1 /* 2 * Copyright (C) 2018-2021, STMicroelectronics - All Rights Reserved 3 * 4 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <stdio.h> 11 12 #include <libfdt.h> 13 14 #include <platform_def.h> 15 16 #include <arch.h> 17 #include <arch_helpers.h> 18 #include <common/debug.h> 19 #include <common/fdt_wrappers.h> 20 #include <drivers/delay_timer.h> 21 #include <drivers/generic_delay_timer.h> 22 #include <drivers/st/stm32mp_clkfunc.h> 23 #include <drivers/st/stm32mp1_clk.h> 24 #include <drivers/st/stm32mp1_rcc.h> 25 #include <dt-bindings/clock/stm32mp1-clksrc.h> 26 #include <lib/mmio.h> 27 #include <lib/spinlock.h> 28 #include <lib/utils_def.h> 29 #include <plat/common/platform.h> 30 31 #define MAX_HSI_HZ 64000000 32 #define USB_PHY_48_MHZ 48000000 33 34 #define TIMEOUT_US_200MS U(200000) 35 #define TIMEOUT_US_1S U(1000000) 36 37 #define PLLRDY_TIMEOUT TIMEOUT_US_200MS 38 #define CLKSRC_TIMEOUT TIMEOUT_US_200MS 39 #define CLKDIV_TIMEOUT TIMEOUT_US_200MS 40 #define HSIDIV_TIMEOUT TIMEOUT_US_200MS 41 #define OSCRDY_TIMEOUT TIMEOUT_US_1S 42 43 const char *stm32mp_osc_node_label[NB_OSC] = { 44 [_LSI] = "clk-lsi", 45 [_LSE] = "clk-lse", 46 [_HSI] = "clk-hsi", 47 [_HSE] = "clk-hse", 48 [_CSI] = "clk-csi", 49 [_I2S_CKIN] = "i2s_ckin", 50 }; 51 52 enum stm32mp1_parent_id { 53 /* Oscillators are defined in enum stm32mp_osc_id */ 54 55 /* Other parent source */ 56 _HSI_KER = NB_OSC, 57 _HSE_KER, 58 _HSE_KER_DIV2, 59 _HSE_RTC, 60 _CSI_KER, 61 _PLL1_P, 62 _PLL1_Q, 63 _PLL1_R, 64 _PLL2_P, 65 _PLL2_Q, 66 _PLL2_R, 67 _PLL3_P, 68 _PLL3_Q, 69 _PLL3_R, 70 _PLL4_P, 71 _PLL4_Q, 72 _PLL4_R, 73 _ACLK, 74 _PCLK1, 75 _PCLK2, 76 _PCLK3, 77 _PCLK4, 78 _PCLK5, 79 _HCLK6, 80 _HCLK2, 81 _CK_PER, 82 _CK_MPU, 83 _CK_MCU, 84 _USB_PHY_48, 85 _PARENT_NB, 86 _UNKNOWN_ID = 0xff, 87 }; 88 89 /* Lists only the parent clock we are interested in */ 90 enum stm32mp1_parent_sel { 91 _I2C12_SEL, 92 _I2C35_SEL, 93 _STGEN_SEL, 94 _I2C46_SEL, 95 _SPI6_SEL, 96 _UART1_SEL, 97 _RNG1_SEL, 98 _UART6_SEL, 99 _UART24_SEL, 100 _UART35_SEL, 101 _UART78_SEL, 102 _SDMMC12_SEL, 103 _SDMMC3_SEL, 104 _QSPI_SEL, 105 _FMC_SEL, 106 _AXIS_SEL, 107 _MCUS_SEL, 108 _USBPHY_SEL, 109 _USBO_SEL, 110 _MPU_SEL, 111 _CKPER_SEL, 112 _RTC_SEL, 113 _PARENT_SEL_NB, 114 _UNKNOWN_SEL = 0xff, 115 }; 116 117 /* State the parent clock ID straight related to a clock */ 118 static const uint8_t parent_id_clock_id[_PARENT_NB] = { 119 [_HSE] = CK_HSE, 120 [_HSI] = CK_HSI, 121 [_CSI] = CK_CSI, 122 [_LSE] = CK_LSE, 123 [_LSI] = CK_LSI, 124 [_I2S_CKIN] = _UNKNOWN_ID, 125 [_USB_PHY_48] = _UNKNOWN_ID, 126 [_HSI_KER] = CK_HSI, 127 [_HSE_KER] = CK_HSE, 128 [_HSE_KER_DIV2] = CK_HSE_DIV2, 129 [_HSE_RTC] = _UNKNOWN_ID, 130 [_CSI_KER] = CK_CSI, 131 [_PLL1_P] = PLL1_P, 132 [_PLL1_Q] = PLL1_Q, 133 [_PLL1_R] = PLL1_R, 134 [_PLL2_P] = PLL2_P, 135 [_PLL2_Q] = PLL2_Q, 136 [_PLL2_R] = PLL2_R, 137 [_PLL3_P] = PLL3_P, 138 [_PLL3_Q] = PLL3_Q, 139 [_PLL3_R] = PLL3_R, 140 [_PLL4_P] = PLL4_P, 141 [_PLL4_Q] = PLL4_Q, 142 [_PLL4_R] = PLL4_R, 143 [_ACLK] = CK_AXI, 144 [_PCLK1] = CK_AXI, 145 [_PCLK2] = CK_AXI, 146 [_PCLK3] = CK_AXI, 147 [_PCLK4] = CK_AXI, 148 [_PCLK5] = CK_AXI, 149 [_CK_PER] = CK_PER, 150 [_CK_MPU] = CK_MPU, 151 [_CK_MCU] = CK_MCU, 152 }; 153 154 static unsigned int clock_id2parent_id(unsigned long id) 155 { 156 unsigned int n; 157 158 for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) { 159 if (parent_id_clock_id[n] == id) { 160 return n; 161 } 162 } 163 164 return _UNKNOWN_ID; 165 } 166 167 enum stm32mp1_pll_id { 168 _PLL1, 169 _PLL2, 170 _PLL3, 171 _PLL4, 172 _PLL_NB 173 }; 174 175 enum stm32mp1_div_id { 176 _DIV_P, 177 _DIV_Q, 178 _DIV_R, 179 _DIV_NB, 180 }; 181 182 enum stm32mp1_clksrc_id { 183 CLKSRC_MPU, 184 CLKSRC_AXI, 185 CLKSRC_MCU, 186 CLKSRC_PLL12, 187 CLKSRC_PLL3, 188 CLKSRC_PLL4, 189 CLKSRC_RTC, 190 CLKSRC_MCO1, 191 CLKSRC_MCO2, 192 CLKSRC_NB 193 }; 194 195 enum stm32mp1_clkdiv_id { 196 CLKDIV_MPU, 197 CLKDIV_AXI, 198 CLKDIV_MCU, 199 CLKDIV_APB1, 200 CLKDIV_APB2, 201 CLKDIV_APB3, 202 CLKDIV_APB4, 203 CLKDIV_APB5, 204 CLKDIV_RTC, 205 CLKDIV_MCO1, 206 CLKDIV_MCO2, 207 CLKDIV_NB 208 }; 209 210 enum stm32mp1_pllcfg { 211 PLLCFG_M, 212 PLLCFG_N, 213 PLLCFG_P, 214 PLLCFG_Q, 215 PLLCFG_R, 216 PLLCFG_O, 217 PLLCFG_NB 218 }; 219 220 enum stm32mp1_pllcsg { 221 PLLCSG_MOD_PER, 222 PLLCSG_INC_STEP, 223 PLLCSG_SSCG_MODE, 224 PLLCSG_NB 225 }; 226 227 enum stm32mp1_plltype { 228 PLL_800, 229 PLL_1600, 230 PLL_TYPE_NB 231 }; 232 233 struct stm32mp1_pll { 234 uint8_t refclk_min; 235 uint8_t refclk_max; 236 uint8_t divn_max; 237 }; 238 239 struct stm32mp1_clk_gate { 240 uint16_t offset; 241 uint8_t bit; 242 uint8_t index; 243 uint8_t set_clr; 244 uint8_t sel; /* Relates to enum stm32mp1_parent_sel */ 245 uint8_t fixed; /* Relates to enum stm32mp1_parent_id */ 246 }; 247 248 struct stm32mp1_clk_sel { 249 uint16_t offset; 250 uint8_t src; 251 uint8_t msk; 252 uint8_t nb_parent; 253 const uint8_t *parent; 254 }; 255 256 #define REFCLK_SIZE 4 257 struct stm32mp1_clk_pll { 258 enum stm32mp1_plltype plltype; 259 uint16_t rckxselr; 260 uint16_t pllxcfgr1; 261 uint16_t pllxcfgr2; 262 uint16_t pllxfracr; 263 uint16_t pllxcr; 264 uint16_t pllxcsgr; 265 enum stm32mp_osc_id refclk[REFCLK_SIZE]; 266 }; 267 268 /* Clocks with selectable source and non set/clr register access */ 269 #define _CLK_SELEC(off, b, idx, s) \ 270 { \ 271 .offset = (off), \ 272 .bit = (b), \ 273 .index = (idx), \ 274 .set_clr = 0, \ 275 .sel = (s), \ 276 .fixed = _UNKNOWN_ID, \ 277 } 278 279 /* Clocks with fixed source and non set/clr register access */ 280 #define _CLK_FIXED(off, b, idx, f) \ 281 { \ 282 .offset = (off), \ 283 .bit = (b), \ 284 .index = (idx), \ 285 .set_clr = 0, \ 286 .sel = _UNKNOWN_SEL, \ 287 .fixed = (f), \ 288 } 289 290 /* Clocks with selectable source and set/clr register access */ 291 #define _CLK_SC_SELEC(off, b, idx, s) \ 292 { \ 293 .offset = (off), \ 294 .bit = (b), \ 295 .index = (idx), \ 296 .set_clr = 1, \ 297 .sel = (s), \ 298 .fixed = _UNKNOWN_ID, \ 299 } 300 301 /* Clocks with fixed source and set/clr register access */ 302 #define _CLK_SC_FIXED(off, b, idx, f) \ 303 { \ 304 .offset = (off), \ 305 .bit = (b), \ 306 .index = (idx), \ 307 .set_clr = 1, \ 308 .sel = _UNKNOWN_SEL, \ 309 .fixed = (f), \ 310 } 311 312 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents) \ 313 [_ ## _label ## _SEL] = { \ 314 .offset = _rcc_selr, \ 315 .src = _rcc_selr ## _ ## _label ## SRC_SHIFT, \ 316 .msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \ 317 (_rcc_selr ## _ ## _label ## SRC_SHIFT), \ 318 .parent = (_parents), \ 319 .nb_parent = ARRAY_SIZE(_parents) \ 320 } 321 322 #define _CLK_PLL(idx, type, off1, off2, off3, \ 323 off4, off5, off6, \ 324 p1, p2, p3, p4) \ 325 [(idx)] = { \ 326 .plltype = (type), \ 327 .rckxselr = (off1), \ 328 .pllxcfgr1 = (off2), \ 329 .pllxcfgr2 = (off3), \ 330 .pllxfracr = (off4), \ 331 .pllxcr = (off5), \ 332 .pllxcsgr = (off6), \ 333 .refclk[0] = (p1), \ 334 .refclk[1] = (p2), \ 335 .refclk[2] = (p3), \ 336 .refclk[3] = (p4), \ 337 } 338 339 #define NB_GATES ARRAY_SIZE(stm32mp1_clk_gate) 340 341 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = { 342 _CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK), 343 _CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK), 344 _CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK), 345 _CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK), 346 _CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R), 347 _CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R), 348 _CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4), 349 _CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4), 350 _CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK), 351 _CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4), 352 _CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4), 353 354 _CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1), 355 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL), 356 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL), 357 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL), 358 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL), 359 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL), 360 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL), 361 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL), 362 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL), 363 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL), 364 _CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL), 365 366 _CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2), 367 _CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL), 368 369 _CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID), 370 371 _CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL), 372 _CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL), 373 _CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL), 374 375 _CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL), 376 _CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL), 377 _CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL), 378 _CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL), 379 _CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5), 380 _CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5), 381 _CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5), 382 _CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5), 383 _CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5), 384 _CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5), 385 _CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL), 386 387 _CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL), 388 _CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL), 389 390 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL), 391 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL), 392 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL), 393 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL), 394 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL), 395 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL), 396 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL), 397 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL), 398 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL), 399 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL), 400 _CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL), 401 402 _CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5), 403 _CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5), 404 _CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5), 405 _CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL), 406 _CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5), 407 408 _CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL), 409 _CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL), 410 _CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL), 411 _CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL), 412 _CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL), 413 414 _CLK_SELEC(RCC_BDCR, 20, RTC, _RTC_SEL), 415 _CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL), 416 }; 417 418 static const uint8_t i2c12_parents[] = { 419 _PCLK1, _PLL4_R, _HSI_KER, _CSI_KER 420 }; 421 422 static const uint8_t i2c35_parents[] = { 423 _PCLK1, _PLL4_R, _HSI_KER, _CSI_KER 424 }; 425 426 static const uint8_t stgen_parents[] = { 427 _HSI_KER, _HSE_KER 428 }; 429 430 static const uint8_t i2c46_parents[] = { 431 _PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER 432 }; 433 434 static const uint8_t spi6_parents[] = { 435 _PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q 436 }; 437 438 static const uint8_t usart1_parents[] = { 439 _PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER 440 }; 441 442 static const uint8_t rng1_parents[] = { 443 _CSI, _PLL4_R, _LSE, _LSI 444 }; 445 446 static const uint8_t uart6_parents[] = { 447 _PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER 448 }; 449 450 static const uint8_t uart234578_parents[] = { 451 _PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER 452 }; 453 454 static const uint8_t sdmmc12_parents[] = { 455 _HCLK6, _PLL3_R, _PLL4_P, _HSI_KER 456 }; 457 458 static const uint8_t sdmmc3_parents[] = { 459 _HCLK2, _PLL3_R, _PLL4_P, _HSI_KER 460 }; 461 462 static const uint8_t qspi_parents[] = { 463 _ACLK, _PLL3_R, _PLL4_P, _CK_PER 464 }; 465 466 static const uint8_t fmc_parents[] = { 467 _ACLK, _PLL3_R, _PLL4_P, _CK_PER 468 }; 469 470 static const uint8_t ass_parents[] = { 471 _HSI, _HSE, _PLL2 472 }; 473 474 static const uint8_t mss_parents[] = { 475 _HSI, _HSE, _CSI, _PLL3 476 }; 477 478 static const uint8_t usbphy_parents[] = { 479 _HSE_KER, _PLL4_R, _HSE_KER_DIV2 480 }; 481 482 static const uint8_t usbo_parents[] = { 483 _PLL4_R, _USB_PHY_48 484 }; 485 486 static const uint8_t mpu_parents[] = { 487 _HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */ 488 }; 489 490 static const uint8_t per_parents[] = { 491 _HSI, _HSE, _CSI, 492 }; 493 494 static const uint8_t rtc_parents[] = { 495 _UNKNOWN_ID, _LSE, _LSI, _HSE_RTC 496 }; 497 498 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = { 499 _CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents), 500 _CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents), 501 _CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents), 502 _CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents), 503 _CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents), 504 _CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents), 505 _CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents), 506 _CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents), 507 _CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents), 508 _CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents), 509 _CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents), 510 _CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents), 511 _CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents), 512 _CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents), 513 _CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents), 514 _CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents), 515 _CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents), 516 _CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents), 517 _CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents), 518 _CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents), 519 _CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents), 520 _CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents), 521 }; 522 523 /* Define characteristic of PLL according type */ 524 #define DIVN_MIN 24 525 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = { 526 [PLL_800] = { 527 .refclk_min = 4, 528 .refclk_max = 16, 529 .divn_max = 99, 530 }, 531 [PLL_1600] = { 532 .refclk_min = 8, 533 .refclk_max = 16, 534 .divn_max = 199, 535 }, 536 }; 537 538 /* PLLNCFGR2 register divider by output */ 539 static const uint8_t pllncfgr2[_DIV_NB] = { 540 [_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT, 541 [_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT, 542 [_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT, 543 }; 544 545 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = { 546 _CLK_PLL(_PLL1, PLL_1600, 547 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2, 548 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR, 549 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID), 550 _CLK_PLL(_PLL2, PLL_1600, 551 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2, 552 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR, 553 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID), 554 _CLK_PLL(_PLL3, PLL_800, 555 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2, 556 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR, 557 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID), 558 _CLK_PLL(_PLL4, PLL_800, 559 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2, 560 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR, 561 _HSI, _HSE, _CSI, _I2S_CKIN), 562 }; 563 564 /* Prescaler table lookups for clock computation */ 565 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */ 566 static const uint8_t stm32mp1_mcu_div[16] = { 567 0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9 568 }; 569 570 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */ 571 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div 572 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div 573 static const uint8_t stm32mp1_mpu_apbx_div[8] = { 574 0, 1, 2, 3, 4, 4, 4, 4 575 }; 576 577 /* div = /1 /2 /3 /4 */ 578 static const uint8_t stm32mp1_axi_div[8] = { 579 1, 2, 3, 4, 4, 4, 4, 4 580 }; 581 582 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = { 583 [_HSI] = "HSI", 584 [_HSE] = "HSE", 585 [_CSI] = "CSI", 586 [_LSI] = "LSI", 587 [_LSE] = "LSE", 588 [_I2S_CKIN] = "I2S_CKIN", 589 [_HSI_KER] = "HSI_KER", 590 [_HSE_KER] = "HSE_KER", 591 [_HSE_KER_DIV2] = "HSE_KER_DIV2", 592 [_HSE_RTC] = "HSE_RTC", 593 [_CSI_KER] = "CSI_KER", 594 [_PLL1_P] = "PLL1_P", 595 [_PLL1_Q] = "PLL1_Q", 596 [_PLL1_R] = "PLL1_R", 597 [_PLL2_P] = "PLL2_P", 598 [_PLL2_Q] = "PLL2_Q", 599 [_PLL2_R] = "PLL2_R", 600 [_PLL3_P] = "PLL3_P", 601 [_PLL3_Q] = "PLL3_Q", 602 [_PLL3_R] = "PLL3_R", 603 [_PLL4_P] = "PLL4_P", 604 [_PLL4_Q] = "PLL4_Q", 605 [_PLL4_R] = "PLL4_R", 606 [_ACLK] = "ACLK", 607 [_PCLK1] = "PCLK1", 608 [_PCLK2] = "PCLK2", 609 [_PCLK3] = "PCLK3", 610 [_PCLK4] = "PCLK4", 611 [_PCLK5] = "PCLK5", 612 [_HCLK6] = "KCLK6", 613 [_HCLK2] = "HCLK2", 614 [_CK_PER] = "CK_PER", 615 [_CK_MPU] = "CK_MPU", 616 [_CK_MCU] = "CK_MCU", 617 [_USB_PHY_48] = "USB_PHY_48", 618 }; 619 620 /* RCC clock device driver private */ 621 static unsigned long stm32mp1_osc[NB_OSC]; 622 static struct spinlock reg_lock; 623 static unsigned int gate_refcounts[NB_GATES]; 624 static struct spinlock refcount_lock; 625 626 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx) 627 { 628 return &stm32mp1_clk_gate[idx]; 629 } 630 631 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx) 632 { 633 return &stm32mp1_clk_sel[idx]; 634 } 635 636 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx) 637 { 638 return &stm32mp1_clk_pll[idx]; 639 } 640 641 static void stm32mp1_clk_lock(struct spinlock *lock) 642 { 643 if (stm32mp_lock_available()) { 644 /* Assume interrupts are masked */ 645 spin_lock(lock); 646 } 647 } 648 649 static void stm32mp1_clk_unlock(struct spinlock *lock) 650 { 651 if (stm32mp_lock_available()) { 652 spin_unlock(lock); 653 } 654 } 655 656 bool stm32mp1_rcc_is_secure(void) 657 { 658 uintptr_t rcc_base = stm32mp_rcc_base(); 659 uint32_t mask = RCC_TZCR_TZEN; 660 661 return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask; 662 } 663 664 bool stm32mp1_rcc_is_mckprot(void) 665 { 666 uintptr_t rcc_base = stm32mp_rcc_base(); 667 uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT; 668 669 return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask; 670 } 671 672 void stm32mp1_clk_rcc_regs_lock(void) 673 { 674 stm32mp1_clk_lock(®_lock); 675 } 676 677 void stm32mp1_clk_rcc_regs_unlock(void) 678 { 679 stm32mp1_clk_unlock(®_lock); 680 } 681 682 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx) 683 { 684 if (idx >= NB_OSC) { 685 return 0; 686 } 687 688 return stm32mp1_osc[idx]; 689 } 690 691 static int stm32mp1_clk_get_gated_id(unsigned long id) 692 { 693 unsigned int i; 694 695 for (i = 0U; i < NB_GATES; i++) { 696 if (gate_ref(i)->index == id) { 697 return i; 698 } 699 } 700 701 ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id); 702 703 return -EINVAL; 704 } 705 706 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i) 707 { 708 return (enum stm32mp1_parent_sel)(gate_ref(i)->sel); 709 } 710 711 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i) 712 { 713 return (enum stm32mp1_parent_id)(gate_ref(i)->fixed); 714 } 715 716 static int stm32mp1_clk_get_parent(unsigned long id) 717 { 718 const struct stm32mp1_clk_sel *sel; 719 uint32_t p_sel; 720 int i; 721 enum stm32mp1_parent_id p; 722 enum stm32mp1_parent_sel s; 723 uintptr_t rcc_base = stm32mp_rcc_base(); 724 725 /* Few non gateable clock have a static parent ID, find them */ 726 i = (int)clock_id2parent_id(id); 727 if (i != _UNKNOWN_ID) { 728 return i; 729 } 730 731 i = stm32mp1_clk_get_gated_id(id); 732 if (i < 0) { 733 panic(); 734 } 735 736 p = stm32mp1_clk_get_fixed_parent(i); 737 if (p < _PARENT_NB) { 738 return (int)p; 739 } 740 741 s = stm32mp1_clk_get_sel(i); 742 if (s == _UNKNOWN_SEL) { 743 return -EINVAL; 744 } 745 if (s >= _PARENT_SEL_NB) { 746 panic(); 747 } 748 749 sel = clk_sel_ref(s); 750 p_sel = (mmio_read_32(rcc_base + sel->offset) & 751 (sel->msk << sel->src)) >> sel->src; 752 if (p_sel < sel->nb_parent) { 753 return (int)sel->parent[p_sel]; 754 } 755 756 return -EINVAL; 757 } 758 759 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll) 760 { 761 uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr); 762 uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK; 763 764 return stm32mp1_clk_get_fixed(pll->refclk[src]); 765 } 766 767 /* 768 * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL 769 * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1) 770 * - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1) 771 * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1) 772 */ 773 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll) 774 { 775 unsigned long refclk, fvco; 776 uint32_t cfgr1, fracr, divm, divn; 777 uintptr_t rcc_base = stm32mp_rcc_base(); 778 779 cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1); 780 fracr = mmio_read_32(rcc_base + pll->pllxfracr); 781 782 divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT; 783 divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK; 784 785 refclk = stm32mp1_pll_get_fref(pll); 786 787 /* 788 * With FRACV : 789 * Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1) 790 * Without FRACV 791 * Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1) 792 */ 793 if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) { 794 uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >> 795 RCC_PLLNFRACR_FRACV_SHIFT; 796 unsigned long long numerator, denominator; 797 798 numerator = (((unsigned long long)divn + 1U) << 13) + fracv; 799 numerator = refclk * numerator; 800 denominator = ((unsigned long long)divm + 1U) << 13; 801 fvco = (unsigned long)(numerator / denominator); 802 } else { 803 fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U)); 804 } 805 806 return fvco; 807 } 808 809 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id, 810 enum stm32mp1_div_id div_id) 811 { 812 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 813 unsigned long dfout; 814 uint32_t cfgr2, divy; 815 816 if (div_id >= _DIV_NB) { 817 return 0; 818 } 819 820 cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2); 821 divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK; 822 823 dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U); 824 825 return dfout; 826 } 827 828 static unsigned long get_clock_rate(int p) 829 { 830 uint32_t reg, clkdiv; 831 unsigned long clock = 0; 832 uintptr_t rcc_base = stm32mp_rcc_base(); 833 834 switch (p) { 835 case _CK_MPU: 836 /* MPU sub system */ 837 reg = mmio_read_32(rcc_base + RCC_MPCKSELR); 838 switch (reg & RCC_SELR_SRC_MASK) { 839 case RCC_MPCKSELR_HSI: 840 clock = stm32mp1_clk_get_fixed(_HSI); 841 break; 842 case RCC_MPCKSELR_HSE: 843 clock = stm32mp1_clk_get_fixed(_HSE); 844 break; 845 case RCC_MPCKSELR_PLL: 846 clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P); 847 break; 848 case RCC_MPCKSELR_PLL_MPUDIV: 849 clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P); 850 851 reg = mmio_read_32(rcc_base + RCC_MPCKDIVR); 852 clkdiv = reg & RCC_MPUDIV_MASK; 853 if (clkdiv != 0U) { 854 clock /= stm32mp1_mpu_div[clkdiv]; 855 } 856 break; 857 default: 858 break; 859 } 860 break; 861 /* AXI sub system */ 862 case _ACLK: 863 case _HCLK2: 864 case _HCLK6: 865 case _PCLK4: 866 case _PCLK5: 867 reg = mmio_read_32(rcc_base + RCC_ASSCKSELR); 868 switch (reg & RCC_SELR_SRC_MASK) { 869 case RCC_ASSCKSELR_HSI: 870 clock = stm32mp1_clk_get_fixed(_HSI); 871 break; 872 case RCC_ASSCKSELR_HSE: 873 clock = stm32mp1_clk_get_fixed(_HSE); 874 break; 875 case RCC_ASSCKSELR_PLL: 876 clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P); 877 break; 878 default: 879 break; 880 } 881 882 /* System clock divider */ 883 reg = mmio_read_32(rcc_base + RCC_AXIDIVR); 884 clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK]; 885 886 switch (p) { 887 case _PCLK4: 888 reg = mmio_read_32(rcc_base + RCC_APB4DIVR); 889 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; 890 break; 891 case _PCLK5: 892 reg = mmio_read_32(rcc_base + RCC_APB5DIVR); 893 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; 894 break; 895 default: 896 break; 897 } 898 break; 899 /* MCU sub system */ 900 case _CK_MCU: 901 case _PCLK1: 902 case _PCLK2: 903 case _PCLK3: 904 reg = mmio_read_32(rcc_base + RCC_MSSCKSELR); 905 switch (reg & RCC_SELR_SRC_MASK) { 906 case RCC_MSSCKSELR_HSI: 907 clock = stm32mp1_clk_get_fixed(_HSI); 908 break; 909 case RCC_MSSCKSELR_HSE: 910 clock = stm32mp1_clk_get_fixed(_HSE); 911 break; 912 case RCC_MSSCKSELR_CSI: 913 clock = stm32mp1_clk_get_fixed(_CSI); 914 break; 915 case RCC_MSSCKSELR_PLL: 916 clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P); 917 break; 918 default: 919 break; 920 } 921 922 /* MCU clock divider */ 923 reg = mmio_read_32(rcc_base + RCC_MCUDIVR); 924 clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK]; 925 926 switch (p) { 927 case _PCLK1: 928 reg = mmio_read_32(rcc_base + RCC_APB1DIVR); 929 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; 930 break; 931 case _PCLK2: 932 reg = mmio_read_32(rcc_base + RCC_APB2DIVR); 933 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; 934 break; 935 case _PCLK3: 936 reg = mmio_read_32(rcc_base + RCC_APB3DIVR); 937 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; 938 break; 939 case _CK_MCU: 940 default: 941 break; 942 } 943 break; 944 case _CK_PER: 945 reg = mmio_read_32(rcc_base + RCC_CPERCKSELR); 946 switch (reg & RCC_SELR_SRC_MASK) { 947 case RCC_CPERCKSELR_HSI: 948 clock = stm32mp1_clk_get_fixed(_HSI); 949 break; 950 case RCC_CPERCKSELR_HSE: 951 clock = stm32mp1_clk_get_fixed(_HSE); 952 break; 953 case RCC_CPERCKSELR_CSI: 954 clock = stm32mp1_clk_get_fixed(_CSI); 955 break; 956 default: 957 break; 958 } 959 break; 960 case _HSI: 961 case _HSI_KER: 962 clock = stm32mp1_clk_get_fixed(_HSI); 963 break; 964 case _CSI: 965 case _CSI_KER: 966 clock = stm32mp1_clk_get_fixed(_CSI); 967 break; 968 case _HSE: 969 case _HSE_KER: 970 clock = stm32mp1_clk_get_fixed(_HSE); 971 break; 972 case _HSE_KER_DIV2: 973 clock = stm32mp1_clk_get_fixed(_HSE) >> 1; 974 break; 975 case _HSE_RTC: 976 clock = stm32mp1_clk_get_fixed(_HSE); 977 clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U; 978 break; 979 case _LSI: 980 clock = stm32mp1_clk_get_fixed(_LSI); 981 break; 982 case _LSE: 983 clock = stm32mp1_clk_get_fixed(_LSE); 984 break; 985 /* PLL */ 986 case _PLL1_P: 987 clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P); 988 break; 989 case _PLL1_Q: 990 clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q); 991 break; 992 case _PLL1_R: 993 clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R); 994 break; 995 case _PLL2_P: 996 clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P); 997 break; 998 case _PLL2_Q: 999 clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q); 1000 break; 1001 case _PLL2_R: 1002 clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R); 1003 break; 1004 case _PLL3_P: 1005 clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P); 1006 break; 1007 case _PLL3_Q: 1008 clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q); 1009 break; 1010 case _PLL3_R: 1011 clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R); 1012 break; 1013 case _PLL4_P: 1014 clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P); 1015 break; 1016 case _PLL4_Q: 1017 clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q); 1018 break; 1019 case _PLL4_R: 1020 clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R); 1021 break; 1022 /* Other */ 1023 case _USB_PHY_48: 1024 clock = USB_PHY_48_MHZ; 1025 break; 1026 default: 1027 break; 1028 } 1029 1030 return clock; 1031 } 1032 1033 static void __clk_enable(struct stm32mp1_clk_gate const *gate) 1034 { 1035 uintptr_t rcc_base = stm32mp_rcc_base(); 1036 1037 VERBOSE("Enable clock %u\n", gate->index); 1038 1039 if (gate->set_clr != 0U) { 1040 mmio_write_32(rcc_base + gate->offset, BIT(gate->bit)); 1041 } else { 1042 mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit)); 1043 } 1044 } 1045 1046 static void __clk_disable(struct stm32mp1_clk_gate const *gate) 1047 { 1048 uintptr_t rcc_base = stm32mp_rcc_base(); 1049 1050 VERBOSE("Disable clock %u\n", gate->index); 1051 1052 if (gate->set_clr != 0U) { 1053 mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET, 1054 BIT(gate->bit)); 1055 } else { 1056 mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit)); 1057 } 1058 } 1059 1060 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate) 1061 { 1062 uintptr_t rcc_base = stm32mp_rcc_base(); 1063 1064 return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit); 1065 } 1066 1067 unsigned int stm32mp1_clk_get_refcount(unsigned long id) 1068 { 1069 int i = stm32mp1_clk_get_gated_id(id); 1070 1071 if (i < 0) { 1072 panic(); 1073 } 1074 1075 return gate_refcounts[i]; 1076 } 1077 1078 /* Oscillators and PLLs are not gated at runtime */ 1079 static bool clock_is_always_on(unsigned long id) 1080 { 1081 switch (id) { 1082 case CK_HSE: 1083 case CK_CSI: 1084 case CK_LSI: 1085 case CK_LSE: 1086 case CK_HSI: 1087 case CK_HSE_DIV2: 1088 case PLL1_Q: 1089 case PLL1_R: 1090 case PLL2_P: 1091 case PLL2_Q: 1092 case PLL2_R: 1093 case PLL3_P: 1094 case PLL3_Q: 1095 case PLL3_R: 1096 return true; 1097 default: 1098 return false; 1099 } 1100 } 1101 1102 void __stm32mp1_clk_enable(unsigned long id, bool secure) 1103 { 1104 const struct stm32mp1_clk_gate *gate; 1105 int i; 1106 unsigned int *refcnt; 1107 1108 if (clock_is_always_on(id)) { 1109 return; 1110 } 1111 1112 i = stm32mp1_clk_get_gated_id(id); 1113 if (i < 0) { 1114 ERROR("Clock %d can't be enabled\n", (uint32_t)id); 1115 panic(); 1116 } 1117 1118 gate = gate_ref(i); 1119 refcnt = &gate_refcounts[i]; 1120 1121 stm32mp1_clk_lock(&refcount_lock); 1122 1123 if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) { 1124 __clk_enable(gate); 1125 } 1126 1127 stm32mp1_clk_unlock(&refcount_lock); 1128 } 1129 1130 void __stm32mp1_clk_disable(unsigned long id, bool secure) 1131 { 1132 const struct stm32mp1_clk_gate *gate; 1133 int i; 1134 unsigned int *refcnt; 1135 1136 if (clock_is_always_on(id)) { 1137 return; 1138 } 1139 1140 i = stm32mp1_clk_get_gated_id(id); 1141 if (i < 0) { 1142 ERROR("Clock %d can't be disabled\n", (uint32_t)id); 1143 panic(); 1144 } 1145 1146 gate = gate_ref(i); 1147 refcnt = &gate_refcounts[i]; 1148 1149 stm32mp1_clk_lock(&refcount_lock); 1150 1151 if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) { 1152 __clk_disable(gate); 1153 } 1154 1155 stm32mp1_clk_unlock(&refcount_lock); 1156 } 1157 1158 void stm32mp_clk_enable(unsigned long id) 1159 { 1160 __stm32mp1_clk_enable(id, true); 1161 } 1162 1163 void stm32mp_clk_disable(unsigned long id) 1164 { 1165 __stm32mp1_clk_disable(id, true); 1166 } 1167 1168 bool stm32mp_clk_is_enabled(unsigned long id) 1169 { 1170 int i; 1171 1172 if (clock_is_always_on(id)) { 1173 return true; 1174 } 1175 1176 i = stm32mp1_clk_get_gated_id(id); 1177 if (i < 0) { 1178 panic(); 1179 } 1180 1181 return __clk_is_enabled(gate_ref(i)); 1182 } 1183 1184 unsigned long stm32mp_clk_get_rate(unsigned long id) 1185 { 1186 int p = stm32mp1_clk_get_parent(id); 1187 1188 if (p < 0) { 1189 return 0; 1190 } 1191 1192 return get_clock_rate(p); 1193 } 1194 1195 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on) 1196 { 1197 uintptr_t address = stm32mp_rcc_base() + offset; 1198 1199 if (enable) { 1200 mmio_setbits_32(address, mask_on); 1201 } else { 1202 mmio_clrbits_32(address, mask_on); 1203 } 1204 } 1205 1206 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on) 1207 { 1208 uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR; 1209 uintptr_t address = stm32mp_rcc_base() + offset; 1210 1211 mmio_write_32(address, mask_on); 1212 } 1213 1214 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy) 1215 { 1216 uint64_t timeout; 1217 uint32_t mask_test; 1218 uintptr_t address = stm32mp_rcc_base() + offset; 1219 1220 if (enable) { 1221 mask_test = mask_rdy; 1222 } else { 1223 mask_test = 0; 1224 } 1225 1226 timeout = timeout_init_us(OSCRDY_TIMEOUT); 1227 while ((mmio_read_32(address) & mask_rdy) != mask_test) { 1228 if (timeout_elapsed(timeout)) { 1229 ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n", 1230 mask_rdy, address, enable, mmio_read_32(address)); 1231 return -ETIMEDOUT; 1232 } 1233 } 1234 1235 return 0; 1236 } 1237 1238 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv) 1239 { 1240 uint32_t value; 1241 uintptr_t rcc_base = stm32mp_rcc_base(); 1242 1243 if (digbyp) { 1244 mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP); 1245 } 1246 1247 if (bypass || digbyp) { 1248 mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP); 1249 } 1250 1251 /* 1252 * Warning: not recommended to switch directly from "high drive" 1253 * to "medium low drive", and vice-versa. 1254 */ 1255 value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >> 1256 RCC_BDCR_LSEDRV_SHIFT; 1257 1258 while (value != lsedrv) { 1259 if (value > lsedrv) { 1260 value--; 1261 } else { 1262 value++; 1263 } 1264 1265 mmio_clrsetbits_32(rcc_base + RCC_BDCR, 1266 RCC_BDCR_LSEDRV_MASK, 1267 value << RCC_BDCR_LSEDRV_SHIFT); 1268 } 1269 1270 stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON); 1271 } 1272 1273 static void stm32mp1_lse_wait(void) 1274 { 1275 if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) { 1276 VERBOSE("%s: failed\n", __func__); 1277 } 1278 } 1279 1280 static void stm32mp1_lsi_set(bool enable) 1281 { 1282 stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION); 1283 1284 if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) { 1285 VERBOSE("%s: failed\n", __func__); 1286 } 1287 } 1288 1289 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css) 1290 { 1291 uintptr_t rcc_base = stm32mp_rcc_base(); 1292 1293 if (digbyp) { 1294 mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP); 1295 } 1296 1297 if (bypass || digbyp) { 1298 mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP); 1299 } 1300 1301 stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON); 1302 if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) { 1303 VERBOSE("%s: failed\n", __func__); 1304 } 1305 1306 if (css) { 1307 mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON); 1308 } 1309 } 1310 1311 static void stm32mp1_csi_set(bool enable) 1312 { 1313 stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION); 1314 if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) { 1315 VERBOSE("%s: failed\n", __func__); 1316 } 1317 } 1318 1319 static void stm32mp1_hsi_set(bool enable) 1320 { 1321 stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION); 1322 if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) { 1323 VERBOSE("%s: failed\n", __func__); 1324 } 1325 } 1326 1327 static int stm32mp1_set_hsidiv(uint8_t hsidiv) 1328 { 1329 uint64_t timeout; 1330 uintptr_t rcc_base = stm32mp_rcc_base(); 1331 uintptr_t address = rcc_base + RCC_OCRDYR; 1332 1333 mmio_clrsetbits_32(rcc_base + RCC_HSICFGR, 1334 RCC_HSICFGR_HSIDIV_MASK, 1335 RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv); 1336 1337 timeout = timeout_init_us(HSIDIV_TIMEOUT); 1338 while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) { 1339 if (timeout_elapsed(timeout)) { 1340 ERROR("HSIDIV failed @ 0x%lx: 0x%x\n", 1341 address, mmio_read_32(address)); 1342 return -ETIMEDOUT; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 static int stm32mp1_hsidiv(unsigned long hsifreq) 1350 { 1351 uint8_t hsidiv; 1352 uint32_t hsidivfreq = MAX_HSI_HZ; 1353 1354 for (hsidiv = 0; hsidiv < 4U; hsidiv++) { 1355 if (hsidivfreq == hsifreq) { 1356 break; 1357 } 1358 1359 hsidivfreq /= 2U; 1360 } 1361 1362 if (hsidiv == 4U) { 1363 ERROR("Invalid clk-hsi frequency\n"); 1364 return -1; 1365 } 1366 1367 if (hsidiv != 0U) { 1368 return stm32mp1_set_hsidiv(hsidiv); 1369 } 1370 1371 return 0; 1372 } 1373 1374 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id, 1375 unsigned int clksrc, 1376 uint32_t *pllcfg, int plloff) 1377 { 1378 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 1379 uintptr_t rcc_base = stm32mp_rcc_base(); 1380 uintptr_t pllxcr = rcc_base + pll->pllxcr; 1381 enum stm32mp1_plltype type = pll->plltype; 1382 uintptr_t clksrc_address = rcc_base + (clksrc >> 4); 1383 unsigned long refclk; 1384 uint32_t ifrge = 0U; 1385 uint32_t src, value, fracv = 0; 1386 void *fdt; 1387 1388 /* Check PLL output */ 1389 if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) { 1390 return false; 1391 } 1392 1393 /* Check current clksrc */ 1394 src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK; 1395 if (src != (clksrc & RCC_SELR_SRC_MASK)) { 1396 return false; 1397 } 1398 1399 /* Check Div */ 1400 src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK; 1401 1402 refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) / 1403 (pllcfg[PLLCFG_M] + 1U); 1404 1405 if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) || 1406 (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) { 1407 return false; 1408 } 1409 1410 if ((type == PLL_800) && (refclk >= 8000000U)) { 1411 ifrge = 1U; 1412 } 1413 1414 value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) & 1415 RCC_PLLNCFGR1_DIVN_MASK; 1416 value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) & 1417 RCC_PLLNCFGR1_DIVM_MASK; 1418 value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) & 1419 RCC_PLLNCFGR1_IFRGE_MASK; 1420 if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) { 1421 return false; 1422 } 1423 1424 /* Fractional configuration */ 1425 if (fdt_get_address(&fdt) == 1) { 1426 fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0); 1427 } 1428 1429 value = fracv << RCC_PLLNFRACR_FRACV_SHIFT; 1430 value |= RCC_PLLNFRACR_FRACLE; 1431 if (mmio_read_32(rcc_base + pll->pllxfracr) != value) { 1432 return false; 1433 } 1434 1435 /* Output config */ 1436 value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) & 1437 RCC_PLLNCFGR2_DIVP_MASK; 1438 value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) & 1439 RCC_PLLNCFGR2_DIVQ_MASK; 1440 value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) & 1441 RCC_PLLNCFGR2_DIVR_MASK; 1442 if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) { 1443 return false; 1444 } 1445 1446 return true; 1447 } 1448 1449 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id) 1450 { 1451 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 1452 uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr; 1453 1454 /* Preserve RCC_PLLNCR_SSCG_CTRL value */ 1455 mmio_clrsetbits_32(pllxcr, 1456 RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | 1457 RCC_PLLNCR_DIVREN, 1458 RCC_PLLNCR_PLLON); 1459 } 1460 1461 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output) 1462 { 1463 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 1464 uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr; 1465 uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT); 1466 1467 /* Wait PLL lock */ 1468 while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) { 1469 if (timeout_elapsed(timeout)) { 1470 ERROR("PLL%d start failed @ 0x%lx: 0x%x\n", 1471 pll_id, pllxcr, mmio_read_32(pllxcr)); 1472 return -ETIMEDOUT; 1473 } 1474 } 1475 1476 /* Start the requested output */ 1477 mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT); 1478 1479 return 0; 1480 } 1481 1482 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id) 1483 { 1484 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 1485 uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr; 1486 uint64_t timeout; 1487 1488 /* Stop all output */ 1489 mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | 1490 RCC_PLLNCR_DIVREN); 1491 1492 /* Stop PLL */ 1493 mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON); 1494 1495 timeout = timeout_init_us(PLLRDY_TIMEOUT); 1496 /* Wait PLL stopped */ 1497 while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) { 1498 if (timeout_elapsed(timeout)) { 1499 ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n", 1500 pll_id, pllxcr, mmio_read_32(pllxcr)); 1501 return -ETIMEDOUT; 1502 } 1503 } 1504 1505 return 0; 1506 } 1507 1508 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id, 1509 uint32_t *pllcfg) 1510 { 1511 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 1512 uintptr_t rcc_base = stm32mp_rcc_base(); 1513 uint32_t value; 1514 1515 value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) & 1516 RCC_PLLNCFGR2_DIVP_MASK; 1517 value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) & 1518 RCC_PLLNCFGR2_DIVQ_MASK; 1519 value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) & 1520 RCC_PLLNCFGR2_DIVR_MASK; 1521 mmio_write_32(rcc_base + pll->pllxcfgr2, value); 1522 } 1523 1524 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id, 1525 uint32_t *pllcfg, uint32_t fracv) 1526 { 1527 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 1528 uintptr_t rcc_base = stm32mp_rcc_base(); 1529 enum stm32mp1_plltype type = pll->plltype; 1530 unsigned long refclk; 1531 uint32_t ifrge = 0; 1532 uint32_t src, value; 1533 1534 src = mmio_read_32(rcc_base + pll->rckxselr) & 1535 RCC_SELR_REFCLK_SRC_MASK; 1536 1537 refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) / 1538 (pllcfg[PLLCFG_M] + 1U); 1539 1540 if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) || 1541 (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) { 1542 return -EINVAL; 1543 } 1544 1545 if ((type == PLL_800) && (refclk >= 8000000U)) { 1546 ifrge = 1U; 1547 } 1548 1549 value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) & 1550 RCC_PLLNCFGR1_DIVN_MASK; 1551 value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) & 1552 RCC_PLLNCFGR1_DIVM_MASK; 1553 value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) & 1554 RCC_PLLNCFGR1_IFRGE_MASK; 1555 mmio_write_32(rcc_base + pll->pllxcfgr1, value); 1556 1557 /* Fractional configuration */ 1558 value = 0; 1559 mmio_write_32(rcc_base + pll->pllxfracr, value); 1560 1561 value = fracv << RCC_PLLNFRACR_FRACV_SHIFT; 1562 mmio_write_32(rcc_base + pll->pllxfracr, value); 1563 1564 value |= RCC_PLLNFRACR_FRACLE; 1565 mmio_write_32(rcc_base + pll->pllxfracr, value); 1566 1567 stm32mp1_pll_config_output(pll_id, pllcfg); 1568 1569 return 0; 1570 } 1571 1572 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg) 1573 { 1574 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 1575 uint32_t pllxcsg = 0; 1576 1577 pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) & 1578 RCC_PLLNCSGR_MOD_PER_MASK; 1579 1580 pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) & 1581 RCC_PLLNCSGR_INC_STEP_MASK; 1582 1583 pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) & 1584 RCC_PLLNCSGR_SSCG_MODE_MASK; 1585 1586 mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg); 1587 1588 mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr, 1589 RCC_PLLNCR_SSCG_CTRL); 1590 } 1591 1592 static int stm32mp1_set_clksrc(unsigned int clksrc) 1593 { 1594 uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4); 1595 uint64_t timeout; 1596 1597 mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK, 1598 clksrc & RCC_SELR_SRC_MASK); 1599 1600 timeout = timeout_init_us(CLKSRC_TIMEOUT); 1601 while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) { 1602 if (timeout_elapsed(timeout)) { 1603 ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc, 1604 clksrc_address, mmio_read_32(clksrc_address)); 1605 return -ETIMEDOUT; 1606 } 1607 } 1608 1609 return 0; 1610 } 1611 1612 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address) 1613 { 1614 uint64_t timeout; 1615 1616 mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK, 1617 clkdiv & RCC_DIVR_DIV_MASK); 1618 1619 timeout = timeout_init_us(CLKDIV_TIMEOUT); 1620 while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) { 1621 if (timeout_elapsed(timeout)) { 1622 ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n", 1623 clkdiv, address, mmio_read_32(address)); 1624 return -ETIMEDOUT; 1625 } 1626 } 1627 1628 return 0; 1629 } 1630 1631 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv) 1632 { 1633 uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4); 1634 1635 /* 1636 * Binding clksrc : 1637 * bit15-4 offset 1638 * bit3: disable 1639 * bit2-0: MCOSEL[2:0] 1640 */ 1641 if ((clksrc & 0x8U) != 0U) { 1642 mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON); 1643 } else { 1644 mmio_clrsetbits_32(clksrc_address, 1645 RCC_MCOCFG_MCOSRC_MASK, 1646 clksrc & RCC_MCOCFG_MCOSRC_MASK); 1647 mmio_clrsetbits_32(clksrc_address, 1648 RCC_MCOCFG_MCODIV_MASK, 1649 clkdiv << RCC_MCOCFG_MCODIV_SHIFT); 1650 mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON); 1651 } 1652 } 1653 1654 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css) 1655 { 1656 uintptr_t address = stm32mp_rcc_base() + RCC_BDCR; 1657 1658 if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) || 1659 (clksrc != (uint32_t)CLK_RTC_DISABLED)) { 1660 mmio_clrsetbits_32(address, 1661 RCC_BDCR_RTCSRC_MASK, 1662 (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT); 1663 1664 mmio_setbits_32(address, RCC_BDCR_RTCCKEN); 1665 } 1666 1667 if (lse_css) { 1668 mmio_setbits_32(address, RCC_BDCR_LSECSSON); 1669 } 1670 } 1671 1672 static void stm32mp1_stgen_config(void) 1673 { 1674 uint32_t cntfid0; 1675 unsigned long rate; 1676 unsigned long long counter; 1677 1678 cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF); 1679 rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K)); 1680 1681 if (cntfid0 == rate) { 1682 return; 1683 } 1684 1685 mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); 1686 counter = (unsigned long long)mmio_read_32(STGEN_BASE + CNTCVL_OFF); 1687 counter |= ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF)) << 32; 1688 counter = (counter * rate / cntfid0); 1689 1690 mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter); 1691 mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32)); 1692 mmio_write_32(STGEN_BASE + CNTFID_OFF, rate); 1693 mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); 1694 1695 write_cntfrq((u_register_t)rate); 1696 1697 /* Need to update timer with new frequency */ 1698 generic_delay_timer_init(); 1699 } 1700 1701 void stm32mp1_stgen_increment(unsigned long long offset_in_ms) 1702 { 1703 unsigned long long cnt; 1704 1705 cnt = ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) | 1706 mmio_read_32(STGEN_BASE + CNTCVL_OFF); 1707 1708 cnt += (offset_in_ms * mmio_read_32(STGEN_BASE + CNTFID_OFF)) / 1000U; 1709 1710 mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); 1711 mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)cnt); 1712 mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(cnt >> 32)); 1713 mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); 1714 } 1715 1716 static void stm32mp1_pkcs_config(uint32_t pkcs) 1717 { 1718 uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU); 1719 uint32_t value = pkcs & 0xFU; 1720 uint32_t mask = 0xFU; 1721 1722 if ((pkcs & BIT(31)) != 0U) { 1723 mask <<= 4; 1724 value <<= 4; 1725 } 1726 1727 mmio_clrsetbits_32(address, mask, value); 1728 } 1729 1730 int stm32mp1_clk_init(void) 1731 { 1732 uintptr_t rcc_base = stm32mp_rcc_base(); 1733 unsigned int clksrc[CLKSRC_NB]; 1734 unsigned int clkdiv[CLKDIV_NB]; 1735 unsigned int pllcfg[_PLL_NB][PLLCFG_NB]; 1736 int plloff[_PLL_NB]; 1737 int ret, len; 1738 enum stm32mp1_pll_id i; 1739 bool lse_css = false; 1740 bool pll3_preserve = false; 1741 bool pll4_preserve = false; 1742 bool pll4_bootrom = false; 1743 const fdt32_t *pkcs_cell; 1744 void *fdt; 1745 1746 if (fdt_get_address(&fdt) == 0) { 1747 return -FDT_ERR_NOTFOUND; 1748 } 1749 1750 /* Check status field to disable security */ 1751 if (!fdt_get_rcc_secure_status()) { 1752 mmio_write_32(rcc_base + RCC_TZCR, 0); 1753 } 1754 1755 ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB, 1756 clksrc); 1757 if (ret < 0) { 1758 return -FDT_ERR_NOTFOUND; 1759 } 1760 1761 ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB, 1762 clkdiv); 1763 if (ret < 0) { 1764 return -FDT_ERR_NOTFOUND; 1765 } 1766 1767 for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { 1768 char name[12]; 1769 1770 snprintf(name, sizeof(name), "st,pll@%d", i); 1771 plloff[i] = fdt_rcc_subnode_offset(name); 1772 1773 if (!fdt_check_node(plloff[i])) { 1774 continue; 1775 } 1776 1777 ret = fdt_read_uint32_array(fdt, plloff[i], "cfg", 1778 (int)PLLCFG_NB, pllcfg[i]); 1779 if (ret < 0) { 1780 return -FDT_ERR_NOTFOUND; 1781 } 1782 } 1783 1784 stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]); 1785 stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]); 1786 1787 /* 1788 * Switch ON oscillator found in device-tree. 1789 * Note: HSI already ON after BootROM stage. 1790 */ 1791 if (stm32mp1_osc[_LSI] != 0U) { 1792 stm32mp1_lsi_set(true); 1793 } 1794 if (stm32mp1_osc[_LSE] != 0U) { 1795 bool bypass, digbyp; 1796 uint32_t lsedrv; 1797 1798 bypass = fdt_osc_read_bool(_LSE, "st,bypass"); 1799 digbyp = fdt_osc_read_bool(_LSE, "st,digbypass"); 1800 lse_css = fdt_osc_read_bool(_LSE, "st,css"); 1801 lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive", 1802 LSEDRV_MEDIUM_HIGH); 1803 stm32mp1_lse_enable(bypass, digbyp, lsedrv); 1804 } 1805 if (stm32mp1_osc[_HSE] != 0U) { 1806 bool bypass, digbyp, css; 1807 1808 bypass = fdt_osc_read_bool(_HSE, "st,bypass"); 1809 digbyp = fdt_osc_read_bool(_HSE, "st,digbypass"); 1810 css = fdt_osc_read_bool(_HSE, "st,css"); 1811 stm32mp1_hse_enable(bypass, digbyp, css); 1812 } 1813 /* 1814 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR) 1815 * => switch on CSI even if node is not present in device tree 1816 */ 1817 stm32mp1_csi_set(true); 1818 1819 /* Come back to HSI */ 1820 ret = stm32mp1_set_clksrc(CLK_MPU_HSI); 1821 if (ret != 0) { 1822 return ret; 1823 } 1824 ret = stm32mp1_set_clksrc(CLK_AXI_HSI); 1825 if (ret != 0) { 1826 return ret; 1827 } 1828 ret = stm32mp1_set_clksrc(CLK_MCU_HSI); 1829 if (ret != 0) { 1830 return ret; 1831 } 1832 1833 if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) & 1834 RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) { 1835 pll3_preserve = stm32mp1_check_pll_conf(_PLL3, 1836 clksrc[CLKSRC_PLL3], 1837 pllcfg[_PLL3], 1838 plloff[_PLL3]); 1839 pll4_preserve = stm32mp1_check_pll_conf(_PLL4, 1840 clksrc[CLKSRC_PLL4], 1841 pllcfg[_PLL4], 1842 plloff[_PLL4]); 1843 } 1844 1845 for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { 1846 if (((i == _PLL3) && pll3_preserve) || 1847 ((i == _PLL4) && pll4_preserve)) { 1848 continue; 1849 } 1850 1851 ret = stm32mp1_pll_stop(i); 1852 if (ret != 0) { 1853 return ret; 1854 } 1855 } 1856 1857 /* Configure HSIDIV */ 1858 if (stm32mp1_osc[_HSI] != 0U) { 1859 ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]); 1860 if (ret != 0) { 1861 return ret; 1862 } 1863 stm32mp1_stgen_config(); 1864 } 1865 1866 /* Select DIV */ 1867 /* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */ 1868 mmio_write_32(rcc_base + RCC_MPCKDIVR, 1869 clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK); 1870 ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR); 1871 if (ret != 0) { 1872 return ret; 1873 } 1874 ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR); 1875 if (ret != 0) { 1876 return ret; 1877 } 1878 ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR); 1879 if (ret != 0) { 1880 return ret; 1881 } 1882 ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR); 1883 if (ret != 0) { 1884 return ret; 1885 } 1886 ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR); 1887 if (ret != 0) { 1888 return ret; 1889 } 1890 ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR); 1891 if (ret != 0) { 1892 return ret; 1893 } 1894 ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR); 1895 if (ret != 0) { 1896 return ret; 1897 } 1898 1899 /* No ready bit for RTC */ 1900 mmio_write_32(rcc_base + RCC_RTCDIVR, 1901 clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK); 1902 1903 /* Configure PLLs source */ 1904 ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]); 1905 if (ret != 0) { 1906 return ret; 1907 } 1908 1909 if (!pll3_preserve) { 1910 ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]); 1911 if (ret != 0) { 1912 return ret; 1913 } 1914 } 1915 1916 if (!pll4_preserve) { 1917 ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]); 1918 if (ret != 0) { 1919 return ret; 1920 } 1921 } 1922 1923 /* Configure and start PLLs */ 1924 for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { 1925 uint32_t fracv; 1926 uint32_t csg[PLLCSG_NB]; 1927 1928 if (((i == _PLL3) && pll3_preserve) || 1929 ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) { 1930 continue; 1931 } 1932 1933 if (!fdt_check_node(plloff[i])) { 1934 continue; 1935 } 1936 1937 if ((i == _PLL4) && pll4_bootrom) { 1938 /* Set output divider if not done by the Bootrom */ 1939 stm32mp1_pll_config_output(i, pllcfg[i]); 1940 continue; 1941 } 1942 1943 fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0); 1944 1945 ret = stm32mp1_pll_config(i, pllcfg[i], fracv); 1946 if (ret != 0) { 1947 return ret; 1948 } 1949 ret = fdt_read_uint32_array(fdt, plloff[i], "csg", 1950 (uint32_t)PLLCSG_NB, csg); 1951 if (ret == 0) { 1952 stm32mp1_pll_csg(i, csg); 1953 } else if (ret != -FDT_ERR_NOTFOUND) { 1954 return ret; 1955 } 1956 1957 stm32mp1_pll_start(i); 1958 } 1959 /* Wait and start PLLs ouptut when ready */ 1960 for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { 1961 if (!fdt_check_node(plloff[i])) { 1962 continue; 1963 } 1964 1965 ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]); 1966 if (ret != 0) { 1967 return ret; 1968 } 1969 } 1970 /* Wait LSE ready before to use it */ 1971 if (stm32mp1_osc[_LSE] != 0U) { 1972 stm32mp1_lse_wait(); 1973 } 1974 1975 /* Configure with expected clock source */ 1976 ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]); 1977 if (ret != 0) { 1978 return ret; 1979 } 1980 ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]); 1981 if (ret != 0) { 1982 return ret; 1983 } 1984 ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]); 1985 if (ret != 0) { 1986 return ret; 1987 } 1988 stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css); 1989 1990 /* Configure PKCK */ 1991 pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len); 1992 if (pkcs_cell != NULL) { 1993 bool ckper_disabled = false; 1994 uint32_t j; 1995 1996 for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) { 1997 uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]); 1998 1999 if (pkcs == (uint32_t)CLK_CKPER_DISABLED) { 2000 ckper_disabled = true; 2001 continue; 2002 } 2003 stm32mp1_pkcs_config(pkcs); 2004 } 2005 2006 /* 2007 * CKPER is source for some peripheral clocks 2008 * (FMC-NAND / QPSI-NOR) and switching source is allowed 2009 * only if previous clock is still ON 2010 * => deactivated CKPER only after switching clock 2011 */ 2012 if (ckper_disabled) { 2013 stm32mp1_pkcs_config(CLK_CKPER_DISABLED); 2014 } 2015 } 2016 2017 /* Switch OFF HSI if not found in device-tree */ 2018 if (stm32mp1_osc[_HSI] == 0U) { 2019 stm32mp1_hsi_set(false); 2020 } 2021 stm32mp1_stgen_config(); 2022 2023 /* Software Self-Refresh mode (SSR) during DDR initilialization */ 2024 mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR, 2025 RCC_DDRITFCR_DDRCKMOD_MASK, 2026 RCC_DDRITFCR_DDRCKMOD_SSR << 2027 RCC_DDRITFCR_DDRCKMOD_SHIFT); 2028 2029 return 0; 2030 } 2031 2032 static void stm32mp1_osc_clk_init(const char *name, 2033 enum stm32mp_osc_id index) 2034 { 2035 uint32_t frequency; 2036 2037 if (fdt_osc_read_freq(name, &frequency) == 0) { 2038 stm32mp1_osc[index] = frequency; 2039 } 2040 } 2041 2042 static void stm32mp1_osc_init(void) 2043 { 2044 enum stm32mp_osc_id i; 2045 2046 for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) { 2047 stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i); 2048 } 2049 } 2050 2051 #ifdef STM32MP_SHARED_RESOURCES 2052 /* 2053 * Get the parent ID of the target parent clock, for tagging as secure 2054 * shared clock dependencies. 2055 */ 2056 static int get_parent_id_parent(unsigned int parent_id) 2057 { 2058 enum stm32mp1_parent_sel s = _UNKNOWN_SEL; 2059 enum stm32mp1_pll_id pll_id; 2060 uint32_t p_sel; 2061 uintptr_t rcc_base = stm32mp_rcc_base(); 2062 2063 switch (parent_id) { 2064 case _ACLK: 2065 case _PCLK4: 2066 case _PCLK5: 2067 s = _AXIS_SEL; 2068 break; 2069 case _PLL1_P: 2070 case _PLL1_Q: 2071 case _PLL1_R: 2072 pll_id = _PLL1; 2073 break; 2074 case _PLL2_P: 2075 case _PLL2_Q: 2076 case _PLL2_R: 2077 pll_id = _PLL2; 2078 break; 2079 case _PLL3_P: 2080 case _PLL3_Q: 2081 case _PLL3_R: 2082 pll_id = _PLL3; 2083 break; 2084 case _PLL4_P: 2085 case _PLL4_Q: 2086 case _PLL4_R: 2087 pll_id = _PLL4; 2088 break; 2089 case _PCLK1: 2090 case _PCLK2: 2091 case _HCLK2: 2092 case _HCLK6: 2093 case _CK_PER: 2094 case _CK_MPU: 2095 case _CK_MCU: 2096 case _USB_PHY_48: 2097 /* We do not expect to access these */ 2098 panic(); 2099 break; 2100 default: 2101 /* Other parents have no parent */ 2102 return -1; 2103 } 2104 2105 if (s != _UNKNOWN_SEL) { 2106 const struct stm32mp1_clk_sel *sel = clk_sel_ref(s); 2107 2108 p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) & 2109 sel->msk; 2110 2111 if (p_sel < sel->nb_parent) { 2112 return (int)sel->parent[p_sel]; 2113 } 2114 } else { 2115 const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); 2116 2117 p_sel = mmio_read_32(rcc_base + pll->rckxselr) & 2118 RCC_SELR_REFCLK_SRC_MASK; 2119 2120 if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) { 2121 return (int)pll->refclk[p_sel]; 2122 } 2123 } 2124 2125 VERBOSE("No parent selected for %s\n", 2126 stm32mp1_clk_parent_name[parent_id]); 2127 2128 return -1; 2129 } 2130 2131 static void secure_parent_clocks(unsigned long parent_id) 2132 { 2133 int grandparent_id; 2134 2135 switch (parent_id) { 2136 case _PLL3_P: 2137 case _PLL3_Q: 2138 case _PLL3_R: 2139 stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3); 2140 break; 2141 2142 /* These clocks are always secure when RCC is secure */ 2143 case _ACLK: 2144 case _HCLK2: 2145 case _HCLK6: 2146 case _PCLK4: 2147 case _PCLK5: 2148 case _PLL1_P: 2149 case _PLL1_Q: 2150 case _PLL1_R: 2151 case _PLL2_P: 2152 case _PLL2_Q: 2153 case _PLL2_R: 2154 case _HSI: 2155 case _HSI_KER: 2156 case _LSI: 2157 case _CSI: 2158 case _CSI_KER: 2159 case _HSE: 2160 case _HSE_KER: 2161 case _HSE_KER_DIV2: 2162 case _HSE_RTC: 2163 case _LSE: 2164 break; 2165 2166 default: 2167 VERBOSE("Cannot secure parent clock %s\n", 2168 stm32mp1_clk_parent_name[parent_id]); 2169 panic(); 2170 } 2171 2172 grandparent_id = get_parent_id_parent(parent_id); 2173 if (grandparent_id >= 0) { 2174 secure_parent_clocks(grandparent_id); 2175 } 2176 } 2177 2178 void stm32mp1_register_clock_parents_secure(unsigned long clock_id) 2179 { 2180 int parent_id; 2181 2182 if (!stm32mp1_rcc_is_secure()) { 2183 return; 2184 } 2185 2186 switch (clock_id) { 2187 case PLL1: 2188 case PLL2: 2189 /* PLL1/PLL2 are always secure: nothing to do */ 2190 break; 2191 case PLL3: 2192 stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3); 2193 break; 2194 case PLL4: 2195 ERROR("PLL4 cannot be secured\n"); 2196 panic(); 2197 break; 2198 default: 2199 /* Others are expected gateable clock */ 2200 parent_id = stm32mp1_clk_get_parent(clock_id); 2201 if (parent_id < 0) { 2202 INFO("No parent found for clock %lu\n", clock_id); 2203 } else { 2204 secure_parent_clocks(parent_id); 2205 } 2206 break; 2207 } 2208 } 2209 #endif /* STM32MP_SHARED_RESOURCES */ 2210 2211 static void sync_earlyboot_clocks_state(void) 2212 { 2213 unsigned int idx; 2214 const unsigned long secure_enable[] = { 2215 AXIDCG, 2216 BSEC, 2217 DDRC1, DDRC1LP, 2218 DDRC2, DDRC2LP, 2219 DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP, 2220 DDRPHYC, DDRPHYCLP, 2221 RTCAPB, 2222 TZC1, TZC2, 2223 TZPC, 2224 STGEN_K, 2225 }; 2226 2227 for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) { 2228 stm32mp_clk_enable(secure_enable[idx]); 2229 } 2230 } 2231 2232 int stm32mp1_clk_probe(void) 2233 { 2234 stm32mp1_osc_init(); 2235 2236 sync_earlyboot_clocks_state(); 2237 2238 return 0; 2239 } 2240