xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 343580e59acacaa3ff1c5bdd1d933f9e0c051492)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_PER_SEL,
111 	_PARENT_SEL_NB,
112 	_UNKNOWN_SEL = 0xff,
113 };
114 
115 /* State the parent clock ID straight related to a clock */
116 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
117 	[_HSE] = CK_HSE,
118 	[_HSI] = CK_HSI,
119 	[_CSI] = CK_CSI,
120 	[_LSE] = CK_LSE,
121 	[_LSI] = CK_LSI,
122 	[_I2S_CKIN] = _UNKNOWN_ID,
123 	[_USB_PHY_48] = _UNKNOWN_ID,
124 	[_HSI_KER] = CK_HSI,
125 	[_HSE_KER] = CK_HSE,
126 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
127 	[_CSI_KER] = CK_CSI,
128 	[_PLL1_P] = PLL1_P,
129 	[_PLL1_Q] = PLL1_Q,
130 	[_PLL1_R] = PLL1_R,
131 	[_PLL2_P] = PLL2_P,
132 	[_PLL2_Q] = PLL2_Q,
133 	[_PLL2_R] = PLL2_R,
134 	[_PLL3_P] = PLL3_P,
135 	[_PLL3_Q] = PLL3_Q,
136 	[_PLL3_R] = PLL3_R,
137 	[_PLL4_P] = PLL4_P,
138 	[_PLL4_Q] = PLL4_Q,
139 	[_PLL4_R] = PLL4_R,
140 	[_ACLK] = CK_AXI,
141 	[_PCLK1] = CK_AXI,
142 	[_PCLK2] = CK_AXI,
143 	[_PCLK3] = CK_AXI,
144 	[_PCLK4] = CK_AXI,
145 	[_PCLK5] = CK_AXI,
146 	[_CK_PER] = CK_PER,
147 	[_CK_MPU] = CK_MPU,
148 	[_CK_MCU] = CK_MCU,
149 };
150 
151 static unsigned int clock_id2parent_id(unsigned long id)
152 {
153 	unsigned int n;
154 
155 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
156 		if (parent_id_clock_id[n] == id) {
157 			return n;
158 		}
159 	}
160 
161 	return _UNKNOWN_ID;
162 }
163 
164 enum stm32mp1_pll_id {
165 	_PLL1,
166 	_PLL2,
167 	_PLL3,
168 	_PLL4,
169 	_PLL_NB
170 };
171 
172 enum stm32mp1_div_id {
173 	_DIV_P,
174 	_DIV_Q,
175 	_DIV_R,
176 	_DIV_NB,
177 };
178 
179 enum stm32mp1_clksrc_id {
180 	CLKSRC_MPU,
181 	CLKSRC_AXI,
182 	CLKSRC_MCU,
183 	CLKSRC_PLL12,
184 	CLKSRC_PLL3,
185 	CLKSRC_PLL4,
186 	CLKSRC_RTC,
187 	CLKSRC_MCO1,
188 	CLKSRC_MCO2,
189 	CLKSRC_NB
190 };
191 
192 enum stm32mp1_clkdiv_id {
193 	CLKDIV_MPU,
194 	CLKDIV_AXI,
195 	CLKDIV_MCU,
196 	CLKDIV_APB1,
197 	CLKDIV_APB2,
198 	CLKDIV_APB3,
199 	CLKDIV_APB4,
200 	CLKDIV_APB5,
201 	CLKDIV_RTC,
202 	CLKDIV_MCO1,
203 	CLKDIV_MCO2,
204 	CLKDIV_NB
205 };
206 
207 enum stm32mp1_pllcfg {
208 	PLLCFG_M,
209 	PLLCFG_N,
210 	PLLCFG_P,
211 	PLLCFG_Q,
212 	PLLCFG_R,
213 	PLLCFG_O,
214 	PLLCFG_NB
215 };
216 
217 enum stm32mp1_pllcsg {
218 	PLLCSG_MOD_PER,
219 	PLLCSG_INC_STEP,
220 	PLLCSG_SSCG_MODE,
221 	PLLCSG_NB
222 };
223 
224 enum stm32mp1_plltype {
225 	PLL_800,
226 	PLL_1600,
227 	PLL_TYPE_NB
228 };
229 
230 struct stm32mp1_pll {
231 	uint8_t refclk_min;
232 	uint8_t refclk_max;
233 	uint8_t divn_max;
234 };
235 
236 struct stm32mp1_clk_gate {
237 	uint16_t offset;
238 	uint8_t bit;
239 	uint8_t index;
240 	uint8_t set_clr;
241 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
242 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
243 };
244 
245 struct stm32mp1_clk_sel {
246 	uint16_t offset;
247 	uint8_t src;
248 	uint8_t msk;
249 	uint8_t nb_parent;
250 	const uint8_t *parent;
251 };
252 
253 #define REFCLK_SIZE 4
254 struct stm32mp1_clk_pll {
255 	enum stm32mp1_plltype plltype;
256 	uint16_t rckxselr;
257 	uint16_t pllxcfgr1;
258 	uint16_t pllxcfgr2;
259 	uint16_t pllxfracr;
260 	uint16_t pllxcr;
261 	uint16_t pllxcsgr;
262 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
263 };
264 
265 /* Clocks with selectable source and non set/clr register access */
266 #define _CLK_SELEC(off, b, idx, s)			\
267 	{						\
268 		.offset = (off),			\
269 		.bit = (b),				\
270 		.index = (idx),				\
271 		.set_clr = 0,				\
272 		.sel = (s),				\
273 		.fixed = _UNKNOWN_ID,			\
274 	}
275 
276 /* Clocks with fixed source and non set/clr register access */
277 #define _CLK_FIXED(off, b, idx, f)			\
278 	{						\
279 		.offset = (off),			\
280 		.bit = (b),				\
281 		.index = (idx),				\
282 		.set_clr = 0,				\
283 		.sel = _UNKNOWN_SEL,			\
284 		.fixed = (f),				\
285 	}
286 
287 /* Clocks with selectable source and set/clr register access */
288 #define _CLK_SC_SELEC(off, b, idx, s)			\
289 	{						\
290 		.offset = (off),			\
291 		.bit = (b),				\
292 		.index = (idx),				\
293 		.set_clr = 1,				\
294 		.sel = (s),				\
295 		.fixed = _UNKNOWN_ID,			\
296 	}
297 
298 /* Clocks with fixed source and set/clr register access */
299 #define _CLK_SC_FIXED(off, b, idx, f)			\
300 	{						\
301 		.offset = (off),			\
302 		.bit = (b),				\
303 		.index = (idx),				\
304 		.set_clr = 1,				\
305 		.sel = _UNKNOWN_SEL,			\
306 		.fixed = (f),				\
307 	}
308 
309 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
310 	[_ ## _label ## _SEL] = {				\
311 		.offset = _rcc_selr,				\
312 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
313 		.msk = _rcc_selr ## _ ## _label ## SRC_MASK,	\
314 		.parent = (_parents),				\
315 		.nb_parent = ARRAY_SIZE(_parents)		\
316 	}
317 
318 #define _CLK_PLL(idx, type, off1, off2, off3,		\
319 		 off4, off5, off6,			\
320 		 p1, p2, p3, p4)			\
321 	[(idx)] = {					\
322 		.plltype = (type),			\
323 		.rckxselr = (off1),			\
324 		.pllxcfgr1 = (off2),			\
325 		.pllxcfgr2 = (off3),			\
326 		.pllxfracr = (off4),			\
327 		.pllxcr = (off5),			\
328 		.pllxcsgr = (off6),			\
329 		.refclk[0] = (p1),			\
330 		.refclk[1] = (p2),			\
331 		.refclk[2] = (p3),			\
332 		.refclk[3] = (p4),			\
333 	}
334 
335 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
336 
337 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
338 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
339 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
340 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
341 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
342 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
343 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
344 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
345 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
346 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
347 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
348 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
349 
350 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
351 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
352 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
353 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
354 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
361 
362 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
363 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
364 
365 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
366 
367 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
368 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
369 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
370 
371 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
372 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
373 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
374 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
375 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
376 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
377 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
378 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
381 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
382 
383 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
384 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
385 
386 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
387 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
388 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
389 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
397 
398 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
399 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
400 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
401 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
402 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
403 
404 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
405 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
406 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
407 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
409 
410 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
411 };
412 
413 static const uint8_t i2c12_parents[] = {
414 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
415 };
416 
417 static const uint8_t i2c35_parents[] = {
418 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
419 };
420 
421 static const uint8_t stgen_parents[] = {
422 	_HSI_KER, _HSE_KER
423 };
424 
425 static const uint8_t i2c46_parents[] = {
426 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
427 };
428 
429 static const uint8_t spi6_parents[] = {
430 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
431 };
432 
433 static const uint8_t usart1_parents[] = {
434 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
435 };
436 
437 static const uint8_t rng1_parents[] = {
438 	_CSI, _PLL4_R, _LSE, _LSI
439 };
440 
441 static const uint8_t uart6_parents[] = {
442 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
443 };
444 
445 static const uint8_t uart234578_parents[] = {
446 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
447 };
448 
449 static const uint8_t sdmmc12_parents[] = {
450 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
451 };
452 
453 static const uint8_t sdmmc3_parents[] = {
454 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
455 };
456 
457 static const uint8_t qspi_parents[] = {
458 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
459 };
460 
461 static const uint8_t fmc_parents[] = {
462 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
463 };
464 
465 static const uint8_t ass_parents[] = {
466 	_HSI, _HSE, _PLL2
467 };
468 
469 static const uint8_t mss_parents[] = {
470 	_HSI, _HSE, _CSI, _PLL3
471 };
472 
473 static const uint8_t usbphy_parents[] = {
474 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
475 };
476 
477 static const uint8_t usbo_parents[] = {
478 	_PLL4_R, _USB_PHY_48
479 };
480 
481 static const uint8_t mpu_parents[] = {
482 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
483 };
484 
485 static const uint8_t per_parents[] = {
486 	_HSI, _HSE, _CSI,
487 };
488 
489 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
490 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
491 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
492 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
493 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
494 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
495 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
496 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
497 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
498 	_CLK_PARENT_SEL(PER, RCC_CPERCKSELR, per_parents),
499 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
500 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
501 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
502 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
503 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
504 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
505 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
506 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
507 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
508 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
509 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
510 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
511 };
512 
513 /* Define characteristic of PLL according type */
514 #define DIVN_MIN	24
515 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
516 	[PLL_800] = {
517 		.refclk_min = 4,
518 		.refclk_max = 16,
519 		.divn_max = 99,
520 	},
521 	[PLL_1600] = {
522 		.refclk_min = 8,
523 		.refclk_max = 16,
524 		.divn_max = 199,
525 	},
526 };
527 
528 /* PLLNCFGR2 register divider by output */
529 static const uint8_t pllncfgr2[_DIV_NB] = {
530 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
531 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
532 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
533 };
534 
535 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
536 	_CLK_PLL(_PLL1, PLL_1600,
537 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
538 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
539 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
540 	_CLK_PLL(_PLL2, PLL_1600,
541 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
542 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
543 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
544 	_CLK_PLL(_PLL3, PLL_800,
545 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
546 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
547 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
548 	_CLK_PLL(_PLL4, PLL_800,
549 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
550 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
551 		 _HSI, _HSE, _CSI, _I2S_CKIN),
552 };
553 
554 /* Prescaler table lookups for clock computation */
555 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
556 static const uint8_t stm32mp1_mcu_div[16] = {
557 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
558 };
559 
560 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
561 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
562 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
563 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
564 	0, 1, 2, 3, 4, 4, 4, 4
565 };
566 
567 /* div = /1 /2 /3 /4 */
568 static const uint8_t stm32mp1_axi_div[8] = {
569 	1, 2, 3, 4, 4, 4, 4, 4
570 };
571 
572 /* RCC clock device driver private */
573 static unsigned long stm32mp1_osc[NB_OSC];
574 static struct spinlock reg_lock;
575 static unsigned int gate_refcounts[NB_GATES];
576 static struct spinlock refcount_lock;
577 
578 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
579 {
580 	return &stm32mp1_clk_gate[idx];
581 }
582 
583 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
584 {
585 	return &stm32mp1_clk_sel[idx];
586 }
587 
588 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
589 {
590 	return &stm32mp1_clk_pll[idx];
591 }
592 
593 static void stm32mp1_clk_lock(struct spinlock *lock)
594 {
595 	if (stm32mp_lock_available()) {
596 		/* Assume interrupts are masked */
597 		spin_lock(lock);
598 	}
599 }
600 
601 static void stm32mp1_clk_unlock(struct spinlock *lock)
602 {
603 	if (stm32mp_lock_available()) {
604 		spin_unlock(lock);
605 	}
606 }
607 
608 bool stm32mp1_rcc_is_secure(void)
609 {
610 	uintptr_t rcc_base = stm32mp_rcc_base();
611 
612 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
613 }
614 
615 bool stm32mp1_rcc_is_mckprot(void)
616 {
617 	uintptr_t rcc_base = stm32mp_rcc_base();
618 
619 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_MCKPROT) != 0;
620 }
621 
622 void stm32mp1_clk_rcc_regs_lock(void)
623 {
624 	stm32mp1_clk_lock(&reg_lock);
625 }
626 
627 void stm32mp1_clk_rcc_regs_unlock(void)
628 {
629 	stm32mp1_clk_unlock(&reg_lock);
630 }
631 
632 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
633 {
634 	if (idx >= NB_OSC) {
635 		return 0;
636 	}
637 
638 	return stm32mp1_osc[idx];
639 }
640 
641 static int stm32mp1_clk_get_gated_id(unsigned long id)
642 {
643 	unsigned int i;
644 
645 	for (i = 0U; i < NB_GATES; i++) {
646 		if (gate_ref(i)->index == id) {
647 			return i;
648 		}
649 	}
650 
651 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
652 
653 	return -EINVAL;
654 }
655 
656 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
657 {
658 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
659 }
660 
661 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
662 {
663 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
664 }
665 
666 static int stm32mp1_clk_get_parent(unsigned long id)
667 {
668 	const struct stm32mp1_clk_sel *sel;
669 	uint32_t p_sel;
670 	int i;
671 	enum stm32mp1_parent_id p;
672 	enum stm32mp1_parent_sel s;
673 	uintptr_t rcc_base = stm32mp_rcc_base();
674 
675 	/* Few non gateable clock have a static parent ID, find them */
676 	i = (int)clock_id2parent_id(id);
677 	if (i != _UNKNOWN_ID) {
678 		return i;
679 	}
680 
681 	i = stm32mp1_clk_get_gated_id(id);
682 	if (i < 0) {
683 		panic();
684 	}
685 
686 	p = stm32mp1_clk_get_fixed_parent(i);
687 	if (p < _PARENT_NB) {
688 		return (int)p;
689 	}
690 
691 	s = stm32mp1_clk_get_sel(i);
692 	if (s == _UNKNOWN_SEL) {
693 		return -EINVAL;
694 	}
695 	if (s >= _PARENT_SEL_NB) {
696 		panic();
697 	}
698 
699 	sel = clk_sel_ref(s);
700 	p_sel = (mmio_read_32(rcc_base + sel->offset) & sel->msk) >> sel->src;
701 	if (p_sel < sel->nb_parent) {
702 		return (int)sel->parent[p_sel];
703 	}
704 
705 	return -EINVAL;
706 }
707 
708 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
709 {
710 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
711 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
712 
713 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
714 }
715 
716 /*
717  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
718  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
719  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
720  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
721  */
722 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
723 {
724 	unsigned long refclk, fvco;
725 	uint32_t cfgr1, fracr, divm, divn;
726 	uintptr_t rcc_base = stm32mp_rcc_base();
727 
728 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
729 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
730 
731 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
732 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
733 
734 	refclk = stm32mp1_pll_get_fref(pll);
735 
736 	/*
737 	 * With FRACV :
738 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
739 	 * Without FRACV
740 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
741 	 */
742 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
743 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
744 				 RCC_PLLNFRACR_FRACV_SHIFT;
745 		unsigned long long numerator, denominator;
746 
747 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
748 		numerator = refclk * numerator;
749 		denominator = ((unsigned long long)divm + 1U) << 13;
750 		fvco = (unsigned long)(numerator / denominator);
751 	} else {
752 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
753 	}
754 
755 	return fvco;
756 }
757 
758 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
759 					    enum stm32mp1_div_id div_id)
760 {
761 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
762 	unsigned long dfout;
763 	uint32_t cfgr2, divy;
764 
765 	if (div_id >= _DIV_NB) {
766 		return 0;
767 	}
768 
769 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
770 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
771 
772 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
773 
774 	return dfout;
775 }
776 
777 static unsigned long get_clock_rate(int p)
778 {
779 	uint32_t reg, clkdiv;
780 	unsigned long clock = 0;
781 	uintptr_t rcc_base = stm32mp_rcc_base();
782 
783 	switch (p) {
784 	case _CK_MPU:
785 	/* MPU sub system */
786 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
787 		switch (reg & RCC_SELR_SRC_MASK) {
788 		case RCC_MPCKSELR_HSI:
789 			clock = stm32mp1_clk_get_fixed(_HSI);
790 			break;
791 		case RCC_MPCKSELR_HSE:
792 			clock = stm32mp1_clk_get_fixed(_HSE);
793 			break;
794 		case RCC_MPCKSELR_PLL:
795 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
796 			break;
797 		case RCC_MPCKSELR_PLL_MPUDIV:
798 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
799 
800 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
801 			clkdiv = reg & RCC_MPUDIV_MASK;
802 			if (clkdiv != 0U) {
803 				clock /= stm32mp1_mpu_div[clkdiv];
804 			}
805 			break;
806 		default:
807 			break;
808 		}
809 		break;
810 	/* AXI sub system */
811 	case _ACLK:
812 	case _HCLK2:
813 	case _HCLK6:
814 	case _PCLK4:
815 	case _PCLK5:
816 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
817 		switch (reg & RCC_SELR_SRC_MASK) {
818 		case RCC_ASSCKSELR_HSI:
819 			clock = stm32mp1_clk_get_fixed(_HSI);
820 			break;
821 		case RCC_ASSCKSELR_HSE:
822 			clock = stm32mp1_clk_get_fixed(_HSE);
823 			break;
824 		case RCC_ASSCKSELR_PLL:
825 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
826 			break;
827 		default:
828 			break;
829 		}
830 
831 		/* System clock divider */
832 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
833 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
834 
835 		switch (p) {
836 		case _PCLK4:
837 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
838 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
839 			break;
840 		case _PCLK5:
841 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
842 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
843 			break;
844 		default:
845 			break;
846 		}
847 		break;
848 	/* MCU sub system */
849 	case _CK_MCU:
850 	case _PCLK1:
851 	case _PCLK2:
852 	case _PCLK3:
853 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
854 		switch (reg & RCC_SELR_SRC_MASK) {
855 		case RCC_MSSCKSELR_HSI:
856 			clock = stm32mp1_clk_get_fixed(_HSI);
857 			break;
858 		case RCC_MSSCKSELR_HSE:
859 			clock = stm32mp1_clk_get_fixed(_HSE);
860 			break;
861 		case RCC_MSSCKSELR_CSI:
862 			clock = stm32mp1_clk_get_fixed(_CSI);
863 			break;
864 		case RCC_MSSCKSELR_PLL:
865 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
866 			break;
867 		default:
868 			break;
869 		}
870 
871 		/* MCU clock divider */
872 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
873 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
874 
875 		switch (p) {
876 		case _PCLK1:
877 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
878 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
879 			break;
880 		case _PCLK2:
881 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
882 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
883 			break;
884 		case _PCLK3:
885 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
886 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
887 			break;
888 		case _CK_MCU:
889 		default:
890 			break;
891 		}
892 		break;
893 	case _CK_PER:
894 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
895 		switch (reg & RCC_SELR_SRC_MASK) {
896 		case RCC_CPERCKSELR_HSI:
897 			clock = stm32mp1_clk_get_fixed(_HSI);
898 			break;
899 		case RCC_CPERCKSELR_HSE:
900 			clock = stm32mp1_clk_get_fixed(_HSE);
901 			break;
902 		case RCC_CPERCKSELR_CSI:
903 			clock = stm32mp1_clk_get_fixed(_CSI);
904 			break;
905 		default:
906 			break;
907 		}
908 		break;
909 	case _HSI:
910 	case _HSI_KER:
911 		clock = stm32mp1_clk_get_fixed(_HSI);
912 		break;
913 	case _CSI:
914 	case _CSI_KER:
915 		clock = stm32mp1_clk_get_fixed(_CSI);
916 		break;
917 	case _HSE:
918 	case _HSE_KER:
919 		clock = stm32mp1_clk_get_fixed(_HSE);
920 		break;
921 	case _HSE_KER_DIV2:
922 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
923 		break;
924 	case _LSI:
925 		clock = stm32mp1_clk_get_fixed(_LSI);
926 		break;
927 	case _LSE:
928 		clock = stm32mp1_clk_get_fixed(_LSE);
929 		break;
930 	/* PLL */
931 	case _PLL1_P:
932 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
933 		break;
934 	case _PLL1_Q:
935 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
936 		break;
937 	case _PLL1_R:
938 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
939 		break;
940 	case _PLL2_P:
941 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
942 		break;
943 	case _PLL2_Q:
944 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
945 		break;
946 	case _PLL2_R:
947 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
948 		break;
949 	case _PLL3_P:
950 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
951 		break;
952 	case _PLL3_Q:
953 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
954 		break;
955 	case _PLL3_R:
956 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
957 		break;
958 	case _PLL4_P:
959 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
960 		break;
961 	case _PLL4_Q:
962 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
963 		break;
964 	case _PLL4_R:
965 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
966 		break;
967 	/* Other */
968 	case _USB_PHY_48:
969 		clock = USB_PHY_48_MHZ;
970 		break;
971 	default:
972 		break;
973 	}
974 
975 	return clock;
976 }
977 
978 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
979 {
980 	uintptr_t rcc_base = stm32mp_rcc_base();
981 
982 	if (gate->set_clr != 0U) {
983 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
984 	} else {
985 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
986 	}
987 
988 	VERBOSE("Clock %d has been enabled", gate->index);
989 }
990 
991 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
992 {
993 	uintptr_t rcc_base = stm32mp_rcc_base();
994 
995 	if (gate->set_clr != 0U) {
996 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
997 			      BIT(gate->bit));
998 	} else {
999 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1000 	}
1001 
1002 	VERBOSE("Clock %d has been disabled", gate->index);
1003 }
1004 
1005 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1006 {
1007 	uintptr_t rcc_base = stm32mp_rcc_base();
1008 
1009 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1010 }
1011 
1012 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1013 {
1014 	int i = stm32mp1_clk_get_gated_id(id);
1015 
1016 	if (i < 0) {
1017 		panic();
1018 	}
1019 
1020 	return gate_refcounts[i];
1021 }
1022 
1023 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1024 {
1025 	const struct stm32mp1_clk_gate *gate;
1026 	int i = stm32mp1_clk_get_gated_id(id);
1027 	unsigned int *refcnt;
1028 
1029 	if (i < 0) {
1030 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1031 		panic();
1032 	}
1033 
1034 	gate = gate_ref(i);
1035 	refcnt = &gate_refcounts[i];
1036 
1037 	stm32mp1_clk_lock(&refcount_lock);
1038 
1039 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1040 		__clk_enable(gate);
1041 	}
1042 
1043 	stm32mp1_clk_unlock(&refcount_lock);
1044 }
1045 
1046 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1047 {
1048 	const struct stm32mp1_clk_gate *gate;
1049 	int i = stm32mp1_clk_get_gated_id(id);
1050 	unsigned int *refcnt;
1051 
1052 	if (i < 0) {
1053 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1054 		panic();
1055 	}
1056 
1057 	gate = gate_ref(i);
1058 	refcnt = &gate_refcounts[i];
1059 
1060 	stm32mp1_clk_lock(&refcount_lock);
1061 
1062 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1063 		__clk_disable(gate);
1064 	}
1065 
1066 	stm32mp1_clk_unlock(&refcount_lock);
1067 }
1068 
1069 void stm32mp_clk_enable(unsigned long id)
1070 {
1071 	__stm32mp1_clk_enable(id, true);
1072 }
1073 
1074 void stm32mp_clk_disable(unsigned long id)
1075 {
1076 	__stm32mp1_clk_disable(id, true);
1077 }
1078 
1079 bool stm32mp_clk_is_enabled(unsigned long id)
1080 {
1081 	int i = stm32mp1_clk_get_gated_id(id);
1082 
1083 	if (i < 0) {
1084 		panic();
1085 	}
1086 
1087 	return __clk_is_enabled(gate_ref(i));
1088 }
1089 
1090 unsigned long stm32mp_clk_get_rate(unsigned long id)
1091 {
1092 	int p = stm32mp1_clk_get_parent(id);
1093 
1094 	if (p < 0) {
1095 		return 0;
1096 	}
1097 
1098 	return get_clock_rate(p);
1099 }
1100 
1101 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1102 {
1103 	uintptr_t address = stm32mp_rcc_base() + offset;
1104 
1105 	if (enable) {
1106 		mmio_setbits_32(address, mask_on);
1107 	} else {
1108 		mmio_clrbits_32(address, mask_on);
1109 	}
1110 }
1111 
1112 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1113 {
1114 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1115 	uintptr_t address = stm32mp_rcc_base() + offset;
1116 
1117 	mmio_write_32(address, mask_on);
1118 }
1119 
1120 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1121 {
1122 	uint64_t timeout;
1123 	uint32_t mask_test;
1124 	uintptr_t address = stm32mp_rcc_base() + offset;
1125 
1126 	if (enable) {
1127 		mask_test = mask_rdy;
1128 	} else {
1129 		mask_test = 0;
1130 	}
1131 
1132 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1133 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1134 		if (timeout_elapsed(timeout)) {
1135 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1136 			      mask_rdy, address, enable, mmio_read_32(address));
1137 			return -ETIMEDOUT;
1138 		}
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1145 {
1146 	uint32_t value;
1147 	uintptr_t rcc_base = stm32mp_rcc_base();
1148 
1149 	if (digbyp) {
1150 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1151 	}
1152 
1153 	if (bypass || digbyp) {
1154 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1155 	}
1156 
1157 	/*
1158 	 * Warning: not recommended to switch directly from "high drive"
1159 	 * to "medium low drive", and vice-versa.
1160 	 */
1161 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1162 		RCC_BDCR_LSEDRV_SHIFT;
1163 
1164 	while (value != lsedrv) {
1165 		if (value > lsedrv) {
1166 			value--;
1167 		} else {
1168 			value++;
1169 		}
1170 
1171 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1172 				   RCC_BDCR_LSEDRV_MASK,
1173 				   value << RCC_BDCR_LSEDRV_SHIFT);
1174 	}
1175 
1176 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1177 }
1178 
1179 static void stm32mp1_lse_wait(void)
1180 {
1181 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1182 		VERBOSE("%s: failed\n", __func__);
1183 	}
1184 }
1185 
1186 static void stm32mp1_lsi_set(bool enable)
1187 {
1188 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1189 
1190 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1191 		VERBOSE("%s: failed\n", __func__);
1192 	}
1193 }
1194 
1195 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1196 {
1197 	uintptr_t rcc_base = stm32mp_rcc_base();
1198 
1199 	if (digbyp) {
1200 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1201 	}
1202 
1203 	if (bypass || digbyp) {
1204 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1205 	}
1206 
1207 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1208 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1209 		VERBOSE("%s: failed\n", __func__);
1210 	}
1211 
1212 	if (css) {
1213 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1214 	}
1215 }
1216 
1217 static void stm32mp1_csi_set(bool enable)
1218 {
1219 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1220 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1221 		VERBOSE("%s: failed\n", __func__);
1222 	}
1223 }
1224 
1225 static void stm32mp1_hsi_set(bool enable)
1226 {
1227 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1228 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1229 		VERBOSE("%s: failed\n", __func__);
1230 	}
1231 }
1232 
1233 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1234 {
1235 	uint64_t timeout;
1236 	uintptr_t rcc_base = stm32mp_rcc_base();
1237 	uintptr_t address = rcc_base + RCC_OCRDYR;
1238 
1239 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1240 			   RCC_HSICFGR_HSIDIV_MASK,
1241 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1242 
1243 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1244 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1245 		if (timeout_elapsed(timeout)) {
1246 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1247 			      address, mmio_read_32(address));
1248 			return -ETIMEDOUT;
1249 		}
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static int stm32mp1_hsidiv(unsigned long hsifreq)
1256 {
1257 	uint8_t hsidiv;
1258 	uint32_t hsidivfreq = MAX_HSI_HZ;
1259 
1260 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1261 		if (hsidivfreq == hsifreq) {
1262 			break;
1263 		}
1264 
1265 		hsidivfreq /= 2U;
1266 	}
1267 
1268 	if (hsidiv == 4U) {
1269 		ERROR("Invalid clk-hsi frequency\n");
1270 		return -1;
1271 	}
1272 
1273 	if (hsidiv != 0U) {
1274 		return stm32mp1_set_hsidiv(hsidiv);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1281 				    unsigned int clksrc,
1282 				    uint32_t *pllcfg, int plloff)
1283 {
1284 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1285 	uintptr_t rcc_base = stm32mp_rcc_base();
1286 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1287 	enum stm32mp1_plltype type = pll->plltype;
1288 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1289 	unsigned long refclk;
1290 	uint32_t ifrge = 0U;
1291 	uint32_t src, value, fracv = 0;
1292 	void *fdt;
1293 
1294 	/* Check PLL output */
1295 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1296 		return false;
1297 	}
1298 
1299 	/* Check current clksrc */
1300 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1301 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1302 		return false;
1303 	}
1304 
1305 	/* Check Div */
1306 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1307 
1308 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1309 		 (pllcfg[PLLCFG_M] + 1U);
1310 
1311 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1312 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1313 		return false;
1314 	}
1315 
1316 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1317 		ifrge = 1U;
1318 	}
1319 
1320 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1321 		RCC_PLLNCFGR1_DIVN_MASK;
1322 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1323 		 RCC_PLLNCFGR1_DIVM_MASK;
1324 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1325 		 RCC_PLLNCFGR1_IFRGE_MASK;
1326 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1327 		return false;
1328 	}
1329 
1330 	/* Fractional configuration */
1331 	if (fdt_get_address(&fdt) == 1) {
1332 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1333 	}
1334 
1335 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1336 	value |= RCC_PLLNFRACR_FRACLE;
1337 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1338 		return false;
1339 	}
1340 
1341 	/* Output config */
1342 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1343 		RCC_PLLNCFGR2_DIVP_MASK;
1344 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1345 		 RCC_PLLNCFGR2_DIVQ_MASK;
1346 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1347 		 RCC_PLLNCFGR2_DIVR_MASK;
1348 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1349 		return false;
1350 	}
1351 
1352 	return true;
1353 }
1354 
1355 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1356 {
1357 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1358 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1359 
1360 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1361 	mmio_clrsetbits_32(pllxcr,
1362 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1363 			   RCC_PLLNCR_DIVREN,
1364 			   RCC_PLLNCR_PLLON);
1365 }
1366 
1367 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1368 {
1369 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1370 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1371 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1372 
1373 	/* Wait PLL lock */
1374 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1375 		if (timeout_elapsed(timeout)) {
1376 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1377 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1378 			return -ETIMEDOUT;
1379 		}
1380 	}
1381 
1382 	/* Start the requested output */
1383 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1384 
1385 	return 0;
1386 }
1387 
1388 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1389 {
1390 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1391 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1392 	uint64_t timeout;
1393 
1394 	/* Stop all output */
1395 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1396 			RCC_PLLNCR_DIVREN);
1397 
1398 	/* Stop PLL */
1399 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1400 
1401 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1402 	/* Wait PLL stopped */
1403 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1404 		if (timeout_elapsed(timeout)) {
1405 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1406 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1407 			return -ETIMEDOUT;
1408 		}
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1415 				       uint32_t *pllcfg)
1416 {
1417 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1418 	uintptr_t rcc_base = stm32mp_rcc_base();
1419 	uint32_t value;
1420 
1421 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1422 		RCC_PLLNCFGR2_DIVP_MASK;
1423 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1424 		 RCC_PLLNCFGR2_DIVQ_MASK;
1425 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1426 		 RCC_PLLNCFGR2_DIVR_MASK;
1427 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1428 }
1429 
1430 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1431 			       uint32_t *pllcfg, uint32_t fracv)
1432 {
1433 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1434 	uintptr_t rcc_base = stm32mp_rcc_base();
1435 	enum stm32mp1_plltype type = pll->plltype;
1436 	unsigned long refclk;
1437 	uint32_t ifrge = 0;
1438 	uint32_t src, value;
1439 
1440 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1441 		RCC_SELR_REFCLK_SRC_MASK;
1442 
1443 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1444 		 (pllcfg[PLLCFG_M] + 1U);
1445 
1446 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1447 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1448 		return -EINVAL;
1449 	}
1450 
1451 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1452 		ifrge = 1U;
1453 	}
1454 
1455 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1456 		RCC_PLLNCFGR1_DIVN_MASK;
1457 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1458 		 RCC_PLLNCFGR1_DIVM_MASK;
1459 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1460 		 RCC_PLLNCFGR1_IFRGE_MASK;
1461 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1462 
1463 	/* Fractional configuration */
1464 	value = 0;
1465 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1466 
1467 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1468 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1469 
1470 	value |= RCC_PLLNFRACR_FRACLE;
1471 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1472 
1473 	stm32mp1_pll_config_output(pll_id, pllcfg);
1474 
1475 	return 0;
1476 }
1477 
1478 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1479 {
1480 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1481 	uint32_t pllxcsg = 0;
1482 
1483 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1484 		    RCC_PLLNCSGR_MOD_PER_MASK;
1485 
1486 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1487 		    RCC_PLLNCSGR_INC_STEP_MASK;
1488 
1489 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1490 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1491 
1492 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1493 
1494 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1495 			RCC_PLLNCR_SSCG_CTRL);
1496 }
1497 
1498 static int stm32mp1_set_clksrc(unsigned int clksrc)
1499 {
1500 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1501 	uint64_t timeout;
1502 
1503 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1504 			   clksrc & RCC_SELR_SRC_MASK);
1505 
1506 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1507 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1508 		if (timeout_elapsed(timeout)) {
1509 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1510 			      clksrc_address, mmio_read_32(clksrc_address));
1511 			return -ETIMEDOUT;
1512 		}
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1519 {
1520 	uint64_t timeout;
1521 
1522 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1523 			   clkdiv & RCC_DIVR_DIV_MASK);
1524 
1525 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1526 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1527 		if (timeout_elapsed(timeout)) {
1528 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1529 			      clkdiv, address, mmio_read_32(address));
1530 			return -ETIMEDOUT;
1531 		}
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1538 {
1539 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1540 
1541 	/*
1542 	 * Binding clksrc :
1543 	 *      bit15-4 offset
1544 	 *      bit3:   disable
1545 	 *      bit2-0: MCOSEL[2:0]
1546 	 */
1547 	if ((clksrc & 0x8U) != 0U) {
1548 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1549 	} else {
1550 		mmio_clrsetbits_32(clksrc_address,
1551 				   RCC_MCOCFG_MCOSRC_MASK,
1552 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1553 		mmio_clrsetbits_32(clksrc_address,
1554 				   RCC_MCOCFG_MCODIV_MASK,
1555 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1556 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1557 	}
1558 }
1559 
1560 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1561 {
1562 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1563 
1564 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1565 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1566 		mmio_clrsetbits_32(address,
1567 				   RCC_BDCR_RTCSRC_MASK,
1568 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1569 
1570 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1571 	}
1572 
1573 	if (lse_css) {
1574 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1575 	}
1576 }
1577 
1578 static void stm32mp1_stgen_config(void)
1579 {
1580 	uintptr_t stgen;
1581 	uint32_t cntfid0;
1582 	unsigned long rate;
1583 	unsigned long long counter;
1584 
1585 	stgen = fdt_get_stgen_base();
1586 	cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
1587 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1588 
1589 	if (cntfid0 == rate) {
1590 		return;
1591 	}
1592 
1593 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1594 	counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
1595 	counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
1596 	counter = (counter * rate / cntfid0);
1597 
1598 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
1599 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
1600 	mmio_write_32(stgen + CNTFID_OFF, rate);
1601 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1602 
1603 	write_cntfrq((u_register_t)rate);
1604 
1605 	/* Need to update timer with new frequency */
1606 	generic_delay_timer_init();
1607 }
1608 
1609 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1610 {
1611 	uintptr_t stgen;
1612 	unsigned long long cnt;
1613 
1614 	stgen = fdt_get_stgen_base();
1615 
1616 	cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
1617 		mmio_read_32(stgen + CNTCVL_OFF);
1618 
1619 	cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
1620 
1621 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1622 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
1623 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1624 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1625 }
1626 
1627 static void stm32mp1_pkcs_config(uint32_t pkcs)
1628 {
1629 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1630 	uint32_t value = pkcs & 0xFU;
1631 	uint32_t mask = 0xFU;
1632 
1633 	if ((pkcs & BIT(31)) != 0U) {
1634 		mask <<= 4;
1635 		value <<= 4;
1636 	}
1637 
1638 	mmio_clrsetbits_32(address, mask, value);
1639 }
1640 
1641 int stm32mp1_clk_init(void)
1642 {
1643 	uintptr_t rcc_base = stm32mp_rcc_base();
1644 	unsigned int clksrc[CLKSRC_NB];
1645 	unsigned int clkdiv[CLKDIV_NB];
1646 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1647 	int plloff[_PLL_NB];
1648 	int ret, len;
1649 	enum stm32mp1_pll_id i;
1650 	bool lse_css = false;
1651 	bool pll3_preserve = false;
1652 	bool pll4_preserve = false;
1653 	bool pll4_bootrom = false;
1654 	const fdt32_t *pkcs_cell;
1655 	void *fdt;
1656 
1657 	if (fdt_get_address(&fdt) == 0) {
1658 		return false;
1659 	}
1660 
1661 	/* Check status field to disable security */
1662 	if (!fdt_get_rcc_secure_status()) {
1663 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1664 	}
1665 
1666 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1667 					clksrc);
1668 	if (ret < 0) {
1669 		return -FDT_ERR_NOTFOUND;
1670 	}
1671 
1672 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1673 					clkdiv);
1674 	if (ret < 0) {
1675 		return -FDT_ERR_NOTFOUND;
1676 	}
1677 
1678 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1679 		char name[12];
1680 
1681 		snprintf(name, sizeof(name), "st,pll@%d", i);
1682 		plloff[i] = fdt_rcc_subnode_offset(name);
1683 
1684 		if (!fdt_check_node(plloff[i])) {
1685 			continue;
1686 		}
1687 
1688 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1689 					    (int)PLLCFG_NB, pllcfg[i]);
1690 		if (ret < 0) {
1691 			return -FDT_ERR_NOTFOUND;
1692 		}
1693 	}
1694 
1695 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1696 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1697 
1698 	/*
1699 	 * Switch ON oscillator found in device-tree.
1700 	 * Note: HSI already ON after BootROM stage.
1701 	 */
1702 	if (stm32mp1_osc[_LSI] != 0U) {
1703 		stm32mp1_lsi_set(true);
1704 	}
1705 	if (stm32mp1_osc[_LSE] != 0U) {
1706 		bool bypass, digbyp;
1707 		uint32_t lsedrv;
1708 
1709 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1710 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1711 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1712 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1713 						     LSEDRV_MEDIUM_HIGH);
1714 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1715 	}
1716 	if (stm32mp1_osc[_HSE] != 0U) {
1717 		bool bypass, digbyp, css;
1718 
1719 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1720 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1721 		css = fdt_osc_read_bool(_HSE, "st,css");
1722 		stm32mp1_hse_enable(bypass, digbyp, css);
1723 	}
1724 	/*
1725 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1726 	 * => switch on CSI even if node is not present in device tree
1727 	 */
1728 	stm32mp1_csi_set(true);
1729 
1730 	/* Come back to HSI */
1731 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1732 	if (ret != 0) {
1733 		return ret;
1734 	}
1735 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1736 	if (ret != 0) {
1737 		return ret;
1738 	}
1739 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1740 	if (ret != 0) {
1741 		return ret;
1742 	}
1743 
1744 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1745 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1746 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1747 							clksrc[CLKSRC_PLL3],
1748 							pllcfg[_PLL3],
1749 							plloff[_PLL3]);
1750 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1751 							clksrc[CLKSRC_PLL4],
1752 							pllcfg[_PLL4],
1753 							plloff[_PLL4]);
1754 	}
1755 
1756 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1757 		if (((i == _PLL3) && pll3_preserve) ||
1758 		    ((i == _PLL4) && pll4_preserve)) {
1759 			continue;
1760 		}
1761 
1762 		ret = stm32mp1_pll_stop(i);
1763 		if (ret != 0) {
1764 			return ret;
1765 		}
1766 	}
1767 
1768 	/* Configure HSIDIV */
1769 	if (stm32mp1_osc[_HSI] != 0U) {
1770 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1771 		if (ret != 0) {
1772 			return ret;
1773 		}
1774 		stm32mp1_stgen_config();
1775 	}
1776 
1777 	/* Select DIV */
1778 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1779 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1780 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1781 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1782 	if (ret != 0) {
1783 		return ret;
1784 	}
1785 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1786 	if (ret != 0) {
1787 		return ret;
1788 	}
1789 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1790 	if (ret != 0) {
1791 		return ret;
1792 	}
1793 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1794 	if (ret != 0) {
1795 		return ret;
1796 	}
1797 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1798 	if (ret != 0) {
1799 		return ret;
1800 	}
1801 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1802 	if (ret != 0) {
1803 		return ret;
1804 	}
1805 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1806 	if (ret != 0) {
1807 		return ret;
1808 	}
1809 
1810 	/* No ready bit for RTC */
1811 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1812 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1813 
1814 	/* Configure PLLs source */
1815 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1816 	if (ret != 0) {
1817 		return ret;
1818 	}
1819 
1820 	if (!pll3_preserve) {
1821 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1822 		if (ret != 0) {
1823 			return ret;
1824 		}
1825 	}
1826 
1827 	if (!pll4_preserve) {
1828 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1829 		if (ret != 0) {
1830 			return ret;
1831 		}
1832 	}
1833 
1834 	/* Configure and start PLLs */
1835 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1836 		uint32_t fracv;
1837 		uint32_t csg[PLLCSG_NB];
1838 
1839 		if (((i == _PLL3) && pll3_preserve) ||
1840 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1841 			continue;
1842 		}
1843 
1844 		if (!fdt_check_node(plloff[i])) {
1845 			continue;
1846 		}
1847 
1848 		if ((i == _PLL4) && pll4_bootrom) {
1849 			/* Set output divider if not done by the Bootrom */
1850 			stm32mp1_pll_config_output(i, pllcfg[i]);
1851 			continue;
1852 		}
1853 
1854 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1855 
1856 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1857 		if (ret != 0) {
1858 			return ret;
1859 		}
1860 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1861 					    (uint32_t)PLLCSG_NB, csg);
1862 		if (ret == 0) {
1863 			stm32mp1_pll_csg(i, csg);
1864 		} else if (ret != -FDT_ERR_NOTFOUND) {
1865 			return ret;
1866 		}
1867 
1868 		stm32mp1_pll_start(i);
1869 	}
1870 	/* Wait and start PLLs ouptut when ready */
1871 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1872 		if (!fdt_check_node(plloff[i])) {
1873 			continue;
1874 		}
1875 
1876 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1877 		if (ret != 0) {
1878 			return ret;
1879 		}
1880 	}
1881 	/* Wait LSE ready before to use it */
1882 	if (stm32mp1_osc[_LSE] != 0U) {
1883 		stm32mp1_lse_wait();
1884 	}
1885 
1886 	/* Configure with expected clock source */
1887 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1888 	if (ret != 0) {
1889 		return ret;
1890 	}
1891 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1892 	if (ret != 0) {
1893 		return ret;
1894 	}
1895 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1896 	if (ret != 0) {
1897 		return ret;
1898 	}
1899 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1900 
1901 	/* Configure PKCK */
1902 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1903 	if (pkcs_cell != NULL) {
1904 		bool ckper_disabled = false;
1905 		uint32_t j;
1906 
1907 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1908 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1909 
1910 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1911 				ckper_disabled = true;
1912 				continue;
1913 			}
1914 			stm32mp1_pkcs_config(pkcs);
1915 		}
1916 
1917 		/*
1918 		 * CKPER is source for some peripheral clocks
1919 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1920 		 * only if previous clock is still ON
1921 		 * => deactivated CKPER only after switching clock
1922 		 */
1923 		if (ckper_disabled) {
1924 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
1925 		}
1926 	}
1927 
1928 	/* Switch OFF HSI if not found in device-tree */
1929 	if (stm32mp1_osc[_HSI] == 0U) {
1930 		stm32mp1_hsi_set(false);
1931 	}
1932 	stm32mp1_stgen_config();
1933 
1934 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1935 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
1936 			   RCC_DDRITFCR_DDRCKMOD_MASK,
1937 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
1938 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
1939 
1940 	return 0;
1941 }
1942 
1943 static void stm32mp1_osc_clk_init(const char *name,
1944 				  enum stm32mp_osc_id index)
1945 {
1946 	uint32_t frequency;
1947 
1948 	if (fdt_osc_read_freq(name, &frequency) == 0) {
1949 		stm32mp1_osc[index] = frequency;
1950 	}
1951 }
1952 
1953 static void stm32mp1_osc_init(void)
1954 {
1955 	enum stm32mp_osc_id i;
1956 
1957 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
1958 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
1959 	}
1960 }
1961 
1962 static void sync_earlyboot_clocks_state(void)
1963 {
1964 	if (!stm32mp_is_single_core()) {
1965 		stm32mp1_clk_enable_secure(RTCAPB);
1966 	}
1967 }
1968 
1969 int stm32mp1_clk_probe(void)
1970 {
1971 	stm32mp1_osc_init();
1972 
1973 	sync_earlyboot_clocks_state();
1974 
1975 	return 0;
1976 }
1977