VERBOSE("%s: failed\n", __func__);
1302 	}
1303 
1304 	if (css) {
1305 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1306 	}
1307 }
1308 
1309 static void stm32mp1_csi_set(bool enable)
1310 {
1311 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1312 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1313 		VERBOSE("%s: failed\n", __func__);
1314 	}
1315 }
1316 
1317 static void stm32mp1_hsi_set(bool enable)
1318 {
1319 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1320 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1321 		VERBOSE("%s: failed\n", __func__);
1322 	}
1323 }
1324 
1325 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1326 {
1327 	uint64_t timeout;
1328 	uintptr_t rcc_base = stm32mp_rcc_base();
1329 	uintptr_t address = rcc_base + RCC_OCRDYR;
1330 
1331 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1332 			   RCC_HSICFGR_HSIDIV_MASK,
1333 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1334 
1335 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1336 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1337 		if (timeout_elapsed(timeout)) {
1338 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1339 			      address, mmio_read_32(address));
1340 			return -ETIMEDOUT;
1341 		}
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static int stm32mp1_hsidiv(unsigned long hsifreq)
1348 {
1349 	uint8_t hsidiv;
1350 	uint32_t hsidivfreq = MAX_HSI_HZ;
1351 
1352 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1353 		if (hsidivfreq == hsifreq) {
1354 			break;
1355 		}
1356 
1357 		hsidivfreq /= 2U;
1358 	}
1359 
1360 	if (hsidiv == 4U) {
1361 		ERROR("Invalid clk-hsi frequency\n");
1362 		return -1;
1363 	}
1364 
1365 	if (hsidiv != 0U) {
1366 		return stm32mp1_set_hsidiv(hsidiv);
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1373 				    unsigned int clksrc,
1374 				    uint32_t *pllcfg, int plloff)
1375 {
1376 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1377 	uintptr_t rcc_base = stm32mp_rcc_base();
1378 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1379 	enum stm32mp1_plltype type = pll->plltype;
1380 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1381 	unsigned long refclk;
1382 	uint32_t ifrge = 0U;
1383 	uint32_t src, value, fracv = 0;
1384 	void *fdt;
1385 
1386 	/* Check PLL output */
1387 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1388 		return false;
1389 	}
1390 
1391 	/* Check current clksrc */
1392 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1393 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1394 		return false;
1395 	}
1396 
1397 	/* Check Div */
1398 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1399 
1400 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1401 		 (pllcfg[PLLCFG_M] + 1U);
1402 
1403 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1404 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1405 		return false;
1406 	}
1407 
1408 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1409 		ifrge = 1U;
1410 	}
1411 
1412 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1413 		RCC_PLLNCFGR1_DIVN_MASK;
1414 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1415 		 RCC_PLLNCFGR1_DIVM_MASK;
1416 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1417 		 RCC_PLLNCFGR1_IFRGE_MASK;
1418 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1419 		return false;
1420 	}
1421 
1422 	/* Fractional configuration */
1423 	if (fdt_get_address(&fdt) == 1) {
1424 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1425 	}
1426 
1427 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1428 	value |= RCC_PLLNFRACR_FRACLE;
1429 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1430 		return false;
1431 	}
1432 
1433 	/* Output config */
1434 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1435 		RCC_PLLNCFGR2_DIVP_MASK;
1436 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1437 		 RCC_PLLNCFGR2_DIVQ_MASK;
1438 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1439 		 RCC_PLLNCFGR2_DIVR_MASK;
1440 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1441 		return false;
1442 	}
1443 
1444 	return true;
1445 }
1446 
1447 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1448 {
1449 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1450 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1451 
1452 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1453 	mmio_clrsetbits_32(pllxcr,
1454 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1455 			   RCC_PLLNCR_DIVREN,
1456 			   RCC_PLLNCR_PLLON);
1457 }
1458 
1459 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1460 {
1461 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1462 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1463 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1464 
1465 	/* Wait PLL lock */
1466 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1467 		if (timeout_elapsed(timeout)) {
1468 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1469 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1470 			return -ETIMEDOUT;
1471 		}
1472 	}
1473 
1474 	/* Start the requested output */
1475 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1476 
1477 	return 0;
1478 }
1479 
1480 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1481 {
1482 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1483 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1484 	uint64_t timeout;
1485 
1486 	/* Stop all output */
1487 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1488 			RCC_PLLNCR_DIVREN);
1489 
1490 	/* Stop PLL */
1491 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1492 
1493 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1494 	/* Wait PLL stopped */
1495 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1496 		if (timeout_elapsed(timeout)) {
1497 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1498 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1499 			return -ETIMEDOUT;
1500 		}
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1507 				       uint32_t *pllcfg)
1508 {
1509 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1510 	uintptr_t rcc_base = stm32mp_rcc_base();
1511 	uint32_t value;
1512 
1513 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1514 		RCC_PLLNCFGR2_DIVP_MASK;
1515 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1516 		 RCC_PLLNCFGR2_DIVQ_MASK;
1517 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1518 		 RCC_PLLNCFGR2_DIVR_MASK;
1519 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1520 }
1521 
1522 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1523 			       uint32_t *pllcfg, uint32_t fracv)
1524 {
1525 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1526 	uintptr_t rcc_base = stm32mp_rcc_base();
1527 	enum stm32mp1_plltype type = pll->plltype;
1528 	unsigned long refclk;
1529 	uint32_t ifrge = 0;
1530 	uint32_t src, value;
1531 
1532 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1533 		RCC_SELR_REFCLK_SRC_MASK;
1534 
1535 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1536 		 (pllcfg[PLLCFG_M] + 1U);
1537 
1538 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1539 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1540 		return -EINVAL;
1541 	}
1542 
1543 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1544 		ifrge = 1U;
1545 	}
1546 
1547 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1548 		RCC_PLLNCFGR1_DIVN_MASK;
1549 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1550 		 RCC_PLLNCFGR1_DIVM_MASK;
1551 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1552 		 RCC_PLLNCFGR1_IFRGE_MASK;
1553 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1554 
1555 	/* Fractional configuration */
1556 	value = 0;
1557 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1558 
1559 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1560 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1561 
1562 	value |= RCC_PLLNFRACR_FRACLE;
1563 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1564 
1565 	stm32mp1_pll_config_output(pll_id, pllcfg);
1566 
1567 	return 0;
1568 }
1569 
1570 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1571 {
1572 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1573 	uint32_t pllxcsg = 0;
1574 
1575 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1576 		    RCC_PLLNCSGR_MOD_PER_MASK;
1577 
1578 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1579 		    RCC_PLLNCSGR_INC_STEP_MASK;
1580 
1581 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1582 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1583 
1584 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1585 
1586 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1587 			RCC_PLLNCR_SSCG_CTRL);
1588 }
1589 
1590 static int stm32mp1_set_clksrc(unsigned int clksrc)
1591 {
1592 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1593 	uint64_t timeout;
1594 
1595 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1596 			   clksrc & RCC_SELR_SRC_MASK);
1597 
1598 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1599 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1600 		if (timeout_elapsed(timeout)) {
1601 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1602 			      clksrc_address, mmio_read_32(clksrc_address));
1603 			return -ETIMEDOUT;
1604 		}
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1611 {
1612 	uint64_t timeout;
1613 
1614 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1615 			   clkdiv & RCC_DIVR_DIV_MASK);
1616 
1617 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1618 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1619 		if (timeout_elapsed(timeout)) {
1620 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1621 			      clkdiv, address, mmio_read_32(address));
1622 			return -ETIMEDOUT;
1623 		}
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1630 {
1631 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1632 
1633 	/*
1634 	 * Binding clksrc :
1635 	 *      bit15-4 offset
1636 	 *      bit3:   disable
1637 	 *      bit2-0: MCOSEL[2:0]
1638 	 */
1639 	if ((clksrc & 0x8U) != 0U) {
1640 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1641 	} else {
1642 		mmio_clrsetbits_32(clksrc_address,
1643 				   RCC_MCOCFG_MCOSRC_MASK,
1644 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1645 		mmio_clrsetbits_32(clksrc_address,
1646 				   RCC_MCOCFG_MCODIV_MASK,
1647 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1648 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1649 	}
1650 }
1651 
1652 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1653 {
1654 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1655 
1656 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1657 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1658 		mmio_clrsetbits_32(address,
1659 				   RCC_BDCR_RTCSRC_MASK,
1660 				   (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
1661 
1662 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1663 	}
1664 
1665 	if (lse_css) {
1666 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1667 	}
1668 }
1669 
1670 static void stm32mp1_stgen_config(void)
1671 {
1672 	uint32_t cntfid0;
1673 	unsigned long rate;
1674 	unsigned long long counter;
1675 
1676 	cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF);
1677 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1678 
1679 	if (cntfid0 == rate) {
1680 		return;
1681 	}
1682 
1683 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1684 	counter = (unsigned long long)mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1685 	counter |= ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF)) << 32;
1686 	counter = (counter * rate / cntfid0);
1687 
1688 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter);
1689 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32));
1690 	mmio_write_32(STGEN_BASE + CNTFID_OFF, rate);
1691 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1692 
1693 	write_cntfrq((u_register_t)rate);
1694 
1695 	/* Need to update timer with new frequency */
1696 	generic_delay_timer_init();
1697 }
1698 
1699 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1700 {
1701 	unsigned long long cnt;
1702 
1703 	cnt = ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) |
1704 		mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1705 
1706 	cnt += (offset_in_ms * mmio_read_32(STGEN_BASE + CNTFID_OFF)) / 1000U;
1707 
1708 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1709 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)cnt);
1710 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1711 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1712 }
1713 
1714 static void stm32mp1_pkcs_config(uint32_t pkcs)
1715 {
1716 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1717 	uint32_t value = pkcs & 0xFU;
1718 	uint32_t mask = 0xFU;
1719 
1720 	if ((pkcs & BIT(31)) != 0U) {
1721 		mask <<= 4;
1722 		value <<= 4;
1723 	}
1724 
1725 	mmio_clrsetbits_32(address, mask, value);
1726 }
1727 
1728 int stm32mp1_clk_init(void)
1729 {
1730 	uintptr_t rcc_base = stm32mp_rcc_base();
1731 	unsigned int clksrc[CLKSRC_NB];
1732 	unsigned int clkdiv[CLKDIV_NB];
1733 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1734 	int plloff[_PLL_NB];
1735 	int ret, len;
1736 	enum stm32mp1_pll_id i;
1737 	bool lse_css = false;
1738 	bool pll3_preserve = false;
1739 	bool pll4_preserve = false;
1740 	bool pll4_bootrom = false;
1741 	const fdt32_t *pkcs_cell;
1742 	void *fdt;
1743 
1744 	if (fdt_get_address(&fdt) == 0) {
1745 		return -FDT_ERR_NOTFOUND;
1746 	}
1747 
1748 	/* Check status field to disable security */
1749 	if (!fdt_get_rcc_secure_status()) {
1750 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1751 	}
1752 
1753 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1754 					clksrc);
1755 	if (ret < 0) {
1756 		return -FDT_ERR_NOTFOUND;
1757 	}
1758 
1759 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1760 					clkdiv);
1761 	if (ret < 0) {
1762 		return -FDT_ERR_NOTFOUND;
1763 	}
1764 
1765 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1766 		char name[12];
1767 
1768 		snprintf(name, sizeof(name), "st,pll@%d", i);
1769 		plloff[i] = fdt_rcc_subnode_offset(name);
1770 
1771 		if (!fdt_check_node(plloff[i])) {
1772 			continue;
1773 		}
1774 
1775 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1776 					    (int)PLLCFG_NB, pllcfg[i]);
1777 		if (ret < 0) {
1778 			return -FDT_ERR_NOTFOUND;
1779 		}
1780 	}
1781 
1782 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1783 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1784 
1785 	/*
1786 	 * Switch ON oscillator found in device-tree.
1787 	 * Note: HSI already ON after BootROM stage.
1788 	 */
1789 	if (stm32mp1_osc[_LSI] != 0U) {
1790 		stm32mp1_lsi_set(true);
1791 	}
1792 	if (stm32mp1_osc[_LSE] != 0U) {
1793 		bool bypass, digbyp;
1794 		uint32_t lsedrv;
1795 
1796 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1797 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1798 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1799 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1800 						     LSEDRV_MEDIUM_HIGH);
1801 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1802 	}
1803 	if (stm32mp1_osc[_HSE] != 0U) {
1804 		bool bypass, digbyp, css;
1805 
1806 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1807 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1808 		css = fdt_osc_read_bool(_HSE, "st,css");
1809 		stm32mp1_hse_enable(bypass, digbyp, css);
1810 	}
1811 	/*
1812 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1813 	 * => switch on CSI even if node is not present in device tree
1814 	 */
1815 	stm32mp1_csi_set(true);
1816 
1817 	/* Come back to HSI */
1818 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1819 	if (ret != 0) {
1820 		return ret;
1821 	}
1822 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1823 	if (ret != 0) {
1824 		return ret;
1825 	}
1826 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1827 	if (ret != 0) {
1828 		return ret;
1829 	}
1830 
1831 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1832 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1833 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1834 							clksrc[CLKSRC_PLL3],
1835 							pllcfg[_PLL3],
1836 							plloff[_PLL3]);
1837 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1838 							clksrc[CLKSRC_PLL4],
1839 							pllcfg[_PLL4],
1840 							plloff[_PLL4]);
1841 	}
1842 
1843 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1844 		if (((i == _PLL3) && pll3_preserve) ||
1845 		    ((i == _PLL4) && pll4_preserve)) {
1846 			continue;
1847 		}
1848 
1849 		ret = stm32mp1_pll_stop(i);
1850 		if (ret != 0) {
1851 			return ret;
1852 		}
1853 	}
1854 
1855 	/* Configure HSIDIV */
1856 	if (stm32mp1_osc[_HSI] != 0U) {
1857 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1858 		if (ret != 0) {
1859 			return ret;
1860 		}
1861 		stm32mp1_stgen_config();
1862 	}
1863 
1864 	/* Select DIV */
1865 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1866 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1867 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1868 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1869 	if (ret != 0) {
1870 		return ret;
1871 	}
1872 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1873 	if (ret != 0) {
1874 		return ret;
1875 	}
1876 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1877 	if (ret != 0) {
1878 		return ret;
1879 	}
1880 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1881 	if (ret != 0) {
1882 		return ret;
1883 	}
1884 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1885 	if (ret != 0) {
1886 		return ret;
1887 	}
1888 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1889 	if (ret != 0) {
1890 		return ret;
1891 	}
1892 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1893 	if (ret != 0) {
1894 		return ret;
1895 	}
1896 
1897 	/* No ready bit for RTC */
1898 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1899 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1900 
1901 	/* Configure PLLs source */
1902 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1903 	if (ret != 0) {
1904 		return ret;
1905 	}
1906 
1907 	if (!pll3_preserve) {
1908 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1909 		if (ret != 0) {
1910 			return ret;
1911 		}
1912 	}
1913 
1914 	if (!pll4_preserve) {
1915 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1916 		if (ret != 0) {
1917 			return ret;
1918 		}
1919 	}
1920 
1921 	/* Configure and start PLLs */
1922 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1923 		uint32_t fracv;
1924 		uint32_t csg[PLLCSG_NB];
1925 
1926 		if (((i == _PLL3) && pll3_preserve) ||
1927 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1928 			continue;
1929 		}
1930 
1931 		if (!fdt_check_node(plloff[i])) {
1932 			continue;
1933 		}
1934 
1935 		if ((i == _PLL4) && pll4_bootrom) {
1936 			/* Set output divider if not done by the Bootrom */
1937 			stm32mp1_pll_config_output(i, pllcfg[i]);
1938 			continue;
1939 		}
1940 
1941 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1942 
1943 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1944 		if (ret != 0) {
1945 			return ret;
1946 		}
1947 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1948 					    (uint32_t)PLLCSG_NB, csg);
1949 		if (ret == 0) {
1950 			stm32mp1_pll_csg(i, csg);
1951 		} else if (ret != -FDT_ERR_NOTFOUND) {
1952 			return ret;
1953 		}
1954 
1955 		stm32mp1_pll_start(i);
1956 	}
1957 	/* Wait and start PLLs ouptut when ready */
1958 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1959 		if (!fdt_check_node(plloff[i])) {
1960 			continue;
1961 		}
1962 
1963 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1964 		if (ret != 0) {
1965 			return ret;
1966 		}
1967 	}
1968 	/* Wait LSE ready before to use it */
1969 	if (stm32mp1_osc[_LSE] != 0U) {
1970 		stm32mp1_lse_wait();
1971 	}
1972 
1973 	/* Configure with expected clock source */
1974 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1975 	if (ret != 0) {
1976 		return ret;
1977 	}
1978 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1979 	if (ret != 0) {
1980 		return ret;
1981 	}
1982 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1983 	if (ret != 0) {
1984 		return ret;
1985 	}
1986 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1987 
1988 	/* Configure PKCK */
1989 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1990 	if (pkcs_cell != NULL) {
1991 		bool ckper_disabled = false;
1992 		uint32_t j;
1993 
1994 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1995 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1996 
1997 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1998 				ckper_disabled = true;
1999 				continue;
2000 			}
2001 			stm32mp1_pkcs_config(pkcs);
2002 		}
2003 
2004 		/*
2005 		 * CKPER is source for some peripheral clocks
2006 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2007 		 * only if previous clock is still ON
2008 		 * => deactivated CKPER only after switching clock
2009 		 */
2010 		if (ckper_disabled) {
2011 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2012 		}
2013 	}
2014 
2015 	/* Switch OFF HSI if not found in device-tree */
2016 	if (stm32mp1_osc[_HSI] == 0U) {
2017 		stm32mp1_hsi_set(false);
2018 	}
2019 	stm32mp1_stgen_config();
2020 
2021 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2022 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2023 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2024 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2025 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2026 
2027 	return 0;
2028 }
2029 
2030 static void stm32mp1_osc_clk_init(const char *name,
2031 				  enum stm32mp_osc_id index)
2032 {
2033 	uint32_t frequency;
2034 
2035 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2036 		stm32mp1_osc[index] = frequency;
2037 	}
2038 }
2039 
2040 static void stm32mp1_osc_init(void)
2041 {
2042 	enum stm32mp_osc_id i;
2043 
2044 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2045 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2046 	}
2047 }
2048 
2049 #ifdef STM32MP_SHARED_RESOURCES
2050 /*
2051  * Get the parent ID of the target parent clock, for tagging as secure
2052  * shared clock dependencies.
2053  */
2054 static int get_parent_id_parent(unsigned int parent_id)
2055 {
2056 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2057 	enum stm32mp1_pll_id pll_id;
2058 	uint32_t p_sel;
2059 	uintptr_t rcc_base = stm32mp_rcc_base();
2060 
2061 	switch (parent_id) {
2062 	case _ACLK:
2063 	case _PCLK4:
2064 	case _PCLK5:
2065 		s = _AXIS_SEL;
2066 		break;
2067 	case _PLL1_P:
2068 	case _PLL1_Q:
2069 	case _PLL1_R:
2070 		pll_id = _PLL1;
2071 		break;
2072 	case _PLL2_P:
2073 	case _PLL2_Q:
2074 	case _PLL2_R:
2075 		pll_id = _PLL2;
2076 		break;
2077 	case _PLL3_P:
2078 	case _PLL3_Q:
2079 	case _PLL3_R:
2080 		pll_id = _PLL3;
2081 		break;
2082 	case _PLL4_P:
2083 	case _PLL4_Q:
2084 	case _PLL4_R:
2085 		pll_id = _PLL4;
2086 		break;
2087 	case _PCLK1:
2088 	case _PCLK2:
2089 	case _HCLK2:
2090 	case _HCLK6:
2091 	case _CK_PER:
2092 	case _CK_MPU:
2093 	case _CK_MCU:
2094 	case _USB_PHY_48:
2095 		/* We do not expect to access these */
2096 		panic();
2097 		break;
2098 	default:
2099 		/* Other parents have no parent */
2100 		return -1;
2101 	}
2102 
2103 	if (s != _UNKNOWN_SEL) {
2104 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2105 
2106 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2107 			sel->msk;
2108 
2109 		if (p_sel < sel->nb_parent) {
2110 			return (int)sel->parent[p_sel];
2111 		}
2112 	} else {
2113 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2114 
2115 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2116 			RCC_SELR_REFCLK_SRC_MASK;
2117 
2118 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2119 			return (int)pll->refclk[p_sel];
2120 		}
2121 	}
2122 
2123 	VERBOSE("No parent selected for %s\n",
2124 		stm32mp1_clk_parent_name[parent_id]);
2125 
2126 	return -1;
2127 }
2128 
2129 static void secure_parent_clocks(unsigned long parent_id)
2130 {
2131 	int grandparent_id;
2132 
2133 	switch (parent_id) {
2134 	case _PLL3_P:
2135 	case _PLL3_Q:
2136 	case _PLL3_R:
2137 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2138 		break;
2139 
2140 	/* These clocks are always secure when RCC is secure */
2141 	case _ACLK:
2142 	case _HCLK2:
2143 	case _HCLK6:
2144 	case _PCLK4:
2145 	case _PCLK5:
2146 	case _PLL1_P:
2147 	case _PLL1_Q:
2148 	case _PLL1_R:
2149 	case _PLL2_P:
2150 	case _PLL2_Q:
2151 	case _PLL2_R:
2152 	case _HSI:
2153 	case _HSI_KER:
2154 	case _LSI:
2155 	case _CSI:
2156 	case _CSI_KER:
2157 	case _HSE:
2158 	case _HSE_KER:
2159 	case _HSE_KER_DIV2:
2160 	case _HSE_RTC:
2161 	case _LSE:
2162 		break;
2163 
2164 	default:
2165 		VERBOSE("Cannot secure parent clock %s\n",
2166 			stm32mp1_clk_parent_name[parent_id]);
2167 		panic();
2168 	}
2169 
2170 	grandparent_id = get_parent_id_parent(parent_id);
2171 	if (grandparent_id >= 0) {
2172 		secure_parent_clocks(grandparent_id);
2173 	}
2174 }
2175 
2176 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2177 {
2178 	int parent_id;
2179 
2180 	if (!stm32mp1_rcc_is_secure()) {
2181 		return;
2182 	}
2183 
2184 	switch (clock_id) {
2185 	case PLL1:
2186 	case PLL2:
2187 		/* PLL1/PLL2 are always secure: nothing to do */
2188 		break;
2189 	case PLL3:
2190 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2191 		break;
2192 	case PLL4:
2193 		ERROR("PLL4 cannot be secured\n");
2194 		panic();
2195 		break;
2196 	default:
2197 		/* Others are expected gateable clock */
2198 		parent_id = stm32mp1_clk_get_parent(clock_id);
2199 		if (parent_id < 0) {
2200 			INFO("No parent found for clock %lu\n", clock_id);
2201 		} else {
2202 			secure_parent_clocks(parent_id);
2203 		}
2204 		break;
2205 	}
2206 }
2207 #endif /* STM32MP_SHARED_RESOURCES */
2208 
2209 static void sync_earlyboot_clocks_state(void)
2210 {
2211 	unsigned int idx;
2212 	const unsigned long secure_enable[] = {
2213 		AXIDCG,
2214 		BSEC,
2215 		DDRC1, DDRC1LP,
2216 		DDRC2, DDRC2LP,
2217 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2218 		DDRPHYC, DDRPHYCLP,
2219 		RTCAPB,
2220 		TZC1, TZC2,
2221 		TZPC,
2222 		STGEN_K,
2223 	};
2224 
2225 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2226 		stm32mp_clk_enable(secure_enable[idx]);
2227 	}
2228 }
2229 
2230 int stm32mp1_clk_probe(void)
2231 {
2232 	stm32mp1_osc_init();
2233 
2234 	sync_earlyboot_clocks_state();
2235 
2236 	return 0;
2237 }
2238