xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 5b18de09e80f87963df9a2e451c47e2321b8643a)
1 /*
2  * Copyright (C) 2018-2021, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_HSE_RTC,
60 	_CSI_KER,
61 	_PLL1_P,
62 	_PLL1_Q,
63 	_PLL1_R,
64 	_PLL2_P,
65 	_PLL2_Q,
66 	_PLL2_R,
67 	_PLL3_P,
68 	_PLL3_Q,
69 	_PLL3_R,
70 	_PLL4_P,
71 	_PLL4_Q,
72 	_PLL4_R,
73 	_ACLK,
74 	_PCLK1,
75 	_PCLK2,
76 	_PCLK3,
77 	_PCLK4,
78 	_PCLK5,
79 	_HCLK6,
80 	_HCLK2,
81 	_CK_PER,
82 	_CK_MPU,
83 	_CK_MCU,
84 	_USB_PHY_48,
85 	_PARENT_NB,
86 	_UNKNOWN_ID = 0xff,
87 };
88 
89 /* Lists only the parent clock we are interested in */
90 enum stm32mp1_parent_sel {
91 	_I2C12_SEL,
92 	_I2C35_SEL,
93 	_STGEN_SEL,
94 	_I2C46_SEL,
95 	_SPI6_SEL,
96 	_UART1_SEL,
97 	_RNG1_SEL,
98 	_UART6_SEL,
99 	_UART24_SEL,
100 	_UART35_SEL,
101 	_UART78_SEL,
102 	_SDMMC12_SEL,
103 	_SDMMC3_SEL,
104 	_QSPI_SEL,
105 	_FMC_SEL,
106 	_AXIS_SEL,
107 	_MCUS_SEL,
108 	_USBPHY_SEL,
109 	_USBO_SEL,
110 	_MPU_SEL,
111 	_CKPER_SEL,
112 	_RTC_SEL,
113 	_PARENT_SEL_NB,
114 	_UNKNOWN_SEL = 0xff,
115 };
116 
117 /* State the parent clock ID straight related to a clock */
118 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
119 	[_HSE] = CK_HSE,
120 	[_HSI] = CK_HSI,
121 	[_CSI] = CK_CSI,
122 	[_LSE] = CK_LSE,
123 	[_LSI] = CK_LSI,
124 	[_I2S_CKIN] = _UNKNOWN_ID,
125 	[_USB_PHY_48] = _UNKNOWN_ID,
126 	[_HSI_KER] = CK_HSI,
127 	[_HSE_KER] = CK_HSE,
128 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
129 	[_HSE_RTC] = _UNKNOWN_ID,
130 	[_CSI_KER] = CK_CSI,
131 	[_PLL1_P] = PLL1_P,
132 	[_PLL1_Q] = PLL1_Q,
133 	[_PLL1_R] = PLL1_R,
134 	[_PLL2_P] = PLL2_P,
135 	[_PLL2_Q] = PLL2_Q,
136 	[_PLL2_R] = PLL2_R,
137 	[_PLL3_P] = PLL3_P,
138 	[_PLL3_Q] = PLL3_Q,
139 	[_PLL3_R] = PLL3_R,
140 	[_PLL4_P] = PLL4_P,
141 	[_PLL4_Q] = PLL4_Q,
142 	[_PLL4_R] = PLL4_R,
143 	[_ACLK] = CK_AXI,
144 	[_PCLK1] = CK_AXI,
145 	[_PCLK2] = CK_AXI,
146 	[_PCLK3] = CK_AXI,
147 	[_PCLK4] = CK_AXI,
148 	[_PCLK5] = CK_AXI,
149 	[_CK_PER] = CK_PER,
150 	[_CK_MPU] = CK_MPU,
151 	[_CK_MCU] = CK_MCU,
152 };
153 
154 static unsigned int clock_id2parent_id(unsigned long id)
155 {
156 	unsigned int n;
157 
158 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
159 		if (parent_id_clock_id[n] == id) {
160 			return n;
161 		}
162 	}
163 
164 	return _UNKNOWN_ID;
165 }
166 
167 enum stm32mp1_pll_id {
168 	_PLL1,
169 	_PLL2,
170 	_PLL3,
171 	_PLL4,
172 	_PLL_NB
173 };
174 
175 enum stm32mp1_div_id {
176 	_DIV_P,
177 	_DIV_Q,
178 	_DIV_R,
179 	_DIV_NB,
180 };
181 
182 enum stm32mp1_clksrc_id {
183 	CLKSRC_MPU,
184 	CLKSRC_AXI,
185 	CLKSRC_MCU,
186 	CLKSRC_PLL12,
187 	CLKSRC_PLL3,
188 	CLKSRC_PLL4,
189 	CLKSRC_RTC,
190 	CLKSRC_MCO1,
191 	CLKSRC_MCO2,
192 	CLKSRC_NB
193 };
194 
195 enum stm32mp1_clkdiv_id {
196 	CLKDIV_MPU,
197 	CLKDIV_AXI,
198 	CLKDIV_MCU,
199 	CLKDIV_APB1,
200 	CLKDIV_APB2,
201 	CLKDIV_APB3,
202 	CLKDIV_APB4,
203 	CLKDIV_APB5,
204 	CLKDIV_RTC,
205 	CLKDIV_MCO1,
206 	CLKDIV_MCO2,
207 	CLKDIV_NB
208 };
209 
210 enum stm32mp1_pllcfg {
211 	PLLCFG_M,
212 	PLLCFG_N,
213 	PLLCFG_P,
214 	PLLCFG_Q,
215 	PLLCFG_R,
216 	PLLCFG_O,
217 	PLLCFG_NB
218 };
219 
220 enum stm32mp1_pllcsg {
221 	PLLCSG_MOD_PER,
222 	PLLCSG_INC_STEP,
223 	PLLCSG_SSCG_MODE,
224 	PLLCSG_NB
225 };
226 
227 enum stm32mp1_plltype {
228 	PLL_800,
229 	PLL_1600,
230 	PLL_TYPE_NB
231 };
232 
233 struct stm32mp1_pll {
234 	uint8_t refclk_min;
235 	uint8_t refclk_max;
236 	uint8_t divn_max;
237 };
238 
239 struct stm32mp1_clk_gate {
240 	uint16_t offset;
241 	uint8_t bit;
242 	uint8_t index;
243 	uint8_t set_clr;
244 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
245 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
246 };
247 
248 struct stm32mp1_clk_sel {
249 	uint16_t offset;
250 	uint8_t src;
251 	uint8_t msk;
252 	uint8_t nb_parent;
253 	const uint8_t *parent;
254 };
255 
256 #define REFCLK_SIZE 4
257 struct stm32mp1_clk_pll {
258 	enum stm32mp1_plltype plltype;
259 	uint16_t rckxselr;
260 	uint16_t pllxcfgr1;
261 	uint16_t pllxcfgr2;
262 	uint16_t pllxfracr;
263 	uint16_t pllxcr;
264 	uint16_t pllxcsgr;
265 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
266 };
267 
268 /* Clocks with selectable source and non set/clr register access */
269 #define _CLK_SELEC(off, b, idx, s)			\
270 	{						\
271 		.offset = (off),			\
272 		.bit = (b),				\
273 		.index = (idx),				\
274 		.set_clr = 0,				\
275 		.sel = (s),				\
276 		.fixed = _UNKNOWN_ID,			\
277 	}
278 
279 /* Clocks with fixed source and non set/clr register access */
280 #define _CLK_FIXED(off, b, idx, f)			\
281 	{						\
282 		.offset = (off),			\
283 		.bit = (b),				\
284 		.index = (idx),				\
285 		.set_clr = 0,				\
286 		.sel = _UNKNOWN_SEL,			\
287 		.fixed = (f),				\
288 	}
289 
290 /* Clocks with selectable source and set/clr register access */
291 #define _CLK_SC_SELEC(off, b, idx, s)			\
292 	{						\
293 		.offset = (off),			\
294 		.bit = (b),				\
295 		.index = (idx),				\
296 		.set_clr = 1,				\
297 		.sel = (s),				\
298 		.fixed = _UNKNOWN_ID,			\
299 	}
300 
301 /* Clocks with fixed source and set/clr register access */
302 #define _CLK_SC_FIXED(off, b, idx, f)			\
303 	{						\
304 		.offset = (off),			\
305 		.bit = (b),				\
306 		.index = (idx),				\
307 		.set_clr = 1,				\
308 		.sel = _UNKNOWN_SEL,			\
309 		.fixed = (f),				\
310 	}
311 
312 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
313 	[_ ## _label ## _SEL] = {				\
314 		.offset = _rcc_selr,				\
315 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
316 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
317 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
318 		.parent = (_parents),				\
319 		.nb_parent = ARRAY_SIZE(_parents)		\
320 	}
321 
322 #define _CLK_PLL(idx, type, off1, off2, off3,		\
323 		 off4, off5, off6,			\
324 		 p1, p2, p3, p4)			\
325 	[(idx)] = {					\
326 		.plltype = (type),			\
327 		.rckxselr = (off1),			\
328 		.pllxcfgr1 = (off2),			\
329 		.pllxcfgr2 = (off3),			\
330 		.pllxfracr = (off4),			\
331 		.pllxcr = (off5),			\
332 		.pllxcsgr = (off6),			\
333 		.refclk[0] = (p1),			\
334 		.refclk[1] = (p2),			\
335 		.refclk[2] = (p3),			\
336 		.refclk[3] = (p4),			\
337 	}
338 
339 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
340 
341 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
342 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
343 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
344 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
345 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
346 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
347 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
348 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
349 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
350 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
351 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
352 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
353 
354 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
361 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
362 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
363 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
364 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
365 
366 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
367 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
368 
369 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
370 
371 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
372 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
373 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
374 
375 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
376 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
377 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
378 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
381 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
382 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
383 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
384 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
385 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
386 
387 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
388 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
389 
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
397 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
398 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
399 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
400 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
401 
402 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
403 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
404 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
405 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
406 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
407 
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
409 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
410 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
411 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
412 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
413 
414 	_CLK_SELEC(RCC_BDCR, 20, RTC, _RTC_SEL),
415 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
416 };
417 
418 static const uint8_t i2c12_parents[] = {
419 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
420 };
421 
422 static const uint8_t i2c35_parents[] = {
423 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
424 };
425 
426 static const uint8_t stgen_parents[] = {
427 	_HSI_KER, _HSE_KER
428 };
429 
430 static const uint8_t i2c46_parents[] = {
431 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
432 };
433 
434 static const uint8_t spi6_parents[] = {
435 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
436 };
437 
438 static const uint8_t usart1_parents[] = {
439 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
440 };
441 
442 static const uint8_t rng1_parents[] = {
443 	_CSI, _PLL4_R, _LSE, _LSI
444 };
445 
446 static const uint8_t uart6_parents[] = {
447 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
448 };
449 
450 static const uint8_t uart234578_parents[] = {
451 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
452 };
453 
454 static const uint8_t sdmmc12_parents[] = {
455 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
456 };
457 
458 static const uint8_t sdmmc3_parents[] = {
459 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
460 };
461 
462 static const uint8_t qspi_parents[] = {
463 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
464 };
465 
466 static const uint8_t fmc_parents[] = {
467 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
468 };
469 
470 static const uint8_t ass_parents[] = {
471 	_HSI, _HSE, _PLL2
472 };
473 
474 static const uint8_t mss_parents[] = {
475 	_HSI, _HSE, _CSI, _PLL3
476 };
477 
478 static const uint8_t usbphy_parents[] = {
479 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
480 };
481 
482 static const uint8_t usbo_parents[] = {
483 	_PLL4_R, _USB_PHY_48
484 };
485 
486 static const uint8_t mpu_parents[] = {
487 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
488 };
489 
490 static const uint8_t per_parents[] = {
491 	_HSI, _HSE, _CSI,
492 };
493 
494 static const uint8_t rtc_parents[] = {
495 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
496 };
497 
498 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
499 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
500 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
501 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
502 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
503 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
504 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
505 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
506 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
507 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
508 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
509 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
510 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
511 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
512 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
513 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
514 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
515 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
516 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
517 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
518 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
519 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
520 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
521 };
522 
523 /* Define characteristic of PLL according type */
524 #define DIVN_MIN	24
525 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
526 	[PLL_800] = {
527 		.refclk_min = 4,
528 		.refclk_max = 16,
529 		.divn_max = 99,
530 	},
531 	[PLL_1600] = {
532 		.refclk_min = 8,
533 		.refclk_max = 16,
534 		.divn_max = 199,
535 	},
536 };
537 
538 /* PLLNCFGR2 register divider by output */
539 static const uint8_t pllncfgr2[_DIV_NB] = {
540 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
541 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
542 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
543 };
544 
545 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
546 	_CLK_PLL(_PLL1, PLL_1600,
547 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
548 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
549 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
550 	_CLK_PLL(_PLL2, PLL_1600,
551 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
552 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
553 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
554 	_CLK_PLL(_PLL3, PLL_800,
555 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
556 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
557 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
558 	_CLK_PLL(_PLL4, PLL_800,
559 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
560 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
561 		 _HSI, _HSE, _CSI, _I2S_CKIN),
562 };
563 
564 /* Prescaler table lookups for clock computation */
565 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
566 static const uint8_t stm32mp1_mcu_div[16] = {
567 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
568 };
569 
570 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
571 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
572 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
573 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
574 	0, 1, 2, 3, 4, 4, 4, 4
575 };
576 
577 /* div = /1 /2 /3 /4 */
578 static const uint8_t stm32mp1_axi_div[8] = {
579 	1, 2, 3, 4, 4, 4, 4, 4
580 };
581 
582 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
583 	[_HSI] = "HSI",
584 	[_HSE] = "HSE",
585 	[_CSI] = "CSI",
586 	[_LSI] = "LSI",
587 	[_LSE] = "LSE",
588 	[_I2S_CKIN] = "I2S_CKIN",
589 	[_HSI_KER] = "HSI_KER",
590 	[_HSE_KER] = "HSE_KER",
591 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
592 	[_HSE_RTC] = "HSE_RTC",
593 	[_CSI_KER] = "CSI_KER",
594 	[_PLL1_P] = "PLL1_P",
595 	[_PLL1_Q] = "PLL1_Q",
596 	[_PLL1_R] = "PLL1_R",
597 	[_PLL2_P] = "PLL2_P",
598 	[_PLL2_Q] = "PLL2_Q",
599 	[_PLL2_R] = "PLL2_R",
600 	[_PLL3_P] = "PLL3_P",
601 	[_PLL3_Q] = "PLL3_Q",
602 	[_PLL3_R] = "PLL3_R",
603 	[_PLL4_P] = "PLL4_P",
604 	[_PLL4_Q] = "PLL4_Q",
605 	[_PLL4_R] = "PLL4_R",
606 	[_ACLK] = "ACLK",
607 	[_PCLK1] = "PCLK1",
608 	[_PCLK2] = "PCLK2",
609 	[_PCLK3] = "PCLK3",
610 	[_PCLK4] = "PCLK4",
611 	[_PCLK5] = "PCLK5",
612 	[_HCLK6] = "KCLK6",
613 	[_HCLK2] = "HCLK2",
614 	[_CK_PER] = "CK_PER",
615 	[_CK_MPU] = "CK_MPU",
616 	[_CK_MCU] = "CK_MCU",
617 	[_USB_PHY_48] = "USB_PHY_48",
618 };
619 
620 /* RCC clock device driver private */
621 static unsigned long stm32mp1_osc[NB_OSC];
622 static struct spinlock reg_lock;
623 static unsigned int gate_refcounts[NB_GATES];
624 static struct spinlock refcount_lock;
625 
626 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
627 {
628 	return &stm32mp1_clk_gate[idx];
629 }
630 
631 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
632 {
633 	return &stm32mp1_clk_sel[idx];
634 }
635 
636 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
637 {
638 	return &stm32mp1_clk_pll[idx];
639 }
640 
641 static void stm32mp1_clk_lock(struct spinlock *lock)
642 {
643 	if (stm32mp_lock_available()) {
644 		/* Assume interrupts are masked */
645 		spin_lock(lock);
646 	}
647 }
648 
649 static void stm32mp1_clk_unlock(struct spinlock *lock)
650 {
651 	if (stm32mp_lock_available()) {
652 		spin_unlock(lock);
653 	}
654 }
655 
656 bool stm32mp1_rcc_is_secure(void)
657 {
658 	uintptr_t rcc_base = stm32mp_rcc_base();
659 	uint32_t mask = RCC_TZCR_TZEN;
660 
661 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
662 }
663 
664 bool stm32mp1_rcc_is_mckprot(void)
665 {
666 	uintptr_t rcc_base = stm32mp_rcc_base();
667 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
668 
669 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
670 }
671 
672 void stm32mp1_clk_rcc_regs_lock(void)
673 {
674 	stm32mp1_clk_lock(&reg_lock);
675 }
676 
677 void stm32mp1_clk_rcc_regs_unlock(void)
678 {
679 	stm32mp1_clk_unlock(&reg_lock);
680 }
681 
682 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
683 {
684 	if (idx >= NB_OSC) {
685 		return 0;
686 	}
687 
688 	return stm32mp1_osc[idx];
689 }
690 
691 static int stm32mp1_clk_get_gated_id(unsigned long id)
692 {
693 	unsigned int i;
694 
695 	for (i = 0U; i < NB_GATES; i++) {
696 		if (gate_ref(i)->index == id) {
697 			return i;
698 		}
699 	}
700 
701 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
702 
703 	return -EINVAL;
704 }
705 
706 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
707 {
708 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
709 }
710 
711 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
712 {
713 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
714 }
715 
716 static int stm32mp1_clk_get_parent(unsigned long id)
717 {
718 	const struct stm32mp1_clk_sel *sel;
719 	uint32_t p_sel;
720 	int i;
721 	enum stm32mp1_parent_id p;
722 	enum stm32mp1_parent_sel s;
723 	uintptr_t rcc_base = stm32mp_rcc_base();
724 
725 	/* Few non gateable clock have a static parent ID, find them */
726 	i = (int)clock_id2parent_id(id);
727 	if (i != _UNKNOWN_ID) {
728 		return i;
729 	}
730 
731 	i = stm32mp1_clk_get_gated_id(id);
732 	if (i < 0) {
733 		panic();
734 	}
735 
736 	p = stm32mp1_clk_get_fixed_parent(i);
737 	if (p < _PARENT_NB) {
738 		return (int)p;
739 	}
740 
741 	s = stm32mp1_clk_get_sel(i);
742 	if (s == _UNKNOWN_SEL) {
743 		return -EINVAL;
744 	}
745 	if (s >= _PARENT_SEL_NB) {
746 		panic();
747 	}
748 
749 	sel = clk_sel_ref(s);
750 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
751 		 (sel->msk << sel->src)) >> sel->src;
752 	if (p_sel < sel->nb_parent) {
753 		return (int)sel->parent[p_sel];
754 	}
755 
756 	return -EINVAL;
757 }
758 
759 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
760 {
761 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
762 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
763 
764 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
765 }
766 
767 /*
768  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
769  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
770  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
771  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
772  */
773 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
774 {
775 	unsigned long refclk, fvco;
776 	uint32_t cfgr1, fracr, divm, divn;
777 	uintptr_t rcc_base = stm32mp_rcc_base();
778 
779 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
780 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
781 
782 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
783 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
784 
785 	refclk = stm32mp1_pll_get_fref(pll);
786 
787 	/*
788 	 * With FRACV :
789 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
790 	 * Without FRACV
791 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
792 	 */
793 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
794 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
795 				 RCC_PLLNFRACR_FRACV_SHIFT;
796 		unsigned long long numerator, denominator;
797 
798 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
799 		numerator = refclk * numerator;
800 		denominator = ((unsigned long long)divm + 1U) << 13;
801 		fvco = (unsigned long)(numerator / denominator);
802 	} else {
803 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
804 	}
805 
806 	return fvco;
807 }
808 
809 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
810 					    enum stm32mp1_div_id div_id)
811 {
812 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
813 	unsigned long dfout;
814 	uint32_t cfgr2, divy;
815 
816 	if (div_id >= _DIV_NB) {
817 		return 0;
818 	}
819 
820 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
821 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
822 
823 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
824 
825 	return dfout;
826 }
827 
828 static unsigned long get_clock_rate(int p)
829 {
830 	uint32_t reg, clkdiv;
831 	unsigned long clock = 0;
832 	uintptr_t rcc_base = stm32mp_rcc_base();
833 
834 	switch (p) {
835 	case _CK_MPU:
836 	/* MPU sub system */
837 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
838 		switch (reg & RCC_SELR_SRC_MASK) {
839 		case RCC_MPCKSELR_HSI:
840 			clock = stm32mp1_clk_get_fixed(_HSI);
841 			break;
842 		case RCC_MPCKSELR_HSE:
843 			clock = stm32mp1_clk_get_fixed(_HSE);
844 			break;
845 		case RCC_MPCKSELR_PLL:
846 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
847 			break;
848 		case RCC_MPCKSELR_PLL_MPUDIV:
849 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
850 
851 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
852 			clkdiv = reg & RCC_MPUDIV_MASK;
853 			if (clkdiv != 0U) {
854 				clock /= stm32mp1_mpu_div[clkdiv];
855 			}
856 			break;
857 		default:
858 			break;
859 		}
860 		break;
861 	/* AXI sub system */
862 	case _ACLK:
863 	case _HCLK2:
864 	case _HCLK6:
865 	case _PCLK4:
866 	case _PCLK5:
867 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
868 		switch (reg & RCC_SELR_SRC_MASK) {
869 		case RCC_ASSCKSELR_HSI:
870 			clock = stm32mp1_clk_get_fixed(_HSI);
871 			break;
872 		case RCC_ASSCKSELR_HSE:
873 			clock = stm32mp1_clk_get_fixed(_HSE);
874 			break;
875 		case RCC_ASSCKSELR_PLL:
876 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
877 			break;
878 		default:
879 			break;
880 		}
881 
882 		/* System clock divider */
883 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
884 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
885 
886 		switch (p) {
887 		case _PCLK4:
888 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
889 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
890 			break;
891 		case _PCLK5:
892 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
893 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
894 			break;
895 		default:
896 			break;
897 		}
898 		break;
899 	/* MCU sub system */
900 	case _CK_MCU:
901 	case _PCLK1:
902 	case _PCLK2:
903 	case _PCLK3:
904 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
905 		switch (reg & RCC_SELR_SRC_MASK) {
906 		case RCC_MSSCKSELR_HSI:
907 			clock = stm32mp1_clk_get_fixed(_HSI);
908 			break;
909 		case RCC_MSSCKSELR_HSE:
910 			clock = stm32mp1_clk_get_fixed(_HSE);
911 			break;
912 		case RCC_MSSCKSELR_CSI:
913 			clock = stm32mp1_clk_get_fixed(_CSI);
914 			break;
915 		case RCC_MSSCKSELR_PLL:
916 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
917 			break;
918 		default:
919 			break;
920 		}
921 
922 		/* MCU clock divider */
923 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
924 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
925 
926 		switch (p) {
927 		case _PCLK1:
928 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
929 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
930 			break;
931 		case _PCLK2:
932 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
933 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
934 			break;
935 		case _PCLK3:
936 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
937 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
938 			break;
939 		case _CK_MCU:
940 		default:
941 			break;
942 		}
943 		break;
944 	case _CK_PER:
945 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
946 		switch (reg & RCC_SELR_SRC_MASK) {
947 		case RCC_CPERCKSELR_HSI:
948 			clock = stm32mp1_clk_get_fixed(_HSI);
949 			break;
950 		case RCC_CPERCKSELR_HSE:
951 			clock = stm32mp1_clk_get_fixed(_HSE);
952 			break;
953 		case RCC_CPERCKSELR_CSI:
954 			clock = stm32mp1_clk_get_fixed(_CSI);
955 			break;
956 		default:
957 			break;
958 		}
959 		break;
960 	case _HSI:
961 	case _HSI_KER:
962 		clock = stm32mp1_clk_get_fixed(_HSI);
963 		break;
964 	case _CSI:
965 	case _CSI_KER:
966 		clock = stm32mp1_clk_get_fixed(_CSI);
967 		break;
968 	case _HSE:
969 	case _HSE_KER:
970 		clock = stm32mp1_clk_get_fixed(_HSE);
971 		break;
972 	case _HSE_KER_DIV2:
973 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
974 		break;
975 	case _HSE_RTC:
976 		clock = stm32mp1_clk_get_fixed(_HSE);
977 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
978 		break;
979 	case _LSI:
980 		clock = stm32mp1_clk_get_fixed(_LSI);
981 		break;
982 	case _LSE:
983 		clock = stm32mp1_clk_get_fixed(_LSE);
984 		break;
985 	/* PLL */
986 	case _PLL1_P:
987 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
988 		break;
989 	case _PLL1_Q:
990 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
991 		break;
992 	case _PLL1_R:
993 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
994 		break;
995 	case _PLL2_P:
996 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
997 		break;
998 	case _PLL2_Q:
999 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1000 		break;
1001 	case _PLL2_R:
1002 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1003 		break;
1004 	case _PLL3_P:
1005 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1006 		break;
1007 	case _PLL3_Q:
1008 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1009 		break;
1010 	case _PLL3_R:
1011 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1012 		break;
1013 	case _PLL4_P:
1014 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1015 		break;
1016 	case _PLL4_Q:
1017 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1018 		break;
1019 	case _PLL4_R:
1020 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1021 		break;
1022 	/* Other */
1023 	case _USB_PHY_48:
1024 		clock = USB_PHY_48_MHZ;
1025 		break;
1026 	default:
1027 		break;
1028 	}
1029 
1030 	return clock;
1031 }
1032 
1033 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1034 {
1035 	uintptr_t rcc_base = stm32mp_rcc_base();
1036 
1037 	VERBOSE("Enable clock %u\n", gate->index);
1038 
1039 	if (gate->set_clr != 0U) {
1040 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1041 	} else {
1042 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1043 	}
1044 }
1045 
1046 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1047 {
1048 	uintptr_t rcc_base = stm32mp_rcc_base();
1049 
1050 	VERBOSE("Disable clock %u\n", gate->index);
1051 
1052 	if (gate->set_clr != 0U) {
1053 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1054 			      BIT(gate->bit));
1055 	} else {
1056 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1057 	}
1058 }
1059 
1060 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1061 {
1062 	uintptr_t rcc_base = stm32mp_rcc_base();
1063 
1064 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1065 }
1066 
1067 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1068 {
1069 	int i = stm32mp1_clk_get_gated_id(id);
1070 
1071 	if (i < 0) {
1072 		panic();
1073 	}
1074 
1075 	return gate_refcounts[i];
1076 }
1077 
1078 /* Oscillators and PLLs are not gated at runtime */
1079 static bool clock_is_always_on(unsigned long id)
1080 {
1081 	switch (id) {
1082 	case CK_HSE:
1083 	case CK_CSI:
1084 	case CK_LSI:
1085 	case CK_LSE:
1086 	case CK_HSI:
1087 	case CK_HSE_DIV2:
1088 	case PLL1_Q:
1089 	case PLL1_R:
1090 	case PLL2_P:
1091 	case PLL2_Q:
1092 	case PLL2_R:
1093 	case PLL3_P:
1094 	case PLL3_Q:
1095 	case PLL3_R:
1096 		return true;
1097 	default:
1098 		return false;
1099 	}
1100 }
1101 
1102 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1103 {
1104 	const struct stm32mp1_clk_gate *gate;
1105 	int i;
1106 	unsigned int *refcnt;
1107 
1108 	if (clock_is_always_on(id)) {
1109 		return;
1110 	}
1111 
1112 	i = stm32mp1_clk_get_gated_id(id);
1113 	if (i < 0) {
1114 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1115 		panic();
1116 	}
1117 
1118 	gate = gate_ref(i);
1119 	refcnt = &gate_refcounts[i];
1120 
1121 	stm32mp1_clk_lock(&refcount_lock);
1122 
1123 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1124 		__clk_enable(gate);
1125 	}
1126 
1127 	stm32mp1_clk_unlock(&refcount_lock);
1128 }
1129 
1130 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1131 {
1132 	const struct stm32mp1_clk_gate *gate;
1133 	int i;
1134 	unsigned int *refcnt;
1135 
1136 	if (clock_is_always_on(id)) {
1137 		return;
1138 	}
1139 
1140 	i = stm32mp1_clk_get_gated_id(id);
1141 	if (i < 0) {
1142 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1143 		panic();
1144 	}
1145 
1146 	gate = gate_ref(i);
1147 	refcnt = &gate_refcounts[i];
1148 
1149 	stm32mp1_clk_lock(&refcount_lock);
1150 
1151 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1152 		__clk_disable(gate);
1153 	}
1154 
1155 	stm32mp1_clk_unlock(&refcount_lock);
1156 }
1157 
1158 void stm32mp_clk_enable(unsigned long id)
1159 {
1160 	__stm32mp1_clk_enable(id, true);
1161 }
1162 
1163 void stm32mp_clk_disable(unsigned long id)
1164 {
1165 	__stm32mp1_clk_disable(id, true);
1166 }
1167 
1168 bool stm32mp_clk_is_enabled(unsigned long id)
1169 {
1170 	int i;
1171 
1172 	if (clock_is_always_on(id)) {
1173 		return true;
1174 	}
1175 
1176 	i = stm32mp1_clk_get_gated_id(id);
1177 	if (i < 0) {
1178 		panic();
1179 	}
1180 
1181 	return __clk_is_enabled(gate_ref(i));
1182 }
1183 
1184 unsigned long stm32mp_clk_get_rate(unsigned long id)
1185 {
1186 	int p = stm32mp1_clk_get_parent(id);
1187 
1188 	if (p < 0) {
1189 		return 0;
1190 	}
1191 
1192 	return get_clock_rate(p);
1193 }
1194 
1195 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1196 {
1197 	uintptr_t address = stm32mp_rcc_base() + offset;
1198 
1199 	if (enable) {
1200 		mmio_setbits_32(address, mask_on);
1201 	} else {
1202 		mmio_clrbits_32(address, mask_on);
1203 	}
1204 }
1205 
1206 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1207 {
1208 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1209 	uintptr_t address = stm32mp_rcc_base() + offset;
1210 
1211 	mmio_write_32(address, mask_on);
1212 }
1213 
1214 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1215 {
1216 	uint64_t timeout;
1217 	uint32_t mask_test;
1218 	uintptr_t address = stm32mp_rcc_base() + offset;
1219 
1220 	if (enable) {
1221 		mask_test = mask_rdy;
1222 	} else {
1223 		mask_test = 0;
1224 	}
1225 
1226 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1227 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1228 		if (timeout_elapsed(timeout)) {
1229 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1230 			      mask_rdy, address, enable, mmio_read_32(address));
1231 			return -ETIMEDOUT;
1232 		}
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1239 {
1240 	uint32_t value;
1241 	uintptr_t rcc_base = stm32mp_rcc_base();
1242 
1243 	if (digbyp) {
1244 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1245 	}
1246 
1247 	if (bypass || digbyp) {
1248 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1249 	}
1250 
1251 	/*
1252 	 * Warning: not recommended to switch directly from "high drive"
1253 	 * to "medium low drive", and vice-versa.
1254 	 */
1255 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1256 		RCC_BDCR_LSEDRV_SHIFT;
1257 
1258 	while (value != lsedrv) {
1259 		if (value > lsedrv) {
1260 			value--;
1261 		} else {
1262 			value++;
1263 		}
1264 
1265 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1266 				   RCC_BDCR_LSEDRV_MASK,
1267 				   value << RCC_BDCR_LSEDRV_SHIFT);
1268 	}
1269 
1270 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1271 }
1272 
1273 static void stm32mp1_lse_wait(void)
1274 {
1275 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1276 		VERBOSE("%s: failed\n", __func__);
1277 	}
1278 }
1279 
1280 static void stm32mp1_lsi_set(bool enable)
1281 {
1282 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1283 
1284 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1285 		VERBOSE("%s: failed\n", __func__);
1286 	}
1287 }
1288 
1289 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1290 {
1291 	uintptr_t rcc_base = stm32mp_rcc_base();
1292 
1293 	if (digbyp) {
1294 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1295 	}
1296 
1297 	if (bypass || digbyp) {
1298 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1299 	}
1300 
1301 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1302 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1303 		VERBOSE("%s: failed\n", __func__);
1304 	}
1305 
1306 	if (css) {
1307 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1308 	}
1309 }
1310 
1311 static void stm32mp1_csi_set(bool enable)
1312 {
1313 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1314 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1315 		VERBOSE("%s: failed\n", __func__);
1316 	}
1317 }
1318 
1319 static void stm32mp1_hsi_set(bool enable)
1320 {
1321 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1322 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1323 		VERBOSE("%s: failed\n", __func__);
1324 	}
1325 }
1326 
1327 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1328 {
1329 	uint64_t timeout;
1330 	uintptr_t rcc_base = stm32mp_rcc_base();
1331 	uintptr_t address = rcc_base + RCC_OCRDYR;
1332 
1333 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1334 			   RCC_HSICFGR_HSIDIV_MASK,
1335 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1336 
1337 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1338 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1339 		if (timeout_elapsed(timeout)) {
1340 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1341 			      address, mmio_read_32(address));
1342 			return -ETIMEDOUT;
1343 		}
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 static int stm32mp1_hsidiv(unsigned long hsifreq)
1350 {
1351 	uint8_t hsidiv;
1352 	uint32_t hsidivfreq = MAX_HSI_HZ;
1353 
1354 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1355 		if (hsidivfreq == hsifreq) {
1356 			break;
1357 		}
1358 
1359 		hsidivfreq /= 2U;
1360 	}
1361 
1362 	if (hsidiv == 4U) {
1363 		ERROR("Invalid clk-hsi frequency\n");
1364 		return -1;
1365 	}
1366 
1367 	if (hsidiv != 0U) {
1368 		return stm32mp1_set_hsidiv(hsidiv);
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1375 				    unsigned int clksrc,
1376 				    uint32_t *pllcfg, int plloff)
1377 {
1378 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1379 	uintptr_t rcc_base = stm32mp_rcc_base();
1380 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1381 	enum stm32mp1_plltype type = pll->plltype;
1382 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1383 	unsigned long refclk;
1384 	uint32_t ifrge = 0U;
1385 	uint32_t src, value, fracv = 0;
1386 	void *fdt;
1387 
1388 	/* Check PLL output */
1389 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1390 		return false;
1391 	}
1392 
1393 	/* Check current clksrc */
1394 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1395 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1396 		return false;
1397 	}
1398 
1399 	/* Check Div */
1400 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1401 
1402 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1403 		 (pllcfg[PLLCFG_M] + 1U);
1404 
1405 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1406 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1407 		return false;
1408 	}
1409 
1410 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1411 		ifrge = 1U;
1412 	}
1413 
1414 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1415 		RCC_PLLNCFGR1_DIVN_MASK;
1416 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1417 		 RCC_PLLNCFGR1_DIVM_MASK;
1418 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1419 		 RCC_PLLNCFGR1_IFRGE_MASK;
1420 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1421 		return false;
1422 	}
1423 
1424 	/* Fractional configuration */
1425 	if (fdt_get_address(&fdt) == 1) {
1426 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1427 	}
1428 
1429 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1430 	value |= RCC_PLLNFRACR_FRACLE;
1431 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1432 		return false;
1433 	}
1434 
1435 	/* Output config */
1436 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1437 		RCC_PLLNCFGR2_DIVP_MASK;
1438 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1439 		 RCC_PLLNCFGR2_DIVQ_MASK;
1440 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1441 		 RCC_PLLNCFGR2_DIVR_MASK;
1442 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1443 		return false;
1444 	}
1445 
1446 	return true;
1447 }
1448 
1449 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1450 {
1451 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1452 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1453 
1454 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1455 	mmio_clrsetbits_32(pllxcr,
1456 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1457 			   RCC_PLLNCR_DIVREN,
1458 			   RCC_PLLNCR_PLLON);
1459 }
1460 
1461 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1462 {
1463 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1464 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1465 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1466 
1467 	/* Wait PLL lock */
1468 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1469 		if (timeout_elapsed(timeout)) {
1470 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1471 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1472 			return -ETIMEDOUT;
1473 		}
1474 	}
1475 
1476 	/* Start the requested output */
1477 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1478 
1479 	return 0;
1480 }
1481 
1482 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1483 {
1484 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1485 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1486 	uint64_t timeout;
1487 
1488 	/* Stop all output */
1489 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1490 			RCC_PLLNCR_DIVREN);
1491 
1492 	/* Stop PLL */
1493 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1494 
1495 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1496 	/* Wait PLL stopped */
1497 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1498 		if (timeout_elapsed(timeout)) {
1499 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1500 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1501 			return -ETIMEDOUT;
1502 		}
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1509 				       uint32_t *pllcfg)
1510 {
1511 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1512 	uintptr_t rcc_base = stm32mp_rcc_base();
1513 	uint32_t value;
1514 
1515 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1516 		RCC_PLLNCFGR2_DIVP_MASK;
1517 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1518 		 RCC_PLLNCFGR2_DIVQ_MASK;
1519 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1520 		 RCC_PLLNCFGR2_DIVR_MASK;
1521 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1522 }
1523 
1524 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1525 			       uint32_t *pllcfg, uint32_t fracv)
1526 {
1527 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1528 	uintptr_t rcc_base = stm32mp_rcc_base();
1529 	enum stm32mp1_plltype type = pll->plltype;
1530 	unsigned long refclk;
1531 	uint32_t ifrge = 0;
1532 	uint32_t src, value;
1533 
1534 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1535 		RCC_SELR_REFCLK_SRC_MASK;
1536 
1537 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1538 		 (pllcfg[PLLCFG_M] + 1U);
1539 
1540 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1541 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1542 		return -EINVAL;
1543 	}
1544 
1545 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1546 		ifrge = 1U;
1547 	}
1548 
1549 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1550 		RCC_PLLNCFGR1_DIVN_MASK;
1551 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1552 		 RCC_PLLNCFGR1_DIVM_MASK;
1553 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1554 		 RCC_PLLNCFGR1_IFRGE_MASK;
1555 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1556 
1557 	/* Fractional configuration */
1558 	value = 0;
1559 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1560 
1561 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1562 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1563 
1564 	value |= RCC_PLLNFRACR_FRACLE;
1565 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1566 
1567 	stm32mp1_pll_config_output(pll_id, pllcfg);
1568 
1569 	return 0;
1570 }
1571 
1572 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1573 {
1574 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1575 	uint32_t pllxcsg = 0;
1576 
1577 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1578 		    RCC_PLLNCSGR_MOD_PER_MASK;
1579 
1580 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1581 		    RCC_PLLNCSGR_INC_STEP_MASK;
1582 
1583 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1584 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1585 
1586 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1587 
1588 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1589 			RCC_PLLNCR_SSCG_CTRL);
1590 }
1591 
1592 static int stm32mp1_set_clksrc(unsigned int clksrc)
1593 {
1594 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1595 	uint64_t timeout;
1596 
1597 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1598 			   clksrc & RCC_SELR_SRC_MASK);
1599 
1600 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1601 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1602 		if (timeout_elapsed(timeout)) {
1603 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1604 			      clksrc_address, mmio_read_32(clksrc_address));
1605 			return -ETIMEDOUT;
1606 		}
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1613 {
1614 	uint64_t timeout;
1615 
1616 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1617 			   clkdiv & RCC_DIVR_DIV_MASK);
1618 
1619 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1620 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1621 		if (timeout_elapsed(timeout)) {
1622 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1623 			      clkdiv, address, mmio_read_32(address));
1624 			return -ETIMEDOUT;
1625 		}
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1632 {
1633 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1634 
1635 	/*
1636 	 * Binding clksrc :
1637 	 *      bit15-4 offset
1638 	 *      bit3:   disable
1639 	 *      bit2-0: MCOSEL[2:0]
1640 	 */
1641 	if ((clksrc & 0x8U) != 0U) {
1642 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1643 	} else {
1644 		mmio_clrsetbits_32(clksrc_address,
1645 				   RCC_MCOCFG_MCOSRC_MASK,
1646 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1647 		mmio_clrsetbits_32(clksrc_address,
1648 				   RCC_MCOCFG_MCODIV_MASK,
1649 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1650 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1651 	}
1652 }
1653 
1654 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1655 {
1656 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1657 
1658 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1659 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1660 		mmio_clrsetbits_32(address,
1661 				   RCC_BDCR_RTCSRC_MASK,
1662 				   (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
1663 
1664 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1665 	}
1666 
1667 	if (lse_css) {
1668 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1669 	}
1670 }
1671 
1672 static void stm32mp1_stgen_config(void)
1673 {
1674 	uint32_t cntfid0;
1675 	unsigned long rate;
1676 	unsigned long long counter;
1677 
1678 	cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF);
1679 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1680 
1681 	if (cntfid0 == rate) {
1682 		return;
1683 	}
1684 
1685 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1686 	counter = (unsigned long long)mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1687 	counter |= ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF)) << 32;
1688 	counter = (counter * rate / cntfid0);
1689 
1690 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter);
1691 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32));
1692 	mmio_write_32(STGEN_BASE + CNTFID_OFF, rate);
1693 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1694 
1695 	write_cntfrq((u_register_t)rate);
1696 
1697 	/* Need to update timer with new frequency */
1698 	generic_delay_timer_init();
1699 }
1700 
1701 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1702 {
1703 	unsigned long long cnt;
1704 
1705 	cnt = ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) |
1706 		mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1707 
1708 	cnt += (offset_in_ms * mmio_read_32(STGEN_BASE + CNTFID_OFF)) / 1000U;
1709 
1710 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1711 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)cnt);
1712 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1713 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1714 }
1715 
1716 static void stm32mp1_pkcs_config(uint32_t pkcs)
1717 {
1718 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1719 	uint32_t value = pkcs & 0xFU;
1720 	uint32_t mask = 0xFU;
1721 
1722 	if ((pkcs & BIT(31)) != 0U) {
1723 		mask <<= 4;
1724 		value <<= 4;
1725 	}
1726 
1727 	mmio_clrsetbits_32(address, mask, value);
1728 }
1729 
1730 int stm32mp1_clk_init(void)
1731 {
1732 	uintptr_t rcc_base = stm32mp_rcc_base();
1733 	unsigned int clksrc[CLKSRC_NB];
1734 	unsigned int clkdiv[CLKDIV_NB];
1735 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1736 	int plloff[_PLL_NB];
1737 	int ret, len;
1738 	enum stm32mp1_pll_id i;
1739 	bool lse_css = false;
1740 	bool pll3_preserve = false;
1741 	bool pll4_preserve = false;
1742 	bool pll4_bootrom = false;
1743 	const fdt32_t *pkcs_cell;
1744 	void *fdt;
1745 
1746 	if (fdt_get_address(&fdt) == 0) {
1747 		return -FDT_ERR_NOTFOUND;
1748 	}
1749 
1750 	/* Check status field to disable security */
1751 	if (!fdt_get_rcc_secure_status()) {
1752 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1753 	}
1754 
1755 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1756 					clksrc);
1757 	if (ret < 0) {
1758 		return -FDT_ERR_NOTFOUND;
1759 	}
1760 
1761 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1762 					clkdiv);
1763 	if (ret < 0) {
1764 		return -FDT_ERR_NOTFOUND;
1765 	}
1766 
1767 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1768 		char name[12];
1769 
1770 		snprintf(name, sizeof(name), "st,pll@%d", i);
1771 		plloff[i] = fdt_rcc_subnode_offset(name);
1772 
1773 		if (!fdt_check_node(plloff[i])) {
1774 			continue;
1775 		}
1776 
1777 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1778 					    (int)PLLCFG_NB, pllcfg[i]);
1779 		if (ret < 0) {
1780 			return -FDT_ERR_NOTFOUND;
1781 		}
1782 	}
1783 
1784 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1785 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1786 
1787 	/*
1788 	 * Switch ON oscillator found in device-tree.
1789 	 * Note: HSI already ON after BootROM stage.
1790 	 */
1791 	if (stm32mp1_osc[_LSI] != 0U) {
1792 		stm32mp1_lsi_set(true);
1793 	}
1794 	if (stm32mp1_osc[_LSE] != 0U) {
1795 		bool bypass, digbyp;
1796 		uint32_t lsedrv;
1797 
1798 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1799 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1800 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1801 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1802 						     LSEDRV_MEDIUM_HIGH);
1803 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1804 	}
1805 	if (stm32mp1_osc[_HSE] != 0U) {
1806 		bool bypass, digbyp, css;
1807 
1808 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1809 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1810 		css = fdt_osc_read_bool(_HSE, "st,css");
1811 		stm32mp1_hse_enable(bypass, digbyp, css);
1812 	}
1813 	/*
1814 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1815 	 * => switch on CSI even if node is not present in device tree
1816 	 */
1817 	stm32mp1_csi_set(true);
1818 
1819 	/* Come back to HSI */
1820 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1821 	if (ret != 0) {
1822 		return ret;
1823 	}
1824 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1825 	if (ret != 0) {
1826 		return ret;
1827 	}
1828 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1829 	if (ret != 0) {
1830 		return ret;
1831 	}
1832 
1833 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1834 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1835 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1836 							clksrc[CLKSRC_PLL3],
1837 							pllcfg[_PLL3],
1838 							plloff[_PLL3]);
1839 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1840 							clksrc[CLKSRC_PLL4],
1841 							pllcfg[_PLL4],
1842 							plloff[_PLL4]);
1843 	}
1844 
1845 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1846 		if (((i == _PLL3) && pll3_preserve) ||
1847 		    ((i == _PLL4) && pll4_preserve)) {
1848 			continue;
1849 		}
1850 
1851 		ret = stm32mp1_pll_stop(i);
1852 		if (ret != 0) {
1853 			return ret;
1854 		}
1855 	}
1856 
1857 	/* Configure HSIDIV */
1858 	if (stm32mp1_osc[_HSI] != 0U) {
1859 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1860 		if (ret != 0) {
1861 			return ret;
1862 		}
1863 		stm32mp1_stgen_config();
1864 	}
1865 
1866 	/* Select DIV */
1867 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1868 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1869 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1870 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1871 	if (ret != 0) {
1872 		return ret;
1873 	}
1874 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1875 	if (ret != 0) {
1876 		return ret;
1877 	}
1878 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1879 	if (ret != 0) {
1880 		return ret;
1881 	}
1882 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1883 	if (ret != 0) {
1884 		return ret;
1885 	}
1886 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1887 	if (ret != 0) {
1888 		return ret;
1889 	}
1890 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1891 	if (ret != 0) {
1892 		return ret;
1893 	}
1894 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1895 	if (ret != 0) {
1896 		return ret;
1897 	}
1898 
1899 	/* No ready bit for RTC */
1900 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1901 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1902 
1903 	/* Configure PLLs source */
1904 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1905 	if (ret != 0) {
1906 		return ret;
1907 	}
1908 
1909 	if (!pll3_preserve) {
1910 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1911 		if (ret != 0) {
1912 			return ret;
1913 		}
1914 	}
1915 
1916 	if (!pll4_preserve) {
1917 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1918 		if (ret != 0) {
1919 			return ret;
1920 		}
1921 	}
1922 
1923 	/* Configure and start PLLs */
1924 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1925 		uint32_t fracv;
1926 		uint32_t csg[PLLCSG_NB];
1927 
1928 		if (((i == _PLL3) && pll3_preserve) ||
1929 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1930 			continue;
1931 		}
1932 
1933 		if (!fdt_check_node(plloff[i])) {
1934 			continue;
1935 		}
1936 
1937 		if ((i == _PLL4) && pll4_bootrom) {
1938 			/* Set output divider if not done by the Bootrom */
1939 			stm32mp1_pll_config_output(i, pllcfg[i]);
1940 			continue;
1941 		}
1942 
1943 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1944 
1945 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1946 		if (ret != 0) {
1947 			return ret;
1948 		}
1949 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1950 					    (uint32_t)PLLCSG_NB, csg);
1951 		if (ret == 0) {
1952 			stm32mp1_pll_csg(i, csg);
1953 		} else if (ret != -FDT_ERR_NOTFOUND) {
1954 			return ret;
1955 		}
1956 
1957 		stm32mp1_pll_start(i);
1958 	}
1959 	/* Wait and start PLLs ouptut when ready */
1960 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1961 		if (!fdt_check_node(plloff[i])) {
1962 			continue;
1963 		}
1964 
1965 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1966 		if (ret != 0) {
1967 			return ret;
1968 		}
1969 	}
1970 	/* Wait LSE ready before to use it */
1971 	if (stm32mp1_osc[_LSE] != 0U) {
1972 		stm32mp1_lse_wait();
1973 	}
1974 
1975 	/* Configure with expected clock source */
1976 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1977 	if (ret != 0) {
1978 		return ret;
1979 	}
1980 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1981 	if (ret != 0) {
1982 		return ret;
1983 	}
1984 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1985 	if (ret != 0) {
1986 		return ret;
1987 	}
1988 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1989 
1990 	/* Configure PKCK */
1991 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1992 	if (pkcs_cell != NULL) {
1993 		bool ckper_disabled = false;
1994 		uint32_t j;
1995 
1996 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1997 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1998 
1999 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
2000 				ckper_disabled = true;
2001 				continue;
2002 			}
2003 			stm32mp1_pkcs_config(pkcs);
2004 		}
2005 
2006 		/*
2007 		 * CKPER is source for some peripheral clocks
2008 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2009 		 * only if previous clock is still ON
2010 		 * => deactivated CKPER only after switching clock
2011 		 */
2012 		if (ckper_disabled) {
2013 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2014 		}
2015 	}
2016 
2017 	/* Switch OFF HSI if not found in device-tree */
2018 	if (stm32mp1_osc[_HSI] == 0U) {
2019 		stm32mp1_hsi_set(false);
2020 	}
2021 	stm32mp1_stgen_config();
2022 
2023 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2024 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2025 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2026 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2027 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2028 
2029 	return 0;
2030 }
2031 
2032 static void stm32mp1_osc_clk_init(const char *name,
2033 				  enum stm32mp_osc_id index)
2034 {
2035 	uint32_t frequency;
2036 
2037 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2038 		stm32mp1_osc[index] = frequency;
2039 	}
2040 }
2041 
2042 static void stm32mp1_osc_init(void)
2043 {
2044 	enum stm32mp_osc_id i;
2045 
2046 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2047 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2048 	}
2049 }
2050 
2051 #ifdef STM32MP_SHARED_RESOURCES
2052 /*
2053  * Get the parent ID of the target parent clock, for tagging as secure
2054  * shared clock dependencies.
2055  */
2056 static int get_parent_id_parent(unsigned int parent_id)
2057 {
2058 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2059 	enum stm32mp1_pll_id pll_id;
2060 	uint32_t p_sel;
2061 	uintptr_t rcc_base = stm32mp_rcc_base();
2062 
2063 	switch (parent_id) {
2064 	case _ACLK:
2065 	case _PCLK4:
2066 	case _PCLK5:
2067 		s = _AXIS_SEL;
2068 		break;
2069 	case _PLL1_P:
2070 	case _PLL1_Q:
2071 	case _PLL1_R:
2072 		pll_id = _PLL1;
2073 		break;
2074 	case _PLL2_P:
2075 	case _PLL2_Q:
2076 	case _PLL2_R:
2077 		pll_id = _PLL2;
2078 		break;
2079 	case _PLL3_P:
2080 	case _PLL3_Q:
2081 	case _PLL3_R:
2082 		pll_id = _PLL3;
2083 		break;
2084 	case _PLL4_P:
2085 	case _PLL4_Q:
2086 	case _PLL4_R:
2087 		pll_id = _PLL4;
2088 		break;
2089 	case _PCLK1:
2090 	case _PCLK2:
2091 	case _HCLK2:
2092 	case _HCLK6:
2093 	case _CK_PER:
2094 	case _CK_MPU:
2095 	case _CK_MCU:
2096 	case _USB_PHY_48:
2097 		/* We do not expect to access these */
2098 		panic();
2099 		break;
2100 	default:
2101 		/* Other parents have no parent */
2102 		return -1;
2103 	}
2104 
2105 	if (s != _UNKNOWN_SEL) {
2106 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2107 
2108 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2109 			sel->msk;
2110 
2111 		if (p_sel < sel->nb_parent) {
2112 			return (int)sel->parent[p_sel];
2113 		}
2114 	} else {
2115 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2116 
2117 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2118 			RCC_SELR_REFCLK_SRC_MASK;
2119 
2120 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2121 			return (int)pll->refclk[p_sel];
2122 		}
2123 	}
2124 
2125 	VERBOSE("No parent selected for %s\n",
2126 		stm32mp1_clk_parent_name[parent_id]);
2127 
2128 	return -1;
2129 }
2130 
2131 static void secure_parent_clocks(unsigned long parent_id)
2132 {
2133 	int grandparent_id;
2134 
2135 	switch (parent_id) {
2136 	case _PLL3_P:
2137 	case _PLL3_Q:
2138 	case _PLL3_R:
2139 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2140 		break;
2141 
2142 	/* These clocks are always secure when RCC is secure */
2143 	case _ACLK:
2144 	case _HCLK2:
2145 	case _HCLK6:
2146 	case _PCLK4:
2147 	case _PCLK5:
2148 	case _PLL1_P:
2149 	case _PLL1_Q:
2150 	case _PLL1_R:
2151 	case _PLL2_P:
2152 	case _PLL2_Q:
2153 	case _PLL2_R:
2154 	case _HSI:
2155 	case _HSI_KER:
2156 	case _LSI:
2157 	case _CSI:
2158 	case _CSI_KER:
2159 	case _HSE:
2160 	case _HSE_KER:
2161 	case _HSE_KER_DIV2:
2162 	case _HSE_RTC:
2163 	case _LSE:
2164 		break;
2165 
2166 	default:
2167 		VERBOSE("Cannot secure parent clock %s\n",
2168 			stm32mp1_clk_parent_name[parent_id]);
2169 		panic();
2170 	}
2171 
2172 	grandparent_id = get_parent_id_parent(parent_id);
2173 	if (grandparent_id >= 0) {
2174 		secure_parent_clocks(grandparent_id);
2175 	}
2176 }
2177 
2178 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2179 {
2180 	int parent_id;
2181 
2182 	if (!stm32mp1_rcc_is_secure()) {
2183 		return;
2184 	}
2185 
2186 	switch (clock_id) {
2187 	case PLL1:
2188 	case PLL2:
2189 		/* PLL1/PLL2 are always secure: nothing to do */
2190 		break;
2191 	case PLL3:
2192 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2193 		break;
2194 	case PLL4:
2195 		ERROR("PLL4 cannot be secured\n");
2196 		panic();
2197 		break;
2198 	default:
2199 		/* Others are expected gateable clock */
2200 		parent_id = stm32mp1_clk_get_parent(clock_id);
2201 		if (parent_id < 0) {
2202 			INFO("No parent found for clock %lu\n", clock_id);
2203 		} else {
2204 			secure_parent_clocks(parent_id);
2205 		}
2206 		break;
2207 	}
2208 }
2209 #endif /* STM32MP_SHARED_RESOURCES */
2210 
2211 static void sync_earlyboot_clocks_state(void)
2212 {
2213 	unsigned int idx;
2214 	const unsigned long secure_enable[] = {
2215 		AXIDCG,
2216 		BSEC,
2217 		DDRC1, DDRC1LP,
2218 		DDRC2, DDRC2LP,
2219 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2220 		DDRPHYC, DDRPHYCLP,
2221 		RTCAPB,
2222 		TZC1, TZC2,
2223 		TZPC,
2224 		STGEN_K,
2225 	};
2226 
2227 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2228 		stm32mp_clk_enable(secure_enable[idx]);
2229 	}
2230 }
2231 
2232 int stm32mp1_clk_probe(void)
2233 {
2234 	stm32mp1_osc_init();
2235 
2236 	sync_earlyboot_clocks_state();
2237 
2238 	return 0;
2239 }
2240