xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 593a43cadc8753bc579cfadc6cc1e0dc3c936aa2)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_PER_SEL,
111 	_RTC_SEL,
112 	_PARENT_SEL_NB,
113 	_UNKNOWN_SEL = 0xff,
114 };
115 
116 /* State the parent clock ID straight related to a clock */
117 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
118 	[_HSE] = CK_HSE,
119 	[_HSI] = CK_HSI,
120 	[_CSI] = CK_CSI,
121 	[_LSE] = CK_LSE,
122 	[_LSI] = CK_LSI,
123 	[_I2S_CKIN] = _UNKNOWN_ID,
124 	[_USB_PHY_48] = _UNKNOWN_ID,
125 	[_HSI_KER] = CK_HSI,
126 	[_HSE_KER] = CK_HSE,
127 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
128 	[_CSI_KER] = CK_CSI,
129 	[_PLL1_P] = PLL1_P,
130 	[_PLL1_Q] = PLL1_Q,
131 	[_PLL1_R] = PLL1_R,
132 	[_PLL2_P] = PLL2_P,
133 	[_PLL2_Q] = PLL2_Q,
134 	[_PLL2_R] = PLL2_R,
135 	[_PLL3_P] = PLL3_P,
136 	[_PLL3_Q] = PLL3_Q,
137 	[_PLL3_R] = PLL3_R,
138 	[_PLL4_P] = PLL4_P,
139 	[_PLL4_Q] = PLL4_Q,
140 	[_PLL4_R] = PLL4_R,
141 	[_ACLK] = CK_AXI,
142 	[_PCLK1] = CK_AXI,
143 	[_PCLK2] = CK_AXI,
144 	[_PCLK3] = CK_AXI,
145 	[_PCLK4] = CK_AXI,
146 	[_PCLK5] = CK_AXI,
147 	[_CK_PER] = CK_PER,
148 	[_CK_MPU] = CK_MPU,
149 	[_CK_MCU] = CK_MCU,
150 };
151 
152 static unsigned int clock_id2parent_id(unsigned long id)
153 {
154 	unsigned int n;
155 
156 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
157 		if (parent_id_clock_id[n] == id) {
158 			return n;
159 		}
160 	}
161 
162 	return _UNKNOWN_ID;
163 }
164 
165 enum stm32mp1_pll_id {
166 	_PLL1,
167 	_PLL2,
168 	_PLL3,
169 	_PLL4,
170 	_PLL_NB
171 };
172 
173 enum stm32mp1_div_id {
174 	_DIV_P,
175 	_DIV_Q,
176 	_DIV_R,
177 	_DIV_NB,
178 };
179 
180 enum stm32mp1_clksrc_id {
181 	CLKSRC_MPU,
182 	CLKSRC_AXI,
183 	CLKSRC_MCU,
184 	CLKSRC_PLL12,
185 	CLKSRC_PLL3,
186 	CLKSRC_PLL4,
187 	CLKSRC_RTC,
188 	CLKSRC_MCO1,
189 	CLKSRC_MCO2,
190 	CLKSRC_NB
191 };
192 
193 enum stm32mp1_clkdiv_id {
194 	CLKDIV_MPU,
195 	CLKDIV_AXI,
196 	CLKDIV_MCU,
197 	CLKDIV_APB1,
198 	CLKDIV_APB2,
199 	CLKDIV_APB3,
200 	CLKDIV_APB4,
201 	CLKDIV_APB5,
202 	CLKDIV_RTC,
203 	CLKDIV_MCO1,
204 	CLKDIV_MCO2,
205 	CLKDIV_NB
206 };
207 
208 enum stm32mp1_pllcfg {
209 	PLLCFG_M,
210 	PLLCFG_N,
211 	PLLCFG_P,
212 	PLLCFG_Q,
213 	PLLCFG_R,
214 	PLLCFG_O,
215 	PLLCFG_NB
216 };
217 
218 enum stm32mp1_pllcsg {
219 	PLLCSG_MOD_PER,
220 	PLLCSG_INC_STEP,
221 	PLLCSG_SSCG_MODE,
222 	PLLCSG_NB
223 };
224 
225 enum stm32mp1_plltype {
226 	PLL_800,
227 	PLL_1600,
228 	PLL_TYPE_NB
229 };
230 
231 struct stm32mp1_pll {
232 	uint8_t refclk_min;
233 	uint8_t refclk_max;
234 	uint8_t divn_max;
235 };
236 
237 struct stm32mp1_clk_gate {
238 	uint16_t offset;
239 	uint8_t bit;
240 	uint8_t index;
241 	uint8_t set_clr;
242 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
243 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
244 };
245 
246 struct stm32mp1_clk_sel {
247 	uint16_t offset;
248 	uint8_t src;
249 	uint8_t msk;
250 	uint8_t nb_parent;
251 	const uint8_t *parent;
252 };
253 
254 #define REFCLK_SIZE 4
255 struct stm32mp1_clk_pll {
256 	enum stm32mp1_plltype plltype;
257 	uint16_t rckxselr;
258 	uint16_t pllxcfgr1;
259 	uint16_t pllxcfgr2;
260 	uint16_t pllxfracr;
261 	uint16_t pllxcr;
262 	uint16_t pllxcsgr;
263 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
264 };
265 
266 /* Clocks with selectable source and non set/clr register access */
267 #define _CLK_SELEC(off, b, idx, s)			\
268 	{						\
269 		.offset = (off),			\
270 		.bit = (b),				\
271 		.index = (idx),				\
272 		.set_clr = 0,				\
273 		.sel = (s),				\
274 		.fixed = _UNKNOWN_ID,			\
275 	}
276 
277 /* Clocks with fixed source and non set/clr register access */
278 #define _CLK_FIXED(off, b, idx, f)			\
279 	{						\
280 		.offset = (off),			\
281 		.bit = (b),				\
282 		.index = (idx),				\
283 		.set_clr = 0,				\
284 		.sel = _UNKNOWN_SEL,			\
285 		.fixed = (f),				\
286 	}
287 
288 /* Clocks with selectable source and set/clr register access */
289 #define _CLK_SC_SELEC(off, b, idx, s)			\
290 	{						\
291 		.offset = (off),			\
292 		.bit = (b),				\
293 		.index = (idx),				\
294 		.set_clr = 1,				\
295 		.sel = (s),				\
296 		.fixed = _UNKNOWN_ID,			\
297 	}
298 
299 /* Clocks with fixed source and set/clr register access */
300 #define _CLK_SC_FIXED(off, b, idx, f)			\
301 	{						\
302 		.offset = (off),			\
303 		.bit = (b),				\
304 		.index = (idx),				\
305 		.set_clr = 1,				\
306 		.sel = _UNKNOWN_SEL,			\
307 		.fixed = (f),				\
308 	}
309 
310 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
311 	[_ ## _label ## _SEL] = {				\
312 		.offset = _rcc_selr,				\
313 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
314 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
315 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
316 		.parent = (_parents),				\
317 		.nb_parent = ARRAY_SIZE(_parents)		\
318 	}
319 
320 #define _CLK_PLL(idx, type, off1, off2, off3,		\
321 		 off4, off5, off6,			\
322 		 p1, p2, p3, p4)			\
323 	[(idx)] = {					\
324 		.plltype = (type),			\
325 		.rckxselr = (off1),			\
326 		.pllxcfgr1 = (off2),			\
327 		.pllxcfgr2 = (off3),			\
328 		.pllxfracr = (off4),			\
329 		.pllxcr = (off5),			\
330 		.pllxcsgr = (off6),			\
331 		.refclk[0] = (p1),			\
332 		.refclk[1] = (p2),			\
333 		.refclk[2] = (p3),			\
334 		.refclk[3] = (p4),			\
335 	}
336 
337 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
338 
339 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
340 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
341 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
342 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
343 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
344 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
345 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
346 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
347 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
348 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
349 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
350 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
351 
352 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
353 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
354 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
361 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
362 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
363 
364 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
365 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
366 
367 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
368 
369 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
370 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
371 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
372 
373 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
374 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
375 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
376 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
377 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
378 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
381 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
382 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
383 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
384 
385 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
386 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
387 
388 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
389 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
397 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
398 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
399 
400 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
401 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
402 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
403 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
404 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
405 
406 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
407 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
409 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
410 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
411 
412 	_CLK_SELEC(RCC_BDCR, 20, RTC, _RTC_SEL),
413 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
414 };
415 
416 static const uint8_t i2c12_parents[] = {
417 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
418 };
419 
420 static const uint8_t i2c35_parents[] = {
421 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
422 };
423 
424 static const uint8_t stgen_parents[] = {
425 	_HSI_KER, _HSE_KER
426 };
427 
428 static const uint8_t i2c46_parents[] = {
429 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
430 };
431 
432 static const uint8_t spi6_parents[] = {
433 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
434 };
435 
436 static const uint8_t usart1_parents[] = {
437 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
438 };
439 
440 static const uint8_t rng1_parents[] = {
441 	_CSI, _PLL4_R, _LSE, _LSI
442 };
443 
444 static const uint8_t uart6_parents[] = {
445 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
446 };
447 
448 static const uint8_t uart234578_parents[] = {
449 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
450 };
451 
452 static const uint8_t sdmmc12_parents[] = {
453 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
454 };
455 
456 static const uint8_t sdmmc3_parents[] = {
457 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
458 };
459 
460 static const uint8_t qspi_parents[] = {
461 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
462 };
463 
464 static const uint8_t fmc_parents[] = {
465 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
466 };
467 
468 static const uint8_t ass_parents[] = {
469 	_HSI, _HSE, _PLL2
470 };
471 
472 static const uint8_t mss_parents[] = {
473 	_HSI, _HSE, _CSI, _PLL3
474 };
475 
476 static const uint8_t usbphy_parents[] = {
477 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
478 };
479 
480 static const uint8_t usbo_parents[] = {
481 	_PLL4_R, _USB_PHY_48
482 };
483 
484 static const uint8_t mpu_parents[] = {
485 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
486 };
487 
488 static const uint8_t per_parents[] = {
489 	_HSI, _HSE, _CSI,
490 };
491 
492 static const uint8_t rtc_parents[] = {
493 	_UNKNOWN_ID, _LSE, _LSI, _HSE
494 };
495 
496 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
497 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
498 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
499 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
500 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
501 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
502 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
503 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
504 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
505 	_CLK_PARENT_SEL(PER, RCC_CPERCKSELR, per_parents),
506 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
507 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
508 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
509 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
510 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
511 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
512 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
513 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
514 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
515 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
516 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
517 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
518 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
519 };
520 
521 /* Define characteristic of PLL according type */
522 #define DIVN_MIN	24
523 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
524 	[PLL_800] = {
525 		.refclk_min = 4,
526 		.refclk_max = 16,
527 		.divn_max = 99,
528 	},
529 	[PLL_1600] = {
530 		.refclk_min = 8,
531 		.refclk_max = 16,
532 		.divn_max = 199,
533 	},
534 };
535 
536 /* PLLNCFGR2 register divider by output */
537 static const uint8_t pllncfgr2[_DIV_NB] = {
538 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
539 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
540 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
541 };
542 
543 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
544 	_CLK_PLL(_PLL1, PLL_1600,
545 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
546 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
547 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
548 	_CLK_PLL(_PLL2, PLL_1600,
549 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
550 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
551 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
552 	_CLK_PLL(_PLL3, PLL_800,
553 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
554 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
555 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
556 	_CLK_PLL(_PLL4, PLL_800,
557 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
558 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
559 		 _HSI, _HSE, _CSI, _I2S_CKIN),
560 };
561 
562 /* Prescaler table lookups for clock computation */
563 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
564 static const uint8_t stm32mp1_mcu_div[16] = {
565 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
566 };
567 
568 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
569 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
570 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
571 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
572 	0, 1, 2, 3, 4, 4, 4, 4
573 };
574 
575 /* div = /1 /2 /3 /4 */
576 static const uint8_t stm32mp1_axi_div[8] = {
577 	1, 2, 3, 4, 4, 4, 4, 4
578 };
579 
580 /* RCC clock device driver private */
581 static unsigned long stm32mp1_osc[NB_OSC];
582 static struct spinlock reg_lock;
583 static unsigned int gate_refcounts[NB_GATES];
584 static struct spinlock refcount_lock;
585 
586 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
587 {
588 	return &stm32mp1_clk_gate[idx];
589 }
590 
591 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
592 {
593 	return &stm32mp1_clk_sel[idx];
594 }
595 
596 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
597 {
598 	return &stm32mp1_clk_pll[idx];
599 }
600 
601 static void stm32mp1_clk_lock(struct spinlock *lock)
602 {
603 	if (stm32mp_lock_available()) {
604 		/* Assume interrupts are masked */
605 		spin_lock(lock);
606 	}
607 }
608 
609 static void stm32mp1_clk_unlock(struct spinlock *lock)
610 {
611 	if (stm32mp_lock_available()) {
612 		spin_unlock(lock);
613 	}
614 }
615 
616 bool stm32mp1_rcc_is_secure(void)
617 {
618 	uintptr_t rcc_base = stm32mp_rcc_base();
619 
620 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
621 }
622 
623 bool stm32mp1_rcc_is_mckprot(void)
624 {
625 	uintptr_t rcc_base = stm32mp_rcc_base();
626 
627 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_MCKPROT) != 0;
628 }
629 
630 void stm32mp1_clk_rcc_regs_lock(void)
631 {
632 	stm32mp1_clk_lock(&reg_lock);
633 }
634 
635 void stm32mp1_clk_rcc_regs_unlock(void)
636 {
637 	stm32mp1_clk_unlock(&reg_lock);
638 }
639 
640 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
641 {
642 	if (idx >= NB_OSC) {
643 		return 0;
644 	}
645 
646 	return stm32mp1_osc[idx];
647 }
648 
649 static int stm32mp1_clk_get_gated_id(unsigned long id)
650 {
651 	unsigned int i;
652 
653 	for (i = 0U; i < NB_GATES; i++) {
654 		if (gate_ref(i)->index == id) {
655 			return i;
656 		}
657 	}
658 
659 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
660 
661 	return -EINVAL;
662 }
663 
664 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
665 {
666 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
667 }
668 
669 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
670 {
671 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
672 }
673 
674 static int stm32mp1_clk_get_parent(unsigned long id)
675 {
676 	const struct stm32mp1_clk_sel *sel;
677 	uint32_t p_sel;
678 	int i;
679 	enum stm32mp1_parent_id p;
680 	enum stm32mp1_parent_sel s;
681 	uintptr_t rcc_base = stm32mp_rcc_base();
682 
683 	/* Few non gateable clock have a static parent ID, find them */
684 	i = (int)clock_id2parent_id(id);
685 	if (i != _UNKNOWN_ID) {
686 		return i;
687 	}
688 
689 	i = stm32mp1_clk_get_gated_id(id);
690 	if (i < 0) {
691 		panic();
692 	}
693 
694 	p = stm32mp1_clk_get_fixed_parent(i);
695 	if (p < _PARENT_NB) {
696 		return (int)p;
697 	}
698 
699 	s = stm32mp1_clk_get_sel(i);
700 	if (s == _UNKNOWN_SEL) {
701 		return -EINVAL;
702 	}
703 	if (s >= _PARENT_SEL_NB) {
704 		panic();
705 	}
706 
707 	sel = clk_sel_ref(s);
708 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
709 		 (sel->msk << sel->src)) >> sel->src;
710 	if (p_sel < sel->nb_parent) {
711 		return (int)sel->parent[p_sel];
712 	}
713 
714 	return -EINVAL;
715 }
716 
717 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
718 {
719 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
720 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
721 
722 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
723 }
724 
725 /*
726  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
727  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
728  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
729  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
730  */
731 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
732 {
733 	unsigned long refclk, fvco;
734 	uint32_t cfgr1, fracr, divm, divn;
735 	uintptr_t rcc_base = stm32mp_rcc_base();
736 
737 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
738 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
739 
740 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
741 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
742 
743 	refclk = stm32mp1_pll_get_fref(pll);
744 
745 	/*
746 	 * With FRACV :
747 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
748 	 * Without FRACV
749 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
750 	 */
751 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
752 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
753 				 RCC_PLLNFRACR_FRACV_SHIFT;
754 		unsigned long long numerator, denominator;
755 
756 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
757 		numerator = refclk * numerator;
758 		denominator = ((unsigned long long)divm + 1U) << 13;
759 		fvco = (unsigned long)(numerator / denominator);
760 	} else {
761 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
762 	}
763 
764 	return fvco;
765 }
766 
767 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
768 					    enum stm32mp1_div_id div_id)
769 {
770 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
771 	unsigned long dfout;
772 	uint32_t cfgr2, divy;
773 
774 	if (div_id >= _DIV_NB) {
775 		return 0;
776 	}
777 
778 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
779 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
780 
781 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
782 
783 	return dfout;
784 }
785 
786 static unsigned long get_clock_rate(int p)
787 {
788 	uint32_t reg, clkdiv;
789 	unsigned long clock = 0;
790 	uintptr_t rcc_base = stm32mp_rcc_base();
791 
792 	switch (p) {
793 	case _CK_MPU:
794 	/* MPU sub system */
795 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
796 		switch (reg & RCC_SELR_SRC_MASK) {
797 		case RCC_MPCKSELR_HSI:
798 			clock = stm32mp1_clk_get_fixed(_HSI);
799 			break;
800 		case RCC_MPCKSELR_HSE:
801 			clock = stm32mp1_clk_get_fixed(_HSE);
802 			break;
803 		case RCC_MPCKSELR_PLL:
804 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
805 			break;
806 		case RCC_MPCKSELR_PLL_MPUDIV:
807 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
808 
809 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
810 			clkdiv = reg & RCC_MPUDIV_MASK;
811 			if (clkdiv != 0U) {
812 				clock /= stm32mp1_mpu_div[clkdiv];
813 			}
814 			break;
815 		default:
816 			break;
817 		}
818 		break;
819 	/* AXI sub system */
820 	case _ACLK:
821 	case _HCLK2:
822 	case _HCLK6:
823 	case _PCLK4:
824 	case _PCLK5:
825 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
826 		switch (reg & RCC_SELR_SRC_MASK) {
827 		case RCC_ASSCKSELR_HSI:
828 			clock = stm32mp1_clk_get_fixed(_HSI);
829 			break;
830 		case RCC_ASSCKSELR_HSE:
831 			clock = stm32mp1_clk_get_fixed(_HSE);
832 			break;
833 		case RCC_ASSCKSELR_PLL:
834 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
835 			break;
836 		default:
837 			break;
838 		}
839 
840 		/* System clock divider */
841 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
842 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
843 
844 		switch (p) {
845 		case _PCLK4:
846 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
847 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
848 			break;
849 		case _PCLK5:
850 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
851 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
852 			break;
853 		default:
854 			break;
855 		}
856 		break;
857 	/* MCU sub system */
858 	case _CK_MCU:
859 	case _PCLK1:
860 	case _PCLK2:
861 	case _PCLK3:
862 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
863 		switch (reg & RCC_SELR_SRC_MASK) {
864 		case RCC_MSSCKSELR_HSI:
865 			clock = stm32mp1_clk_get_fixed(_HSI);
866 			break;
867 		case RCC_MSSCKSELR_HSE:
868 			clock = stm32mp1_clk_get_fixed(_HSE);
869 			break;
870 		case RCC_MSSCKSELR_CSI:
871 			clock = stm32mp1_clk_get_fixed(_CSI);
872 			break;
873 		case RCC_MSSCKSELR_PLL:
874 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
875 			break;
876 		default:
877 			break;
878 		}
879 
880 		/* MCU clock divider */
881 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
882 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
883 
884 		switch (p) {
885 		case _PCLK1:
886 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
887 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
888 			break;
889 		case _PCLK2:
890 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
891 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
892 			break;
893 		case _PCLK3:
894 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
895 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
896 			break;
897 		case _CK_MCU:
898 		default:
899 			break;
900 		}
901 		break;
902 	case _CK_PER:
903 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
904 		switch (reg & RCC_SELR_SRC_MASK) {
905 		case RCC_CPERCKSELR_HSI:
906 			clock = stm32mp1_clk_get_fixed(_HSI);
907 			break;
908 		case RCC_CPERCKSELR_HSE:
909 			clock = stm32mp1_clk_get_fixed(_HSE);
910 			break;
911 		case RCC_CPERCKSELR_CSI:
912 			clock = stm32mp1_clk_get_fixed(_CSI);
913 			break;
914 		default:
915 			break;
916 		}
917 		break;
918 	case _HSI:
919 	case _HSI_KER:
920 		clock = stm32mp1_clk_get_fixed(_HSI);
921 		break;
922 	case _CSI:
923 	case _CSI_KER:
924 		clock = stm32mp1_clk_get_fixed(_CSI);
925 		break;
926 	case _HSE:
927 	case _HSE_KER:
928 		clock = stm32mp1_clk_get_fixed(_HSE);
929 		break;
930 	case _HSE_KER_DIV2:
931 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
932 		break;
933 	case _LSI:
934 		clock = stm32mp1_clk_get_fixed(_LSI);
935 		break;
936 	case _LSE:
937 		clock = stm32mp1_clk_get_fixed(_LSE);
938 		break;
939 	/* PLL */
940 	case _PLL1_P:
941 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
942 		break;
943 	case _PLL1_Q:
944 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
945 		break;
946 	case _PLL1_R:
947 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
948 		break;
949 	case _PLL2_P:
950 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
951 		break;
952 	case _PLL2_Q:
953 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
954 		break;
955 	case _PLL2_R:
956 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
957 		break;
958 	case _PLL3_P:
959 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
960 		break;
961 	case _PLL3_Q:
962 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
963 		break;
964 	case _PLL3_R:
965 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
966 		break;
967 	case _PLL4_P:
968 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
969 		break;
970 	case _PLL4_Q:
971 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
972 		break;
973 	case _PLL4_R:
974 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
975 		break;
976 	/* Other */
977 	case _USB_PHY_48:
978 		clock = USB_PHY_48_MHZ;
979 		break;
980 	default:
981 		break;
982 	}
983 
984 	return clock;
985 }
986 
987 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
988 {
989 	uintptr_t rcc_base = stm32mp_rcc_base();
990 
991 	if (gate->set_clr != 0U) {
992 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
993 	} else {
994 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
995 	}
996 
997 	VERBOSE("Clock %d has been enabled", gate->index);
998 }
999 
1000 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1001 {
1002 	uintptr_t rcc_base = stm32mp_rcc_base();
1003 
1004 	if (gate->set_clr != 0U) {
1005 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1006 			      BIT(gate->bit));
1007 	} else {
1008 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1009 	}
1010 
1011 	VERBOSE("Clock %d has been disabled", gate->index);
1012 }
1013 
1014 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1015 {
1016 	uintptr_t rcc_base = stm32mp_rcc_base();
1017 
1018 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1019 }
1020 
1021 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1022 {
1023 	int i = stm32mp1_clk_get_gated_id(id);
1024 
1025 	if (i < 0) {
1026 		panic();
1027 	}
1028 
1029 	return gate_refcounts[i];
1030 }
1031 
1032 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1033 {
1034 	const struct stm32mp1_clk_gate *gate;
1035 	int i = stm32mp1_clk_get_gated_id(id);
1036 	unsigned int *refcnt;
1037 
1038 	if (i < 0) {
1039 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1040 		panic();
1041 	}
1042 
1043 	gate = gate_ref(i);
1044 	refcnt = &gate_refcounts[i];
1045 
1046 	stm32mp1_clk_lock(&refcount_lock);
1047 
1048 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1049 		__clk_enable(gate);
1050 	}
1051 
1052 	stm32mp1_clk_unlock(&refcount_lock);
1053 }
1054 
1055 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1056 {
1057 	const struct stm32mp1_clk_gate *gate;
1058 	int i = stm32mp1_clk_get_gated_id(id);
1059 	unsigned int *refcnt;
1060 
1061 	if (i < 0) {
1062 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1063 		panic();
1064 	}
1065 
1066 	gate = gate_ref(i);
1067 	refcnt = &gate_refcounts[i];
1068 
1069 	stm32mp1_clk_lock(&refcount_lock);
1070 
1071 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1072 		__clk_disable(gate);
1073 	}
1074 
1075 	stm32mp1_clk_unlock(&refcount_lock);
1076 }
1077 
1078 void stm32mp_clk_enable(unsigned long id)
1079 {
1080 	__stm32mp1_clk_enable(id, true);
1081 }
1082 
1083 void stm32mp_clk_disable(unsigned long id)
1084 {
1085 	__stm32mp1_clk_disable(id, true);
1086 }
1087 
1088 bool stm32mp_clk_is_enabled(unsigned long id)
1089 {
1090 	int i = stm32mp1_clk_get_gated_id(id);
1091 
1092 	if (i < 0) {
1093 		panic();
1094 	}
1095 
1096 	return __clk_is_enabled(gate_ref(i));
1097 }
1098 
1099 unsigned long stm32mp_clk_get_rate(unsigned long id)
1100 {
1101 	int p = stm32mp1_clk_get_parent(id);
1102 
1103 	if (p < 0) {
1104 		return 0;
1105 	}
1106 
1107 	return get_clock_rate(p);
1108 }
1109 
1110 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1111 {
1112 	uintptr_t address = stm32mp_rcc_base() + offset;
1113 
1114 	if (enable) {
1115 		mmio_setbits_32(address, mask_on);
1116 	} else {
1117 		mmio_clrbits_32(address, mask_on);
1118 	}
1119 }
1120 
1121 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1122 {
1123 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1124 	uintptr_t address = stm32mp_rcc_base() + offset;
1125 
1126 	mmio_write_32(address, mask_on);
1127 }
1128 
1129 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1130 {
1131 	uint64_t timeout;
1132 	uint32_t mask_test;
1133 	uintptr_t address = stm32mp_rcc_base() + offset;
1134 
1135 	if (enable) {
1136 		mask_test = mask_rdy;
1137 	} else {
1138 		mask_test = 0;
1139 	}
1140 
1141 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1142 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1143 		if (timeout_elapsed(timeout)) {
1144 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1145 			      mask_rdy, address, enable, mmio_read_32(address));
1146 			return -ETIMEDOUT;
1147 		}
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1154 {
1155 	uint32_t value;
1156 	uintptr_t rcc_base = stm32mp_rcc_base();
1157 
1158 	if (digbyp) {
1159 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1160 	}
1161 
1162 	if (bypass || digbyp) {
1163 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1164 	}
1165 
1166 	/*
1167 	 * Warning: not recommended to switch directly from "high drive"
1168 	 * to "medium low drive", and vice-versa.
1169 	 */
1170 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1171 		RCC_BDCR_LSEDRV_SHIFT;
1172 
1173 	while (value != lsedrv) {
1174 		if (value > lsedrv) {
1175 			value--;
1176 		} else {
1177 			value++;
1178 		}
1179 
1180 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1181 				   RCC_BDCR_LSEDRV_MASK,
1182 				   value << RCC_BDCR_LSEDRV_SHIFT);
1183 	}
1184 
1185 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1186 }
1187 
1188 static void stm32mp1_lse_wait(void)
1189 {
1190 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1191 		VERBOSE("%s: failed\n", __func__);
1192 	}
1193 }
1194 
1195 static void stm32mp1_lsi_set(bool enable)
1196 {
1197 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1198 
1199 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1200 		VERBOSE("%s: failed\n", __func__);
1201 	}
1202 }
1203 
1204 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1205 {
1206 	uintptr_t rcc_base = stm32mp_rcc_base();
1207 
1208 	if (digbyp) {
1209 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1210 	}
1211 
1212 	if (bypass || digbyp) {
1213 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1214 	}
1215 
1216 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1217 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1218 		VERBOSE("%s: failed\n", __func__);
1219 	}
1220 
1221 	if (css) {
1222 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1223 	}
1224 }
1225 
1226 static void stm32mp1_csi_set(bool enable)
1227 {
1228 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1229 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1230 		VERBOSE("%s: failed\n", __func__);
1231 	}
1232 }
1233 
1234 static void stm32mp1_hsi_set(bool enable)
1235 {
1236 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1237 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1238 		VERBOSE("%s: failed\n", __func__);
1239 	}
1240 }
1241 
1242 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1243 {
1244 	uint64_t timeout;
1245 	uintptr_t rcc_base = stm32mp_rcc_base();
1246 	uintptr_t address = rcc_base + RCC_OCRDYR;
1247 
1248 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1249 			   RCC_HSICFGR_HSIDIV_MASK,
1250 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1251 
1252 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1253 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1254 		if (timeout_elapsed(timeout)) {
1255 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1256 			      address, mmio_read_32(address));
1257 			return -ETIMEDOUT;
1258 		}
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 static int stm32mp1_hsidiv(unsigned long hsifreq)
1265 {
1266 	uint8_t hsidiv;
1267 	uint32_t hsidivfreq = MAX_HSI_HZ;
1268 
1269 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1270 		if (hsidivfreq == hsifreq) {
1271 			break;
1272 		}
1273 
1274 		hsidivfreq /= 2U;
1275 	}
1276 
1277 	if (hsidiv == 4U) {
1278 		ERROR("Invalid clk-hsi frequency\n");
1279 		return -1;
1280 	}
1281 
1282 	if (hsidiv != 0U) {
1283 		return stm32mp1_set_hsidiv(hsidiv);
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1290 				    unsigned int clksrc,
1291 				    uint32_t *pllcfg, int plloff)
1292 {
1293 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1294 	uintptr_t rcc_base = stm32mp_rcc_base();
1295 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1296 	enum stm32mp1_plltype type = pll->plltype;
1297 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1298 	unsigned long refclk;
1299 	uint32_t ifrge = 0U;
1300 	uint32_t src, value, fracv = 0;
1301 	void *fdt;
1302 
1303 	/* Check PLL output */
1304 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1305 		return false;
1306 	}
1307 
1308 	/* Check current clksrc */
1309 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1310 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1311 		return false;
1312 	}
1313 
1314 	/* Check Div */
1315 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1316 
1317 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1318 		 (pllcfg[PLLCFG_M] + 1U);
1319 
1320 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1321 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1322 		return false;
1323 	}
1324 
1325 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1326 		ifrge = 1U;
1327 	}
1328 
1329 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1330 		RCC_PLLNCFGR1_DIVN_MASK;
1331 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1332 		 RCC_PLLNCFGR1_DIVM_MASK;
1333 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1334 		 RCC_PLLNCFGR1_IFRGE_MASK;
1335 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1336 		return false;
1337 	}
1338 
1339 	/* Fractional configuration */
1340 	if (fdt_get_address(&fdt) == 1) {
1341 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1342 	}
1343 
1344 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1345 	value |= RCC_PLLNFRACR_FRACLE;
1346 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1347 		return false;
1348 	}
1349 
1350 	/* Output config */
1351 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1352 		RCC_PLLNCFGR2_DIVP_MASK;
1353 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1354 		 RCC_PLLNCFGR2_DIVQ_MASK;
1355 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1356 		 RCC_PLLNCFGR2_DIVR_MASK;
1357 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1358 		return false;
1359 	}
1360 
1361 	return true;
1362 }
1363 
1364 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1365 {
1366 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1367 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1368 
1369 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1370 	mmio_clrsetbits_32(pllxcr,
1371 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1372 			   RCC_PLLNCR_DIVREN,
1373 			   RCC_PLLNCR_PLLON);
1374 }
1375 
1376 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1377 {
1378 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1379 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1380 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1381 
1382 	/* Wait PLL lock */
1383 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1384 		if (timeout_elapsed(timeout)) {
1385 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1386 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1387 			return -ETIMEDOUT;
1388 		}
1389 	}
1390 
1391 	/* Start the requested output */
1392 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1393 
1394 	return 0;
1395 }
1396 
1397 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1398 {
1399 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1400 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1401 	uint64_t timeout;
1402 
1403 	/* Stop all output */
1404 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1405 			RCC_PLLNCR_DIVREN);
1406 
1407 	/* Stop PLL */
1408 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1409 
1410 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1411 	/* Wait PLL stopped */
1412 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1413 		if (timeout_elapsed(timeout)) {
1414 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1415 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1416 			return -ETIMEDOUT;
1417 		}
1418 	}
1419 
1420 	return 0;
1421 }
1422 
1423 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1424 				       uint32_t *pllcfg)
1425 {
1426 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1427 	uintptr_t rcc_base = stm32mp_rcc_base();
1428 	uint32_t value;
1429 
1430 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1431 		RCC_PLLNCFGR2_DIVP_MASK;
1432 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1433 		 RCC_PLLNCFGR2_DIVQ_MASK;
1434 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1435 		 RCC_PLLNCFGR2_DIVR_MASK;
1436 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1437 }
1438 
1439 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1440 			       uint32_t *pllcfg, uint32_t fracv)
1441 {
1442 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1443 	uintptr_t rcc_base = stm32mp_rcc_base();
1444 	enum stm32mp1_plltype type = pll->plltype;
1445 	unsigned long refclk;
1446 	uint32_t ifrge = 0;
1447 	uint32_t src, value;
1448 
1449 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1450 		RCC_SELR_REFCLK_SRC_MASK;
1451 
1452 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1453 		 (pllcfg[PLLCFG_M] + 1U);
1454 
1455 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1456 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1457 		return -EINVAL;
1458 	}
1459 
1460 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1461 		ifrge = 1U;
1462 	}
1463 
1464 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1465 		RCC_PLLNCFGR1_DIVN_MASK;
1466 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1467 		 RCC_PLLNCFGR1_DIVM_MASK;
1468 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1469 		 RCC_PLLNCFGR1_IFRGE_MASK;
1470 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1471 
1472 	/* Fractional configuration */
1473 	value = 0;
1474 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1475 
1476 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1477 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1478 
1479 	value |= RCC_PLLNFRACR_FRACLE;
1480 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1481 
1482 	stm32mp1_pll_config_output(pll_id, pllcfg);
1483 
1484 	return 0;
1485 }
1486 
1487 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1488 {
1489 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1490 	uint32_t pllxcsg = 0;
1491 
1492 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1493 		    RCC_PLLNCSGR_MOD_PER_MASK;
1494 
1495 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1496 		    RCC_PLLNCSGR_INC_STEP_MASK;
1497 
1498 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1499 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1500 
1501 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1502 
1503 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1504 			RCC_PLLNCR_SSCG_CTRL);
1505 }
1506 
1507 static int stm32mp1_set_clksrc(unsigned int clksrc)
1508 {
1509 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1510 	uint64_t timeout;
1511 
1512 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1513 			   clksrc & RCC_SELR_SRC_MASK);
1514 
1515 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1516 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1517 		if (timeout_elapsed(timeout)) {
1518 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1519 			      clksrc_address, mmio_read_32(clksrc_address));
1520 			return -ETIMEDOUT;
1521 		}
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1528 {
1529 	uint64_t timeout;
1530 
1531 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1532 			   clkdiv & RCC_DIVR_DIV_MASK);
1533 
1534 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1535 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1536 		if (timeout_elapsed(timeout)) {
1537 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1538 			      clkdiv, address, mmio_read_32(address));
1539 			return -ETIMEDOUT;
1540 		}
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1547 {
1548 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1549 
1550 	/*
1551 	 * Binding clksrc :
1552 	 *      bit15-4 offset
1553 	 *      bit3:   disable
1554 	 *      bit2-0: MCOSEL[2:0]
1555 	 */
1556 	if ((clksrc & 0x8U) != 0U) {
1557 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1558 	} else {
1559 		mmio_clrsetbits_32(clksrc_address,
1560 				   RCC_MCOCFG_MCOSRC_MASK,
1561 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1562 		mmio_clrsetbits_32(clksrc_address,
1563 				   RCC_MCOCFG_MCODIV_MASK,
1564 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1565 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1566 	}
1567 }
1568 
1569 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1570 {
1571 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1572 
1573 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1574 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1575 		mmio_clrsetbits_32(address,
1576 				   RCC_BDCR_RTCSRC_MASK,
1577 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1578 
1579 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1580 	}
1581 
1582 	if (lse_css) {
1583 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1584 	}
1585 }
1586 
1587 static void stm32mp1_stgen_config(void)
1588 {
1589 	uintptr_t stgen;
1590 	uint32_t cntfid0;
1591 	unsigned long rate;
1592 	unsigned long long counter;
1593 
1594 	stgen = fdt_get_stgen_base();
1595 	cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
1596 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1597 
1598 	if (cntfid0 == rate) {
1599 		return;
1600 	}
1601 
1602 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1603 	counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
1604 	counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
1605 	counter = (counter * rate / cntfid0);
1606 
1607 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
1608 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
1609 	mmio_write_32(stgen + CNTFID_OFF, rate);
1610 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1611 
1612 	write_cntfrq((u_register_t)rate);
1613 
1614 	/* Need to update timer with new frequency */
1615 	generic_delay_timer_init();
1616 }
1617 
1618 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1619 {
1620 	uintptr_t stgen;
1621 	unsigned long long cnt;
1622 
1623 	stgen = fdt_get_stgen_base();
1624 
1625 	cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
1626 		mmio_read_32(stgen + CNTCVL_OFF);
1627 
1628 	cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
1629 
1630 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1631 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
1632 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1633 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1634 }
1635 
1636 static void stm32mp1_pkcs_config(uint32_t pkcs)
1637 {
1638 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1639 	uint32_t value = pkcs & 0xFU;
1640 	uint32_t mask = 0xFU;
1641 
1642 	if ((pkcs & BIT(31)) != 0U) {
1643 		mask <<= 4;
1644 		value <<= 4;
1645 	}
1646 
1647 	mmio_clrsetbits_32(address, mask, value);
1648 }
1649 
1650 int stm32mp1_clk_init(void)
1651 {
1652 	uintptr_t rcc_base = stm32mp_rcc_base();
1653 	unsigned int clksrc[CLKSRC_NB];
1654 	unsigned int clkdiv[CLKDIV_NB];
1655 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1656 	int plloff[_PLL_NB];
1657 	int ret, len;
1658 	enum stm32mp1_pll_id i;
1659 	bool lse_css = false;
1660 	bool pll3_preserve = false;
1661 	bool pll4_preserve = false;
1662 	bool pll4_bootrom = false;
1663 	const fdt32_t *pkcs_cell;
1664 	void *fdt;
1665 
1666 	if (fdt_get_address(&fdt) == 0) {
1667 		return false;
1668 	}
1669 
1670 	/* Check status field to disable security */
1671 	if (!fdt_get_rcc_secure_status()) {
1672 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1673 	}
1674 
1675 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1676 					clksrc);
1677 	if (ret < 0) {
1678 		return -FDT_ERR_NOTFOUND;
1679 	}
1680 
1681 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1682 					clkdiv);
1683 	if (ret < 0) {
1684 		return -FDT_ERR_NOTFOUND;
1685 	}
1686 
1687 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1688 		char name[12];
1689 
1690 		snprintf(name, sizeof(name), "st,pll@%d", i);
1691 		plloff[i] = fdt_rcc_subnode_offset(name);
1692 
1693 		if (!fdt_check_node(plloff[i])) {
1694 			continue;
1695 		}
1696 
1697 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1698 					    (int)PLLCFG_NB, pllcfg[i]);
1699 		if (ret < 0) {
1700 			return -FDT_ERR_NOTFOUND;
1701 		}
1702 	}
1703 
1704 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1705 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1706 
1707 	/*
1708 	 * Switch ON oscillator found in device-tree.
1709 	 * Note: HSI already ON after BootROM stage.
1710 	 */
1711 	if (stm32mp1_osc[_LSI] != 0U) {
1712 		stm32mp1_lsi_set(true);
1713 	}
1714 	if (stm32mp1_osc[_LSE] != 0U) {
1715 		bool bypass, digbyp;
1716 		uint32_t lsedrv;
1717 
1718 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1719 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1720 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1721 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1722 						     LSEDRV_MEDIUM_HIGH);
1723 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1724 	}
1725 	if (stm32mp1_osc[_HSE] != 0U) {
1726 		bool bypass, digbyp, css;
1727 
1728 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1729 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1730 		css = fdt_osc_read_bool(_HSE, "st,css");
1731 		stm32mp1_hse_enable(bypass, digbyp, css);
1732 	}
1733 	/*
1734 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1735 	 * => switch on CSI even if node is not present in device tree
1736 	 */
1737 	stm32mp1_csi_set(true);
1738 
1739 	/* Come back to HSI */
1740 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1741 	if (ret != 0) {
1742 		return ret;
1743 	}
1744 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1745 	if (ret != 0) {
1746 		return ret;
1747 	}
1748 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1749 	if (ret != 0) {
1750 		return ret;
1751 	}
1752 
1753 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1754 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1755 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1756 							clksrc[CLKSRC_PLL3],
1757 							pllcfg[_PLL3],
1758 							plloff[_PLL3]);
1759 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1760 							clksrc[CLKSRC_PLL4],
1761 							pllcfg[_PLL4],
1762 							plloff[_PLL4]);
1763 	}
1764 
1765 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1766 		if (((i == _PLL3) && pll3_preserve) ||
1767 		    ((i == _PLL4) && pll4_preserve)) {
1768 			continue;
1769 		}
1770 
1771 		ret = stm32mp1_pll_stop(i);
1772 		if (ret != 0) {
1773 			return ret;
1774 		}
1775 	}
1776 
1777 	/* Configure HSIDIV */
1778 	if (stm32mp1_osc[_HSI] != 0U) {
1779 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1780 		if (ret != 0) {
1781 			return ret;
1782 		}
1783 		stm32mp1_stgen_config();
1784 	}
1785 
1786 	/* Select DIV */
1787 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1788 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1789 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1790 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1791 	if (ret != 0) {
1792 		return ret;
1793 	}
1794 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1795 	if (ret != 0) {
1796 		return ret;
1797 	}
1798 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1799 	if (ret != 0) {
1800 		return ret;
1801 	}
1802 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1803 	if (ret != 0) {
1804 		return ret;
1805 	}
1806 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1807 	if (ret != 0) {
1808 		return ret;
1809 	}
1810 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1811 	if (ret != 0) {
1812 		return ret;
1813 	}
1814 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1815 	if (ret != 0) {
1816 		return ret;
1817 	}
1818 
1819 	/* No ready bit for RTC */
1820 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1821 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1822 
1823 	/* Configure PLLs source */
1824 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1825 	if (ret != 0) {
1826 		return ret;
1827 	}
1828 
1829 	if (!pll3_preserve) {
1830 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1831 		if (ret != 0) {
1832 			return ret;
1833 		}
1834 	}
1835 
1836 	if (!pll4_preserve) {
1837 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1838 		if (ret != 0) {
1839 			return ret;
1840 		}
1841 	}
1842 
1843 	/* Configure and start PLLs */
1844 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1845 		uint32_t fracv;
1846 		uint32_t csg[PLLCSG_NB];
1847 
1848 		if (((i == _PLL3) && pll3_preserve) ||
1849 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1850 			continue;
1851 		}
1852 
1853 		if (!fdt_check_node(plloff[i])) {
1854 			continue;
1855 		}
1856 
1857 		if ((i == _PLL4) && pll4_bootrom) {
1858 			/* Set output divider if not done by the Bootrom */
1859 			stm32mp1_pll_config_output(i, pllcfg[i]);
1860 			continue;
1861 		}
1862 
1863 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1864 
1865 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1866 		if (ret != 0) {
1867 			return ret;
1868 		}
1869 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1870 					    (uint32_t)PLLCSG_NB, csg);
1871 		if (ret == 0) {
1872 			stm32mp1_pll_csg(i, csg);
1873 		} else if (ret != -FDT_ERR_NOTFOUND) {
1874 			return ret;
1875 		}
1876 
1877 		stm32mp1_pll_start(i);
1878 	}
1879 	/* Wait and start PLLs ouptut when ready */
1880 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1881 		if (!fdt_check_node(plloff[i])) {
1882 			continue;
1883 		}
1884 
1885 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1886 		if (ret != 0) {
1887 			return ret;
1888 		}
1889 	}
1890 	/* Wait LSE ready before to use it */
1891 	if (stm32mp1_osc[_LSE] != 0U) {
1892 		stm32mp1_lse_wait();
1893 	}
1894 
1895 	/* Configure with expected clock source */
1896 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1897 	if (ret != 0) {
1898 		return ret;
1899 	}
1900 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1901 	if (ret != 0) {
1902 		return ret;
1903 	}
1904 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1905 	if (ret != 0) {
1906 		return ret;
1907 	}
1908 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1909 
1910 	/* Configure PKCK */
1911 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1912 	if (pkcs_cell != NULL) {
1913 		bool ckper_disabled = false;
1914 		uint32_t j;
1915 
1916 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1917 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1918 
1919 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1920 				ckper_disabled = true;
1921 				continue;
1922 			}
1923 			stm32mp1_pkcs_config(pkcs);
1924 		}
1925 
1926 		/*
1927 		 * CKPER is source for some peripheral clocks
1928 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1929 		 * only if previous clock is still ON
1930 		 * => deactivated CKPER only after switching clock
1931 		 */
1932 		if (ckper_disabled) {
1933 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
1934 		}
1935 	}
1936 
1937 	/* Switch OFF HSI if not found in device-tree */
1938 	if (stm32mp1_osc[_HSI] == 0U) {
1939 		stm32mp1_hsi_set(false);
1940 	}
1941 	stm32mp1_stgen_config();
1942 
1943 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1944 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
1945 			   RCC_DDRITFCR_DDRCKMOD_MASK,
1946 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
1947 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
1948 
1949 	return 0;
1950 }
1951 
1952 static void stm32mp1_osc_clk_init(const char *name,
1953 				  enum stm32mp_osc_id index)
1954 {
1955 	uint32_t frequency;
1956 
1957 	if (fdt_osc_read_freq(name, &frequency) == 0) {
1958 		stm32mp1_osc[index] = frequency;
1959 	}
1960 }
1961 
1962 static void stm32mp1_osc_init(void)
1963 {
1964 	enum stm32mp_osc_id i;
1965 
1966 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
1967 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
1968 	}
1969 }
1970 
1971 static void sync_earlyboot_clocks_state(void)
1972 {
1973 	if (!stm32mp_is_single_core()) {
1974 		stm32mp1_clk_enable_secure(RTCAPB);
1975 	}
1976 }
1977 
1978 int stm32mp1_clk_probe(void)
1979 {
1980 	stm32mp1_osc_init();
1981 
1982 	sync_earlyboot_clocks_state();
1983 
1984 	return 0;
1985 }
1986