xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 394fa5d499fdfc1a0ddcaa3f2640cf5c49c25b63)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <drivers/delay_timer.h>
20 #include <drivers/generic_delay_timer.h>
21 #include <drivers/st/stm32mp_clkfunc.h>
22 #include <drivers/st/stm32mp1_clk.h>
23 #include <drivers/st/stm32mp1_rcc.h>
24 #include <dt-bindings/clock/stm32mp1-clksrc.h>
25 #include <lib/mmio.h>
26 #include <lib/spinlock.h>
27 #include <lib/utils_def.h>
28 #include <plat/common/platform.h>
29 
30 #define MAX_HSI_HZ		64000000
31 #define USB_PHY_48_MHZ		48000000
32 
33 #define TIMEOUT_US_200MS	U(200000)
34 #define TIMEOUT_US_1S		U(1000000)
35 
36 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
37 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
39 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
41 
42 const char *stm32mp_osc_node_label[NB_OSC] = {
43 	[_LSI] = "clk-lsi",
44 	[_LSE] = "clk-lse",
45 	[_HSI] = "clk-hsi",
46 	[_HSE] = "clk-hse",
47 	[_CSI] = "clk-csi",
48 	[_I2S_CKIN] = "i2s_ckin",
49 };
50 
51 enum stm32mp1_parent_id {
52 /* Oscillators are defined in enum stm32mp_osc_id */
53 
54 /* Other parent source */
55 	_HSI_KER = NB_OSC,
56 	_HSE_KER,
57 	_HSE_KER_DIV2,
58 	_CSI_KER,
59 	_PLL1_P,
60 	_PLL1_Q,
61 	_PLL1_R,
62 	_PLL2_P,
63 	_PLL2_Q,
64 	_PLL2_R,
65 	_PLL3_P,
66 	_PLL3_Q,
67 	_PLL3_R,
68 	_PLL4_P,
69 	_PLL4_Q,
70 	_PLL4_R,
71 	_ACLK,
72 	_PCLK1,
73 	_PCLK2,
74 	_PCLK3,
75 	_PCLK4,
76 	_PCLK5,
77 	_HCLK6,
78 	_HCLK2,
79 	_CK_PER,
80 	_CK_MPU,
81 	_CK_MCU,
82 	_USB_PHY_48,
83 	_PARENT_NB,
84 	_UNKNOWN_ID = 0xff,
85 };
86 
87 /* Lists only the parent clock we are interested in */
88 enum stm32mp1_parent_sel {
89 	_I2C12_SEL,
90 	_I2C35_SEL,
91 	_STGEN_SEL,
92 	_I2C46_SEL,
93 	_SPI6_SEL,
94 	_UART1_SEL,
95 	_RNG1_SEL,
96 	_UART6_SEL,
97 	_UART24_SEL,
98 	_UART35_SEL,
99 	_UART78_SEL,
100 	_SDMMC12_SEL,
101 	_SDMMC3_SEL,
102 	_QSPI_SEL,
103 	_FMC_SEL,
104 	_AXIS_SEL,
105 	_MCUS_SEL,
106 	_USBPHY_SEL,
107 	_USBO_SEL,
108 	_PARENT_SEL_NB,
109 	_UNKNOWN_SEL = 0xff,
110 };
111 
112 enum stm32mp1_pll_id {
113 	_PLL1,
114 	_PLL2,
115 	_PLL3,
116 	_PLL4,
117 	_PLL_NB
118 };
119 
120 enum stm32mp1_div_id {
121 	_DIV_P,
122 	_DIV_Q,
123 	_DIV_R,
124 	_DIV_NB,
125 };
126 
127 enum stm32mp1_clksrc_id {
128 	CLKSRC_MPU,
129 	CLKSRC_AXI,
130 	CLKSRC_MCU,
131 	CLKSRC_PLL12,
132 	CLKSRC_PLL3,
133 	CLKSRC_PLL4,
134 	CLKSRC_RTC,
135 	CLKSRC_MCO1,
136 	CLKSRC_MCO2,
137 	CLKSRC_NB
138 };
139 
140 enum stm32mp1_clkdiv_id {
141 	CLKDIV_MPU,
142 	CLKDIV_AXI,
143 	CLKDIV_MCU,
144 	CLKDIV_APB1,
145 	CLKDIV_APB2,
146 	CLKDIV_APB3,
147 	CLKDIV_APB4,
148 	CLKDIV_APB5,
149 	CLKDIV_RTC,
150 	CLKDIV_MCO1,
151 	CLKDIV_MCO2,
152 	CLKDIV_NB
153 };
154 
155 enum stm32mp1_pllcfg {
156 	PLLCFG_M,
157 	PLLCFG_N,
158 	PLLCFG_P,
159 	PLLCFG_Q,
160 	PLLCFG_R,
161 	PLLCFG_O,
162 	PLLCFG_NB
163 };
164 
165 enum stm32mp1_pllcsg {
166 	PLLCSG_MOD_PER,
167 	PLLCSG_INC_STEP,
168 	PLLCSG_SSCG_MODE,
169 	PLLCSG_NB
170 };
171 
172 enum stm32mp1_plltype {
173 	PLL_800,
174 	PLL_1600,
175 	PLL_TYPE_NB
176 };
177 
178 struct stm32mp1_pll {
179 	uint8_t refclk_min;
180 	uint8_t refclk_max;
181 	uint8_t divn_max;
182 };
183 
184 struct stm32mp1_clk_gate {
185 	uint16_t offset;
186 	uint8_t bit;
187 	uint8_t index;
188 	uint8_t set_clr;
189 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
190 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
191 };
192 
193 struct stm32mp1_clk_sel {
194 	uint16_t offset;
195 	uint8_t src;
196 	uint8_t msk;
197 	uint8_t nb_parent;
198 	const uint8_t *parent;
199 };
200 
201 #define REFCLK_SIZE 4
202 struct stm32mp1_clk_pll {
203 	enum stm32mp1_plltype plltype;
204 	uint16_t rckxselr;
205 	uint16_t pllxcfgr1;
206 	uint16_t pllxcfgr2;
207 	uint16_t pllxfracr;
208 	uint16_t pllxcr;
209 	uint16_t pllxcsgr;
210 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
211 };
212 
213 /* Clocks with selectable source and non set/clr register access */
214 #define _CLK_SELEC(off, b, idx, s)			\
215 	{						\
216 		.offset = (off),			\
217 		.bit = (b),				\
218 		.index = (idx),				\
219 		.set_clr = 0,				\
220 		.sel = (s),				\
221 		.fixed = _UNKNOWN_ID,			\
222 	}
223 
224 /* Clocks with fixed source and non set/clr register access */
225 #define _CLK_FIXED(off, b, idx, f)			\
226 	{						\
227 		.offset = (off),			\
228 		.bit = (b),				\
229 		.index = (idx),				\
230 		.set_clr = 0,				\
231 		.sel = _UNKNOWN_SEL,			\
232 		.fixed = (f),				\
233 	}
234 
235 /* Clocks with selectable source and set/clr register access */
236 #define _CLK_SC_SELEC(off, b, idx, s)			\
237 	{						\
238 		.offset = (off),			\
239 		.bit = (b),				\
240 		.index = (idx),				\
241 		.set_clr = 1,				\
242 		.sel = (s),				\
243 		.fixed = _UNKNOWN_ID,			\
244 	}
245 
246 /* Clocks with fixed source and set/clr register access */
247 #define _CLK_SC_FIXED(off, b, idx, f)			\
248 	{						\
249 		.offset = (off),			\
250 		.bit = (b),				\
251 		.index = (idx),				\
252 		.set_clr = 1,				\
253 		.sel = _UNKNOWN_SEL,			\
254 		.fixed = (f),				\
255 	}
256 
257 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
258 	[_ ## _label ## _SEL] = {				\
259 		.offset = _rcc_selr,				\
260 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
261 		.msk = _rcc_selr ## _ ## _label ## SRC_MASK,	\
262 		.parent = (_parents),				\
263 		.nb_parent = ARRAY_SIZE(_parents)		\
264 	}
265 
266 #define _CLK_PLL(idx, type, off1, off2, off3,		\
267 		 off4, off5, off6,			\
268 		 p1, p2, p3, p4)			\
269 	[(idx)] = {					\
270 		.plltype = (type),			\
271 		.rckxselr = (off1),			\
272 		.pllxcfgr1 = (off2),			\
273 		.pllxcfgr2 = (off3),			\
274 		.pllxfracr = (off4),			\
275 		.pllxcr = (off5),			\
276 		.pllxcsgr = (off6),			\
277 		.refclk[0] = (p1),			\
278 		.refclk[1] = (p2),			\
279 		.refclk[2] = (p3),			\
280 		.refclk[3] = (p4),			\
281 	}
282 
283 static const uint8_t stm32mp1_clks[][2] = {
284 	{ CK_PER, _CK_PER },
285 	{ CK_MPU, _CK_MPU },
286 	{ CK_AXI, _ACLK },
287 	{ CK_MCU, _CK_MCU },
288 	{ CK_HSE, _HSE },
289 	{ CK_CSI, _CSI },
290 	{ CK_LSI, _LSI },
291 	{ CK_LSE, _LSE },
292 	{ CK_HSI, _HSI },
293 	{ CK_HSE_DIV2, _HSE_KER_DIV2 },
294 };
295 
296 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
297 
298 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
299 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
300 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
301 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
302 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
303 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
304 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
305 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
306 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
307 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
308 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
309 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
310 
311 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
312 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
313 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
314 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
315 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
316 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
317 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
318 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
319 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
320 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
321 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
322 
323 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
324 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
325 
326 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
327 
328 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
329 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
330 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
331 
332 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
333 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
334 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
335 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
336 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
337 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
338 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
339 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
340 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
341 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
342 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
343 
344 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
345 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
346 
347 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
348 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
349 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
350 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
351 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
352 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
353 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
354 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
355 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
356 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
357 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
358 
359 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
360 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
361 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
362 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
363 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
364 
365 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
366 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
367 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
368 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
369 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
370 
371 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
372 };
373 
374 static const uint8_t i2c12_parents[] = {
375 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
376 };
377 
378 static const uint8_t i2c35_parents[] = {
379 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
380 };
381 
382 static const uint8_t stgen_parents[] = {
383 	_HSI_KER, _HSE_KER
384 };
385 
386 static const uint8_t i2c46_parents[] = {
387 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
388 };
389 
390 static const uint8_t spi6_parents[] = {
391 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
392 };
393 
394 static const uint8_t usart1_parents[] = {
395 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
396 };
397 
398 static const uint8_t rng1_parents[] = {
399 	_CSI, _PLL4_R, _LSE, _LSI
400 };
401 
402 static const uint8_t uart6_parents[] = {
403 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
404 };
405 
406 static const uint8_t uart234578_parents[] = {
407 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
408 };
409 
410 static const uint8_t sdmmc12_parents[] = {
411 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
412 };
413 
414 static const uint8_t sdmmc3_parents[] = {
415 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
416 };
417 
418 static const uint8_t qspi_parents[] = {
419 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
420 };
421 
422 static const uint8_t fmc_parents[] = {
423 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
424 };
425 
426 static const uint8_t ass_parents[] = {
427 	_HSI, _HSE, _PLL2
428 };
429 
430 static const uint8_t mss_parents[] = {
431 	_HSI, _HSE, _CSI, _PLL3
432 };
433 
434 static const uint8_t usbphy_parents[] = {
435 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
436 };
437 
438 static const uint8_t usbo_parents[] = {
439 	_PLL4_R, _USB_PHY_48
440 };
441 
442 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
443 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
444 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
445 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
446 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
447 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
448 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
449 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
450 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
451 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
452 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
453 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
454 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
455 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
456 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
457 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
458 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
459 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
460 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
461 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
462 };
463 
464 /* Define characteristic of PLL according type */
465 #define DIVN_MIN	24
466 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
467 	[PLL_800] = {
468 		.refclk_min = 4,
469 		.refclk_max = 16,
470 		.divn_max = 99,
471 	},
472 	[PLL_1600] = {
473 		.refclk_min = 8,
474 		.refclk_max = 16,
475 		.divn_max = 199,
476 	},
477 };
478 
479 /* PLLNCFGR2 register divider by output */
480 static const uint8_t pllncfgr2[_DIV_NB] = {
481 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
482 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
483 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
484 };
485 
486 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
487 	_CLK_PLL(_PLL1, PLL_1600,
488 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
489 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
490 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
491 	_CLK_PLL(_PLL2, PLL_1600,
492 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
493 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
494 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
495 	_CLK_PLL(_PLL3, PLL_800,
496 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
497 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
498 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
499 	_CLK_PLL(_PLL4, PLL_800,
500 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
501 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
502 		 _HSI, _HSE, _CSI, _I2S_CKIN),
503 };
504 
505 /* Prescaler table lookups for clock computation */
506 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
507 static const uint8_t stm32mp1_mcu_div[16] = {
508 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
509 };
510 
511 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
512 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
513 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
514 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
515 	0, 1, 2, 3, 4, 4, 4, 4
516 };
517 
518 /* div = /1 /2 /3 /4 */
519 static const uint8_t stm32mp1_axi_div[8] = {
520 	1, 2, 3, 4, 4, 4, 4, 4
521 };
522 
523 /* RCC clock device driver private */
524 static unsigned long stm32mp1_osc[NB_OSC];
525 static struct spinlock reg_lock;
526 static unsigned int gate_refcounts[NB_GATES];
527 static struct spinlock refcount_lock;
528 
529 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
530 {
531 	return &stm32mp1_clk_gate[idx];
532 }
533 
534 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
535 {
536 	return &stm32mp1_clk_sel[idx];
537 }
538 
539 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
540 {
541 	return &stm32mp1_clk_pll[idx];
542 }
543 
544 static int stm32mp1_lock_available(void)
545 {
546 	/* The spinlocks are used only when MMU is enabled */
547 	return (read_sctlr() & SCTLR_M_BIT) && (read_sctlr() & SCTLR_C_BIT);
548 }
549 
550 static void stm32mp1_clk_lock(struct spinlock *lock)
551 {
552 	if (stm32mp1_lock_available() == 0U) {
553 		return;
554 	}
555 
556 	/* Assume interrupts are masked */
557 	spin_lock(lock);
558 }
559 
560 static void stm32mp1_clk_unlock(struct spinlock *lock)
561 {
562 	if (stm32mp1_lock_available() == 0U) {
563 		return;
564 	}
565 
566 	spin_unlock(lock);
567 }
568 
569 bool stm32mp1_rcc_is_secure(void)
570 {
571 	uintptr_t rcc_base = stm32mp_rcc_base();
572 
573 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
574 }
575 
576 bool stm32mp1_rcc_is_mckprot(void)
577 {
578 	uintptr_t rcc_base = stm32mp_rcc_base();
579 
580 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_MCKPROT) != 0;
581 }
582 
583 void stm32mp1_clk_rcc_regs_lock(void)
584 {
585 	stm32mp1_clk_lock(&reg_lock);
586 }
587 
588 void stm32mp1_clk_rcc_regs_unlock(void)
589 {
590 	stm32mp1_clk_unlock(&reg_lock);
591 }
592 
593 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
594 {
595 	if (idx >= NB_OSC) {
596 		return 0;
597 	}
598 
599 	return stm32mp1_osc[idx];
600 }
601 
602 static int stm32mp1_clk_get_gated_id(unsigned long id)
603 {
604 	unsigned int i;
605 
606 	for (i = 0U; i < NB_GATES; i++) {
607 		if (gate_ref(i)->index == id) {
608 			return i;
609 		}
610 	}
611 
612 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
613 
614 	return -EINVAL;
615 }
616 
617 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
618 {
619 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
620 }
621 
622 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
623 {
624 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
625 }
626 
627 static int stm32mp1_clk_get_parent(unsigned long id)
628 {
629 	const struct stm32mp1_clk_sel *sel;
630 	uint32_t j, p_sel;
631 	int i;
632 	enum stm32mp1_parent_id p;
633 	enum stm32mp1_parent_sel s;
634 	uintptr_t rcc_base = stm32mp_rcc_base();
635 
636 	for (j = 0U; j < ARRAY_SIZE(stm32mp1_clks); j++) {
637 		if (stm32mp1_clks[j][0] == id) {
638 			return (int)stm32mp1_clks[j][1];
639 		}
640 	}
641 
642 	i = stm32mp1_clk_get_gated_id(id);
643 	if (i < 0) {
644 		panic();
645 	}
646 
647 	p = stm32mp1_clk_get_fixed_parent(i);
648 	if (p < _PARENT_NB) {
649 		return (int)p;
650 	}
651 
652 	s = stm32mp1_clk_get_sel(i);
653 	if (s == _UNKNOWN_SEL) {
654 		return -EINVAL;
655 	}
656 	if (s >= _PARENT_SEL_NB) {
657 		panic();
658 	}
659 
660 	sel = clk_sel_ref(s);
661 	p_sel = (mmio_read_32(rcc_base + sel->offset) & sel->msk) >> sel->src;
662 	if (p_sel < sel->nb_parent) {
663 		return (int)sel->parent[p_sel];
664 	}
665 
666 	return -EINVAL;
667 }
668 
669 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
670 {
671 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
672 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
673 
674 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
675 }
676 
677 /*
678  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
679  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
680  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
681  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
682  */
683 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
684 {
685 	unsigned long refclk, fvco;
686 	uint32_t cfgr1, fracr, divm, divn;
687 	uintptr_t rcc_base = stm32mp_rcc_base();
688 
689 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
690 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
691 
692 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
693 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
694 
695 	refclk = stm32mp1_pll_get_fref(pll);
696 
697 	/*
698 	 * With FRACV :
699 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
700 	 * Without FRACV
701 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
702 	 */
703 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
704 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
705 				 RCC_PLLNFRACR_FRACV_SHIFT;
706 		unsigned long long numerator, denominator;
707 
708 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
709 		numerator = refclk * numerator;
710 		denominator = ((unsigned long long)divm + 1U) << 13;
711 		fvco = (unsigned long)(numerator / denominator);
712 	} else {
713 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
714 	}
715 
716 	return fvco;
717 }
718 
719 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
720 					    enum stm32mp1_div_id div_id)
721 {
722 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
723 	unsigned long dfout;
724 	uint32_t cfgr2, divy;
725 
726 	if (div_id >= _DIV_NB) {
727 		return 0;
728 	}
729 
730 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
731 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
732 
733 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
734 
735 	return dfout;
736 }
737 
738 static unsigned long get_clock_rate(int p)
739 {
740 	uint32_t reg, clkdiv;
741 	unsigned long clock = 0;
742 	uintptr_t rcc_base = stm32mp_rcc_base();
743 
744 	switch (p) {
745 	case _CK_MPU:
746 	/* MPU sub system */
747 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
748 		switch (reg & RCC_SELR_SRC_MASK) {
749 		case RCC_MPCKSELR_HSI:
750 			clock = stm32mp1_clk_get_fixed(_HSI);
751 			break;
752 		case RCC_MPCKSELR_HSE:
753 			clock = stm32mp1_clk_get_fixed(_HSE);
754 			break;
755 		case RCC_MPCKSELR_PLL:
756 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
757 			break;
758 		case RCC_MPCKSELR_PLL_MPUDIV:
759 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
760 
761 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
762 			clkdiv = reg & RCC_MPUDIV_MASK;
763 			if (clkdiv != 0U) {
764 				clock /= stm32mp1_mpu_div[clkdiv];
765 			}
766 			break;
767 		default:
768 			break;
769 		}
770 		break;
771 	/* AXI sub system */
772 	case _ACLK:
773 	case _HCLK2:
774 	case _HCLK6:
775 	case _PCLK4:
776 	case _PCLK5:
777 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
778 		switch (reg & RCC_SELR_SRC_MASK) {
779 		case RCC_ASSCKSELR_HSI:
780 			clock = stm32mp1_clk_get_fixed(_HSI);
781 			break;
782 		case RCC_ASSCKSELR_HSE:
783 			clock = stm32mp1_clk_get_fixed(_HSE);
784 			break;
785 		case RCC_ASSCKSELR_PLL:
786 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
787 			break;
788 		default:
789 			break;
790 		}
791 
792 		/* System clock divider */
793 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
794 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
795 
796 		switch (p) {
797 		case _PCLK4:
798 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
799 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
800 			break;
801 		case _PCLK5:
802 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
803 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
804 			break;
805 		default:
806 			break;
807 		}
808 		break;
809 	/* MCU sub system */
810 	case _CK_MCU:
811 	case _PCLK1:
812 	case _PCLK2:
813 	case _PCLK3:
814 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
815 		switch (reg & RCC_SELR_SRC_MASK) {
816 		case RCC_MSSCKSELR_HSI:
817 			clock = stm32mp1_clk_get_fixed(_HSI);
818 			break;
819 		case RCC_MSSCKSELR_HSE:
820 			clock = stm32mp1_clk_get_fixed(_HSE);
821 			break;
822 		case RCC_MSSCKSELR_CSI:
823 			clock = stm32mp1_clk_get_fixed(_CSI);
824 			break;
825 		case RCC_MSSCKSELR_PLL:
826 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
827 			break;
828 		default:
829 			break;
830 		}
831 
832 		/* MCU clock divider */
833 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
834 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
835 
836 		switch (p) {
837 		case _PCLK1:
838 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
839 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
840 			break;
841 		case _PCLK2:
842 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
843 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
844 			break;
845 		case _PCLK3:
846 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
847 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
848 			break;
849 		case _CK_MCU:
850 		default:
851 			break;
852 		}
853 		break;
854 	case _CK_PER:
855 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
856 		switch (reg & RCC_SELR_SRC_MASK) {
857 		case RCC_CPERCKSELR_HSI:
858 			clock = stm32mp1_clk_get_fixed(_HSI);
859 			break;
860 		case RCC_CPERCKSELR_HSE:
861 			clock = stm32mp1_clk_get_fixed(_HSE);
862 			break;
863 		case RCC_CPERCKSELR_CSI:
864 			clock = stm32mp1_clk_get_fixed(_CSI);
865 			break;
866 		default:
867 			break;
868 		}
869 		break;
870 	case _HSI:
871 	case _HSI_KER:
872 		clock = stm32mp1_clk_get_fixed(_HSI);
873 		break;
874 	case _CSI:
875 	case _CSI_KER:
876 		clock = stm32mp1_clk_get_fixed(_CSI);
877 		break;
878 	case _HSE:
879 	case _HSE_KER:
880 		clock = stm32mp1_clk_get_fixed(_HSE);
881 		break;
882 	case _HSE_KER_DIV2:
883 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
884 		break;
885 	case _LSI:
886 		clock = stm32mp1_clk_get_fixed(_LSI);
887 		break;
888 	case _LSE:
889 		clock = stm32mp1_clk_get_fixed(_LSE);
890 		break;
891 	/* PLL */
892 	case _PLL1_P:
893 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
894 		break;
895 	case _PLL1_Q:
896 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
897 		break;
898 	case _PLL1_R:
899 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
900 		break;
901 	case _PLL2_P:
902 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
903 		break;
904 	case _PLL2_Q:
905 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
906 		break;
907 	case _PLL2_R:
908 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
909 		break;
910 	case _PLL3_P:
911 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
912 		break;
913 	case _PLL3_Q:
914 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
915 		break;
916 	case _PLL3_R:
917 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
918 		break;
919 	case _PLL4_P:
920 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
921 		break;
922 	case _PLL4_Q:
923 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
924 		break;
925 	case _PLL4_R:
926 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
927 		break;
928 	/* Other */
929 	case _USB_PHY_48:
930 		clock = USB_PHY_48_MHZ;
931 		break;
932 	default:
933 		break;
934 	}
935 
936 	return clock;
937 }
938 
939 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
940 {
941 	uintptr_t rcc_base = stm32mp_rcc_base();
942 
943 	if (gate->set_clr != 0U) {
944 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
945 	} else {
946 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
947 	}
948 
949 	VERBOSE("Clock %d has been enabled", gate->index);
950 }
951 
952 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
953 {
954 	uintptr_t rcc_base = stm32mp_rcc_base();
955 
956 	if (gate->set_clr != 0U) {
957 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
958 			      BIT(gate->bit));
959 	} else {
960 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
961 	}
962 
963 	VERBOSE("Clock %d has been disabled", gate->index);
964 }
965 
966 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
967 {
968 	uintptr_t rcc_base = stm32mp_rcc_base();
969 
970 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
971 }
972 
973 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
974 {
975 	int i = stm32mp1_clk_get_gated_id(id);
976 
977 	if (i < 0) {
978 		panic();
979 	}
980 
981 	return gate_refcounts[i];
982 }
983 
984 void __stm32mp1_clk_enable(unsigned long id, bool secure)
985 {
986 	const struct stm32mp1_clk_gate *gate;
987 	int i = stm32mp1_clk_get_gated_id(id);
988 	unsigned int *refcnt;
989 
990 	if (i < 0) {
991 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
992 		panic();
993 	}
994 
995 	gate = gate_ref(i);
996 	refcnt = &gate_refcounts[i];
997 
998 	stm32mp1_clk_lock(&refcount_lock);
999 
1000 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1001 		__clk_enable(gate);
1002 	}
1003 
1004 	stm32mp1_clk_unlock(&refcount_lock);
1005 }
1006 
1007 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1008 {
1009 	const struct stm32mp1_clk_gate *gate;
1010 	int i = stm32mp1_clk_get_gated_id(id);
1011 	unsigned int *refcnt;
1012 
1013 	if (i < 0) {
1014 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1015 		panic();
1016 	}
1017 
1018 	gate = gate_ref(i);
1019 	refcnt = &gate_refcounts[i];
1020 
1021 	stm32mp1_clk_lock(&refcount_lock);
1022 
1023 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1024 		__clk_disable(gate);
1025 	}
1026 
1027 	stm32mp1_clk_unlock(&refcount_lock);
1028 }
1029 
1030 void stm32mp_clk_enable(unsigned long id)
1031 {
1032 	__stm32mp1_clk_enable(id, true);
1033 }
1034 
1035 void stm32mp_clk_disable(unsigned long id)
1036 {
1037 	__stm32mp1_clk_disable(id, true);
1038 }
1039 
1040 bool stm32mp_clk_is_enabled(unsigned long id)
1041 {
1042 	int i = stm32mp1_clk_get_gated_id(id);
1043 
1044 	if (i < 0) {
1045 		panic();
1046 	}
1047 
1048 	return __clk_is_enabled(gate_ref(i));
1049 }
1050 
1051 unsigned long stm32mp_clk_get_rate(unsigned long id)
1052 {
1053 	int p = stm32mp1_clk_get_parent(id);
1054 
1055 	if (p < 0) {
1056 		return 0;
1057 	}
1058 
1059 	return get_clock_rate(p);
1060 }
1061 
1062 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1063 {
1064 	uintptr_t address = stm32mp_rcc_base() + offset;
1065 
1066 	if (enable) {
1067 		mmio_setbits_32(address, mask_on);
1068 	} else {
1069 		mmio_clrbits_32(address, mask_on);
1070 	}
1071 }
1072 
1073 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1074 {
1075 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1076 	uintptr_t address = stm32mp_rcc_base() + offset;
1077 
1078 	mmio_write_32(address, mask_on);
1079 }
1080 
1081 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1082 {
1083 	uint64_t timeout;
1084 	uint32_t mask_test;
1085 	uintptr_t address = stm32mp_rcc_base() + offset;
1086 
1087 	if (enable) {
1088 		mask_test = mask_rdy;
1089 	} else {
1090 		mask_test = 0;
1091 	}
1092 
1093 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1094 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1095 		if (timeout_elapsed(timeout)) {
1096 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1097 			      mask_rdy, address, enable, mmio_read_32(address));
1098 			return -ETIMEDOUT;
1099 		}
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1106 {
1107 	uint32_t value;
1108 	uintptr_t rcc_base = stm32mp_rcc_base();
1109 
1110 	if (digbyp) {
1111 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1112 	}
1113 
1114 	if (bypass || digbyp) {
1115 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1116 	}
1117 
1118 	/*
1119 	 * Warning: not recommended to switch directly from "high drive"
1120 	 * to "medium low drive", and vice-versa.
1121 	 */
1122 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1123 		RCC_BDCR_LSEDRV_SHIFT;
1124 
1125 	while (value != lsedrv) {
1126 		if (value > lsedrv) {
1127 			value--;
1128 		} else {
1129 			value++;
1130 		}
1131 
1132 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1133 				   RCC_BDCR_LSEDRV_MASK,
1134 				   value << RCC_BDCR_LSEDRV_SHIFT);
1135 	}
1136 
1137 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1138 }
1139 
1140 static void stm32mp1_lse_wait(void)
1141 {
1142 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1143 		VERBOSE("%s: failed\n", __func__);
1144 	}
1145 }
1146 
1147 static void stm32mp1_lsi_set(bool enable)
1148 {
1149 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1150 
1151 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1152 		VERBOSE("%s: failed\n", __func__);
1153 	}
1154 }
1155 
1156 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1157 {
1158 	uintptr_t rcc_base = stm32mp_rcc_base();
1159 
1160 	if (digbyp) {
1161 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1162 	}
1163 
1164 	if (bypass || digbyp) {
1165 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1166 	}
1167 
1168 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1169 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1170 		VERBOSE("%s: failed\n", __func__);
1171 	}
1172 
1173 	if (css) {
1174 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1175 	}
1176 }
1177 
1178 static void stm32mp1_csi_set(bool enable)
1179 {
1180 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1181 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1182 		VERBOSE("%s: failed\n", __func__);
1183 	}
1184 }
1185 
1186 static void stm32mp1_hsi_set(bool enable)
1187 {
1188 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1189 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1190 		VERBOSE("%s: failed\n", __func__);
1191 	}
1192 }
1193 
1194 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1195 {
1196 	uint64_t timeout;
1197 	uintptr_t rcc_base = stm32mp_rcc_base();
1198 	uintptr_t address = rcc_base + RCC_OCRDYR;
1199 
1200 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1201 			   RCC_HSICFGR_HSIDIV_MASK,
1202 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1203 
1204 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1205 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1206 		if (timeout_elapsed(timeout)) {
1207 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1208 			      address, mmio_read_32(address));
1209 			return -ETIMEDOUT;
1210 		}
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 static int stm32mp1_hsidiv(unsigned long hsifreq)
1217 {
1218 	uint8_t hsidiv;
1219 	uint32_t hsidivfreq = MAX_HSI_HZ;
1220 
1221 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1222 		if (hsidivfreq == hsifreq) {
1223 			break;
1224 		}
1225 
1226 		hsidivfreq /= 2U;
1227 	}
1228 
1229 	if (hsidiv == 4U) {
1230 		ERROR("Invalid clk-hsi frequency\n");
1231 		return -1;
1232 	}
1233 
1234 	if (hsidiv != 0U) {
1235 		return stm32mp1_set_hsidiv(hsidiv);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1242 				    unsigned int clksrc,
1243 				    uint32_t *pllcfg, int plloff)
1244 {
1245 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1246 	uintptr_t rcc_base = stm32mp_rcc_base();
1247 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1248 	enum stm32mp1_plltype type = pll->plltype;
1249 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1250 	unsigned long refclk;
1251 	uint32_t ifrge = 0U;
1252 	uint32_t src, value, fracv;
1253 
1254 	/* Check PLL output */
1255 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1256 		return false;
1257 	}
1258 
1259 	/* Check current clksrc */
1260 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1261 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1262 		return false;
1263 	}
1264 
1265 	/* Check Div */
1266 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1267 
1268 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1269 		 (pllcfg[PLLCFG_M] + 1U);
1270 
1271 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1272 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1273 		return false;
1274 	}
1275 
1276 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1277 		ifrge = 1U;
1278 	}
1279 
1280 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1281 		RCC_PLLNCFGR1_DIVN_MASK;
1282 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1283 		 RCC_PLLNCFGR1_DIVM_MASK;
1284 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1285 		 RCC_PLLNCFGR1_IFRGE_MASK;
1286 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1287 		return false;
1288 	}
1289 
1290 	/* Fractional configuration */
1291 	fracv = fdt_read_uint32_default(plloff, "frac", 0);
1292 
1293 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1294 	value |= RCC_PLLNFRACR_FRACLE;
1295 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1296 		return false;
1297 	}
1298 
1299 	/* Output config */
1300 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1301 		RCC_PLLNCFGR2_DIVP_MASK;
1302 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1303 		 RCC_PLLNCFGR2_DIVQ_MASK;
1304 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1305 		 RCC_PLLNCFGR2_DIVR_MASK;
1306 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1307 		return false;
1308 	}
1309 
1310 	return true;
1311 }
1312 
1313 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1314 {
1315 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1316 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1317 
1318 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1319 	mmio_clrsetbits_32(pllxcr,
1320 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1321 			   RCC_PLLNCR_DIVREN,
1322 			   RCC_PLLNCR_PLLON);
1323 }
1324 
1325 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1326 {
1327 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1328 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1329 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1330 
1331 	/* Wait PLL lock */
1332 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1333 		if (timeout_elapsed(timeout)) {
1334 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1335 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1336 			return -ETIMEDOUT;
1337 		}
1338 	}
1339 
1340 	/* Start the requested output */
1341 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1342 
1343 	return 0;
1344 }
1345 
1346 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1347 {
1348 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1349 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1350 	uint64_t timeout;
1351 
1352 	/* Stop all output */
1353 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1354 			RCC_PLLNCR_DIVREN);
1355 
1356 	/* Stop PLL */
1357 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1358 
1359 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1360 	/* Wait PLL stopped */
1361 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1362 		if (timeout_elapsed(timeout)) {
1363 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1364 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1365 			return -ETIMEDOUT;
1366 		}
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1373 				       uint32_t *pllcfg)
1374 {
1375 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1376 	uintptr_t rcc_base = stm32mp_rcc_base();
1377 	uint32_t value;
1378 
1379 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1380 		RCC_PLLNCFGR2_DIVP_MASK;
1381 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1382 		 RCC_PLLNCFGR2_DIVQ_MASK;
1383 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1384 		 RCC_PLLNCFGR2_DIVR_MASK;
1385 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1386 }
1387 
1388 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1389 			       uint32_t *pllcfg, uint32_t fracv)
1390 {
1391 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1392 	uintptr_t rcc_base = stm32mp_rcc_base();
1393 	enum stm32mp1_plltype type = pll->plltype;
1394 	unsigned long refclk;
1395 	uint32_t ifrge = 0;
1396 	uint32_t src, value;
1397 
1398 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1399 		RCC_SELR_REFCLK_SRC_MASK;
1400 
1401 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1402 		 (pllcfg[PLLCFG_M] + 1U);
1403 
1404 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1405 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1406 		return -EINVAL;
1407 	}
1408 
1409 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1410 		ifrge = 1U;
1411 	}
1412 
1413 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1414 		RCC_PLLNCFGR1_DIVN_MASK;
1415 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1416 		 RCC_PLLNCFGR1_DIVM_MASK;
1417 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1418 		 RCC_PLLNCFGR1_IFRGE_MASK;
1419 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1420 
1421 	/* Fractional configuration */
1422 	value = 0;
1423 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1424 
1425 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1426 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1427 
1428 	value |= RCC_PLLNFRACR_FRACLE;
1429 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1430 
1431 	stm32mp1_pll_config_output(pll_id, pllcfg);
1432 
1433 	return 0;
1434 }
1435 
1436 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1437 {
1438 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1439 	uint32_t pllxcsg = 0;
1440 
1441 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1442 		    RCC_PLLNCSGR_MOD_PER_MASK;
1443 
1444 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1445 		    RCC_PLLNCSGR_INC_STEP_MASK;
1446 
1447 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1448 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1449 
1450 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1451 
1452 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1453 			RCC_PLLNCR_SSCG_CTRL);
1454 }
1455 
1456 static int stm32mp1_set_clksrc(unsigned int clksrc)
1457 {
1458 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1459 	uint64_t timeout;
1460 
1461 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1462 			   clksrc & RCC_SELR_SRC_MASK);
1463 
1464 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1465 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1466 		if (timeout_elapsed(timeout)) {
1467 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1468 			      clksrc_address, mmio_read_32(clksrc_address));
1469 			return -ETIMEDOUT;
1470 		}
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1477 {
1478 	uint64_t timeout;
1479 
1480 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1481 			   clkdiv & RCC_DIVR_DIV_MASK);
1482 
1483 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1484 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1485 		if (timeout_elapsed(timeout)) {
1486 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1487 			      clkdiv, address, mmio_read_32(address));
1488 			return -ETIMEDOUT;
1489 		}
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1496 {
1497 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1498 
1499 	/*
1500 	 * Binding clksrc :
1501 	 *      bit15-4 offset
1502 	 *      bit3:   disable
1503 	 *      bit2-0: MCOSEL[2:0]
1504 	 */
1505 	if ((clksrc & 0x8U) != 0U) {
1506 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1507 	} else {
1508 		mmio_clrsetbits_32(clksrc_address,
1509 				   RCC_MCOCFG_MCOSRC_MASK,
1510 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1511 		mmio_clrsetbits_32(clksrc_address,
1512 				   RCC_MCOCFG_MCODIV_MASK,
1513 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1514 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1515 	}
1516 }
1517 
1518 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1519 {
1520 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1521 
1522 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1523 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1524 		mmio_clrsetbits_32(address,
1525 				   RCC_BDCR_RTCSRC_MASK,
1526 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1527 
1528 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1529 	}
1530 
1531 	if (lse_css) {
1532 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1533 	}
1534 }
1535 
1536 static void stm32mp1_stgen_config(void)
1537 {
1538 	uintptr_t stgen;
1539 	uint32_t cntfid0;
1540 	unsigned long rate;
1541 	unsigned long long counter;
1542 
1543 	stgen = fdt_get_stgen_base();
1544 	cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
1545 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1546 
1547 	if (cntfid0 == rate) {
1548 		return;
1549 	}
1550 
1551 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1552 	counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
1553 	counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
1554 	counter = (counter * rate / cntfid0);
1555 
1556 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
1557 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
1558 	mmio_write_32(stgen + CNTFID_OFF, rate);
1559 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1560 
1561 	write_cntfrq((u_register_t)rate);
1562 
1563 	/* Need to update timer with new frequency */
1564 	generic_delay_timer_init();
1565 }
1566 
1567 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1568 {
1569 	uintptr_t stgen;
1570 	unsigned long long cnt;
1571 
1572 	stgen = fdt_get_stgen_base();
1573 
1574 	cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
1575 		mmio_read_32(stgen + CNTCVL_OFF);
1576 
1577 	cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
1578 
1579 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1580 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
1581 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1582 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1583 }
1584 
1585 static void stm32mp1_pkcs_config(uint32_t pkcs)
1586 {
1587 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1588 	uint32_t value = pkcs & 0xFU;
1589 	uint32_t mask = 0xFU;
1590 
1591 	if ((pkcs & BIT(31)) != 0U) {
1592 		mask <<= 4;
1593 		value <<= 4;
1594 	}
1595 
1596 	mmio_clrsetbits_32(address, mask, value);
1597 }
1598 
1599 int stm32mp1_clk_init(void)
1600 {
1601 	uintptr_t rcc_base = stm32mp_rcc_base();
1602 	unsigned int clksrc[CLKSRC_NB];
1603 	unsigned int clkdiv[CLKDIV_NB];
1604 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1605 	int plloff[_PLL_NB];
1606 	int ret, len;
1607 	enum stm32mp1_pll_id i;
1608 	bool lse_css = false;
1609 	bool pll3_preserve = false;
1610 	bool pll4_preserve = false;
1611 	bool pll4_bootrom = false;
1612 	const fdt32_t *pkcs_cell;
1613 
1614 	/* Check status field to disable security */
1615 	if (!fdt_get_rcc_secure_status()) {
1616 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1617 	}
1618 
1619 	ret = fdt_rcc_read_uint32_array("st,clksrc", clksrc,
1620 					(uint32_t)CLKSRC_NB);
1621 	if (ret < 0) {
1622 		return -FDT_ERR_NOTFOUND;
1623 	}
1624 
1625 	ret = fdt_rcc_read_uint32_array("st,clkdiv", clkdiv,
1626 					(uint32_t)CLKDIV_NB);
1627 	if (ret < 0) {
1628 		return -FDT_ERR_NOTFOUND;
1629 	}
1630 
1631 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1632 		char name[12];
1633 
1634 		snprintf(name, sizeof(name), "st,pll@%d", i);
1635 		plloff[i] = fdt_rcc_subnode_offset(name);
1636 
1637 		if (!fdt_check_node(plloff[i])) {
1638 			continue;
1639 		}
1640 
1641 		ret = fdt_read_uint32_array(plloff[i], "cfg",
1642 					    pllcfg[i], (int)PLLCFG_NB);
1643 		if (ret < 0) {
1644 			return -FDT_ERR_NOTFOUND;
1645 		}
1646 	}
1647 
1648 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1649 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1650 
1651 	/*
1652 	 * Switch ON oscillator found in device-tree.
1653 	 * Note: HSI already ON after BootROM stage.
1654 	 */
1655 	if (stm32mp1_osc[_LSI] != 0U) {
1656 		stm32mp1_lsi_set(true);
1657 	}
1658 	if (stm32mp1_osc[_LSE] != 0U) {
1659 		bool bypass, digbyp;
1660 		uint32_t lsedrv;
1661 
1662 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1663 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1664 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1665 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1666 						     LSEDRV_MEDIUM_HIGH);
1667 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1668 	}
1669 	if (stm32mp1_osc[_HSE] != 0U) {
1670 		bool bypass, digbyp, css;
1671 
1672 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1673 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1674 		css = fdt_osc_read_bool(_HSE, "st,css");
1675 		stm32mp1_hse_enable(bypass, digbyp, css);
1676 	}
1677 	/*
1678 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1679 	 * => switch on CSI even if node is not present in device tree
1680 	 */
1681 	stm32mp1_csi_set(true);
1682 
1683 	/* Come back to HSI */
1684 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1685 	if (ret != 0) {
1686 		return ret;
1687 	}
1688 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1689 	if (ret != 0) {
1690 		return ret;
1691 	}
1692 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1693 	if (ret != 0) {
1694 		return ret;
1695 	}
1696 
1697 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1698 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1699 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1700 							clksrc[CLKSRC_PLL3],
1701 							pllcfg[_PLL3],
1702 							plloff[_PLL3]);
1703 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1704 							clksrc[CLKSRC_PLL4],
1705 							pllcfg[_PLL4],
1706 							plloff[_PLL4]);
1707 	}
1708 
1709 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1710 		if (((i == _PLL3) && pll3_preserve) ||
1711 		    ((i == _PLL4) && pll4_preserve)) {
1712 			continue;
1713 		}
1714 
1715 		ret = stm32mp1_pll_stop(i);
1716 		if (ret != 0) {
1717 			return ret;
1718 		}
1719 	}
1720 
1721 	/* Configure HSIDIV */
1722 	if (stm32mp1_osc[_HSI] != 0U) {
1723 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1724 		if (ret != 0) {
1725 			return ret;
1726 		}
1727 		stm32mp1_stgen_config();
1728 	}
1729 
1730 	/* Select DIV */
1731 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1732 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1733 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1734 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1735 	if (ret != 0) {
1736 		return ret;
1737 	}
1738 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1739 	if (ret != 0) {
1740 		return ret;
1741 	}
1742 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1743 	if (ret != 0) {
1744 		return ret;
1745 	}
1746 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1747 	if (ret != 0) {
1748 		return ret;
1749 	}
1750 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1751 	if (ret != 0) {
1752 		return ret;
1753 	}
1754 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1755 	if (ret != 0) {
1756 		return ret;
1757 	}
1758 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1759 	if (ret != 0) {
1760 		return ret;
1761 	}
1762 
1763 	/* No ready bit for RTC */
1764 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1765 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1766 
1767 	/* Configure PLLs source */
1768 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1769 	if (ret != 0) {
1770 		return ret;
1771 	}
1772 
1773 	if (!pll3_preserve) {
1774 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1775 		if (ret != 0) {
1776 			return ret;
1777 		}
1778 	}
1779 
1780 	if (!pll4_preserve) {
1781 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1782 		if (ret != 0) {
1783 			return ret;
1784 		}
1785 	}
1786 
1787 	/* Configure and start PLLs */
1788 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1789 		uint32_t fracv;
1790 		uint32_t csg[PLLCSG_NB];
1791 
1792 		if (((i == _PLL3) && pll3_preserve) ||
1793 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1794 			continue;
1795 		}
1796 
1797 		if (!fdt_check_node(plloff[i])) {
1798 			continue;
1799 		}
1800 
1801 		if ((i == _PLL4) && pll4_bootrom) {
1802 			/* Set output divider if not done by the Bootrom */
1803 			stm32mp1_pll_config_output(i, pllcfg[i]);
1804 			continue;
1805 		}
1806 
1807 		fracv = fdt_read_uint32_default(plloff[i], "frac", 0);
1808 
1809 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1810 		if (ret != 0) {
1811 			return ret;
1812 		}
1813 		ret = fdt_read_uint32_array(plloff[i], "csg", csg,
1814 					    (uint32_t)PLLCSG_NB);
1815 		if (ret == 0) {
1816 			stm32mp1_pll_csg(i, csg);
1817 		} else if (ret != -FDT_ERR_NOTFOUND) {
1818 			return ret;
1819 		}
1820 
1821 		stm32mp1_pll_start(i);
1822 	}
1823 	/* Wait and start PLLs ouptut when ready */
1824 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1825 		if (!fdt_check_node(plloff[i])) {
1826 			continue;
1827 		}
1828 
1829 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1830 		if (ret != 0) {
1831 			return ret;
1832 		}
1833 	}
1834 	/* Wait LSE ready before to use it */
1835 	if (stm32mp1_osc[_LSE] != 0U) {
1836 		stm32mp1_lse_wait();
1837 	}
1838 
1839 	/* Configure with expected clock source */
1840 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1841 	if (ret != 0) {
1842 		return ret;
1843 	}
1844 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1845 	if (ret != 0) {
1846 		return ret;
1847 	}
1848 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1849 	if (ret != 0) {
1850 		return ret;
1851 	}
1852 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1853 
1854 	/* Configure PKCK */
1855 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1856 	if (pkcs_cell != NULL) {
1857 		bool ckper_disabled = false;
1858 		uint32_t j;
1859 
1860 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1861 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1862 
1863 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1864 				ckper_disabled = true;
1865 				continue;
1866 			}
1867 			stm32mp1_pkcs_config(pkcs);
1868 		}
1869 
1870 		/*
1871 		 * CKPER is source for some peripheral clocks
1872 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1873 		 * only if previous clock is still ON
1874 		 * => deactivated CKPER only after switching clock
1875 		 */
1876 		if (ckper_disabled) {
1877 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
1878 		}
1879 	}
1880 
1881 	/* Switch OFF HSI if not found in device-tree */
1882 	if (stm32mp1_osc[_HSI] == 0U) {
1883 		stm32mp1_hsi_set(false);
1884 	}
1885 	stm32mp1_stgen_config();
1886 
1887 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1888 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
1889 			   RCC_DDRITFCR_DDRCKMOD_MASK,
1890 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
1891 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
1892 
1893 	return 0;
1894 }
1895 
1896 static void stm32mp1_osc_clk_init(const char *name,
1897 				  enum stm32mp_osc_id index)
1898 {
1899 	uint32_t frequency;
1900 
1901 	if (fdt_osc_read_freq(name, &frequency) == 0) {
1902 		stm32mp1_osc[index] = frequency;
1903 	}
1904 }
1905 
1906 static void stm32mp1_osc_init(void)
1907 {
1908 	enum stm32mp_osc_id i;
1909 
1910 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
1911 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
1912 	}
1913 }
1914 
1915 int stm32mp1_clk_probe(void)
1916 {
1917 	stm32mp1_osc_init();
1918 
1919 	return 0;
1920 }
1921