xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 0d21680c35f328f1b793f0765760e994d883ff12)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <drivers/delay_timer.h>
20 #include <drivers/generic_delay_timer.h>
21 #include <drivers/st/stm32mp_clkfunc.h>
22 #include <drivers/st/stm32mp1_clk.h>
23 #include <drivers/st/stm32mp1_clkfunc.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 enum stm32mp1_parent_id {
44 /* Oscillators are defined in enum stm32mp_osc_id */
45 
46 /* Other parent source */
47 	_HSI_KER = NB_OSC,
48 	_HSE_KER,
49 	_HSE_KER_DIV2,
50 	_CSI_KER,
51 	_PLL1_P,
52 	_PLL1_Q,
53 	_PLL1_R,
54 	_PLL2_P,
55 	_PLL2_Q,
56 	_PLL2_R,
57 	_PLL3_P,
58 	_PLL3_Q,
59 	_PLL3_R,
60 	_PLL4_P,
61 	_PLL4_Q,
62 	_PLL4_R,
63 	_ACLK,
64 	_PCLK1,
65 	_PCLK2,
66 	_PCLK3,
67 	_PCLK4,
68 	_PCLK5,
69 	_HCLK6,
70 	_HCLK2,
71 	_CK_PER,
72 	_CK_MPU,
73 	_USB_PHY_48,
74 	_PARENT_NB,
75 	_UNKNOWN_ID = 0xff,
76 };
77 
78 /* Lists only the parent clock we are interested in */
79 enum stm32mp1_parent_sel {
80 	_I2C12_SEL,
81 	_I2C35_SEL,
82 	_STGEN_SEL,
83 	_I2C46_SEL,
84 	_SPI6_SEL,
85 	_USART1_SEL,
86 	_RNG1_SEL,
87 	_UART6_SEL,
88 	_UART24_SEL,
89 	_UART35_SEL,
90 	_UART78_SEL,
91 	_SDMMC12_SEL,
92 	_SDMMC3_SEL,
93 	_QSPI_SEL,
94 	_FMC_SEL,
95 	_ASS_SEL,
96 	_USBPHY_SEL,
97 	_USBO_SEL,
98 	_PARENT_SEL_NB,
99 	_UNKNOWN_SEL = 0xff,
100 };
101 
102 enum stm32mp1_pll_id {
103 	_PLL1,
104 	_PLL2,
105 	_PLL3,
106 	_PLL4,
107 	_PLL_NB
108 };
109 
110 enum stm32mp1_div_id {
111 	_DIV_P,
112 	_DIV_Q,
113 	_DIV_R,
114 	_DIV_NB,
115 };
116 
117 enum stm32mp1_clksrc_id {
118 	CLKSRC_MPU,
119 	CLKSRC_AXI,
120 	CLKSRC_PLL12,
121 	CLKSRC_PLL3,
122 	CLKSRC_PLL4,
123 	CLKSRC_RTC,
124 	CLKSRC_MCO1,
125 	CLKSRC_MCO2,
126 	CLKSRC_NB
127 };
128 
129 enum stm32mp1_clkdiv_id {
130 	CLKDIV_MPU,
131 	CLKDIV_AXI,
132 	CLKDIV_APB1,
133 	CLKDIV_APB2,
134 	CLKDIV_APB3,
135 	CLKDIV_APB4,
136 	CLKDIV_APB5,
137 	CLKDIV_RTC,
138 	CLKDIV_MCO1,
139 	CLKDIV_MCO2,
140 	CLKDIV_NB
141 };
142 
143 enum stm32mp1_pllcfg {
144 	PLLCFG_M,
145 	PLLCFG_N,
146 	PLLCFG_P,
147 	PLLCFG_Q,
148 	PLLCFG_R,
149 	PLLCFG_O,
150 	PLLCFG_NB
151 };
152 
153 enum stm32mp1_pllcsg {
154 	PLLCSG_MOD_PER,
155 	PLLCSG_INC_STEP,
156 	PLLCSG_SSCG_MODE,
157 	PLLCSG_NB
158 };
159 
160 enum stm32mp1_plltype {
161 	PLL_800,
162 	PLL_1600,
163 	PLL_TYPE_NB
164 };
165 
166 struct stm32mp1_pll {
167 	uint8_t refclk_min;
168 	uint8_t refclk_max;
169 	uint8_t divn_max;
170 };
171 
172 struct stm32mp1_clk_gate {
173 	uint16_t offset;
174 	uint8_t bit;
175 	uint8_t index;
176 	uint8_t set_clr;
177 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
178 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
179 };
180 
181 struct stm32mp1_clk_sel {
182 	uint16_t offset;
183 	uint8_t src;
184 	uint8_t msk;
185 	uint8_t nb_parent;
186 	const uint8_t *parent;
187 };
188 
189 #define REFCLK_SIZE 4
190 struct stm32mp1_clk_pll {
191 	enum stm32mp1_plltype plltype;
192 	uint16_t rckxselr;
193 	uint16_t pllxcfgr1;
194 	uint16_t pllxcfgr2;
195 	uint16_t pllxfracr;
196 	uint16_t pllxcr;
197 	uint16_t pllxcsgr;
198 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
199 };
200 
201 /* Clocks with selectable source and non set/clr register access */
202 #define _CLK_SELEC(off, b, idx, s)			\
203 	{						\
204 		.offset = (off),			\
205 		.bit = (b),				\
206 		.index = (idx),				\
207 		.set_clr = 0,				\
208 		.sel = (s),				\
209 		.fixed = _UNKNOWN_ID,			\
210 	}
211 
212 /* Clocks with fixed source and non set/clr register access */
213 #define _CLK_FIXED(off, b, idx, f)			\
214 	{						\
215 		.offset = (off),			\
216 		.bit = (b),				\
217 		.index = (idx),				\
218 		.set_clr = 0,				\
219 		.sel = _UNKNOWN_SEL,			\
220 		.fixed = (f),				\
221 	}
222 
223 /* Clocks with selectable source and set/clr register access */
224 #define _CLK_SC_SELEC(off, b, idx, s)			\
225 	{						\
226 		.offset = (off),			\
227 		.bit = (b),				\
228 		.index = (idx),				\
229 		.set_clr = 1,				\
230 		.sel = (s),				\
231 		.fixed = _UNKNOWN_ID,			\
232 	}
233 
234 /* Clocks with fixed source and set/clr register access */
235 #define _CLK_SC_FIXED(off, b, idx, f)			\
236 	{						\
237 		.offset = (off),			\
238 		.bit = (b),				\
239 		.index = (idx),				\
240 		.set_clr = 1,				\
241 		.sel = _UNKNOWN_SEL,			\
242 		.fixed = (f),				\
243 	}
244 
245 #define _CLK_PARENT(idx, off, s, m, p)			\
246 	[(idx)] = {					\
247 		.offset = (off),			\
248 		.src = (s),				\
249 		.msk = (m),				\
250 		.parent = (p),				\
251 		.nb_parent = ARRAY_SIZE(p)		\
252 	}
253 
254 #define _CLK_PLL(idx, type, off1, off2, off3,		\
255 		 off4, off5, off6,			\
256 		 p1, p2, p3, p4)			\
257 	[(idx)] = {					\
258 		.plltype = (type),			\
259 		.rckxselr = (off1),			\
260 		.pllxcfgr1 = (off2),			\
261 		.pllxcfgr2 = (off3),			\
262 		.pllxfracr = (off4),			\
263 		.pllxcr = (off5),			\
264 		.pllxcsgr = (off6),			\
265 		.refclk[0] = (p1),			\
266 		.refclk[1] = (p2),			\
267 		.refclk[2] = (p3),			\
268 		.refclk[3] = (p4),			\
269 	}
270 
271 static const uint8_t stm32mp1_clks[][2] = {
272 	{ CK_PER, _CK_PER },
273 	{ CK_MPU, _CK_MPU },
274 	{ CK_AXI, _ACLK },
275 	{ CK_HSE, _HSE },
276 	{ CK_CSI, _CSI },
277 	{ CK_LSI, _LSI },
278 	{ CK_LSE, _LSE },
279 	{ CK_HSI, _HSI },
280 	{ CK_HSE_DIV2, _HSE_KER_DIV2 },
281 };
282 
283 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
284 
285 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
286 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
287 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
288 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
289 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
290 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
291 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
292 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
293 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
294 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
295 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
296 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
297 
298 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
299 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
300 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
301 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
302 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
303 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
304 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
305 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
306 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
307 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
308 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
309 
310 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
311 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
312 
313 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
314 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
315 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
316 
317 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
318 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
319 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
320 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _USART1_SEL),
321 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
322 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
323 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
324 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
325 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
326 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
327 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
328 
329 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
330 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
331 
332 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
333 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
334 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
335 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
336 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
337 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
338 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
339 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
340 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
341 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
342 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
343 
344 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
345 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
346 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
347 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
348 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
349 
350 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
351 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
352 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
353 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
354 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
355 
356 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
357 };
358 
359 static const uint8_t i2c12_parents[] = {
360 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
361 };
362 
363 static const uint8_t i2c35_parents[] = {
364 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
365 };
366 
367 static const uint8_t stgen_parents[] = {
368 	_HSI_KER, _HSE_KER
369 };
370 
371 static const uint8_t i2c46_parents[] = {
372 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
373 };
374 
375 static const uint8_t spi6_parents[] = {
376 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
377 };
378 
379 static const uint8_t usart1_parents[] = {
380 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
381 };
382 
383 static const uint8_t rng1_parents[] = {
384 	_CSI, _PLL4_R, _LSE, _LSI
385 };
386 
387 static const uint8_t uart6_parents[] = {
388 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
389 };
390 
391 static const uint8_t uart234578_parents[] = {
392 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
393 };
394 
395 static const uint8_t sdmmc12_parents[] = {
396 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
397 };
398 
399 static const uint8_t sdmmc3_parents[] = {
400 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
401 };
402 
403 static const uint8_t qspi_parents[] = {
404 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
405 };
406 
407 static const uint8_t fmc_parents[] = {
408 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
409 };
410 
411 static const uint8_t ass_parents[] = {
412 	_HSI, _HSE, _PLL2
413 };
414 
415 static const uint8_t usbphy_parents[] = {
416 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
417 };
418 
419 static const uint8_t usbo_parents[] = {
420 	_PLL4_R, _USB_PHY_48
421 };
422 
423 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
424 	_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
425 	_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
426 	_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
427 	_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
428 	_CLK_PARENT(_SPI6_SEL, RCC_SPI6CKSELR, 0, 0x7, spi6_parents),
429 	_CLK_PARENT(_USART1_SEL, RCC_UART1CKSELR, 0, 0x7, usart1_parents),
430 	_CLK_PARENT(_RNG1_SEL, RCC_RNG1CKSELR, 0, 0x3, rng1_parents),
431 	_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
432 	_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7, uart234578_parents),
433 	_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7, uart234578_parents),
434 	_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7, uart234578_parents),
435 	_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7, sdmmc12_parents),
436 	_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7, sdmmc3_parents),
437 	_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
438 	_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
439 	_CLK_PARENT(_ASS_SEL, RCC_ASSCKSELR, 0, 0x3, ass_parents),
440 	_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
441 	_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
442 };
443 
444 /* Define characteristic of PLL according type */
445 #define DIVN_MIN	24
446 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
447 	[PLL_800] = {
448 		.refclk_min = 4,
449 		.refclk_max = 16,
450 		.divn_max = 99,
451 	},
452 	[PLL_1600] = {
453 		.refclk_min = 8,
454 		.refclk_max = 16,
455 		.divn_max = 199,
456 	},
457 };
458 
459 /* PLLNCFGR2 register divider by output */
460 static const uint8_t pllncfgr2[_DIV_NB] = {
461 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
462 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
463 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
464 };
465 
466 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
467 	_CLK_PLL(_PLL1, PLL_1600,
468 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
469 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
470 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
471 	_CLK_PLL(_PLL2, PLL_1600,
472 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
473 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
474 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
475 	_CLK_PLL(_PLL3, PLL_800,
476 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
477 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
478 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
479 	_CLK_PLL(_PLL4, PLL_800,
480 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
481 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
482 		 _HSI, _HSE, _CSI, _I2S_CKIN),
483 };
484 
485 /* Prescaler table lookups for clock computation */
486 
487 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
488 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
489 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
490 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
491 	0, 1, 2, 3, 4, 4, 4, 4
492 };
493 
494 /* div = /1 /2 /3 /4 */
495 static const uint8_t stm32mp1_axi_div[8] = {
496 	1, 2, 3, 4, 4, 4, 4, 4
497 };
498 
499 /* RCC clock device driver private */
500 static unsigned long stm32mp1_osc[NB_OSC];
501 static struct spinlock reg_lock;
502 static unsigned int gate_refcounts[NB_GATES];
503 static struct spinlock refcount_lock;
504 
505 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
506 {
507 	return &stm32mp1_clk_gate[idx];
508 }
509 
510 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
511 {
512 	return &stm32mp1_clk_sel[idx];
513 }
514 
515 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
516 {
517 	return &stm32mp1_clk_pll[idx];
518 }
519 
520 static int stm32mp1_lock_available(void)
521 {
522 	/* The spinlocks are used only when MMU is enabled */
523 	return (read_sctlr() & SCTLR_M_BIT) && (read_sctlr() & SCTLR_C_BIT);
524 }
525 
526 static void stm32mp1_clk_lock(struct spinlock *lock)
527 {
528 	if (stm32mp1_lock_available() == 0U) {
529 		return;
530 	}
531 
532 	/* Assume interrupts are masked */
533 	spin_lock(lock);
534 }
535 
536 static void stm32mp1_clk_unlock(struct spinlock *lock)
537 {
538 	if (stm32mp1_lock_available() == 0U) {
539 		return;
540 	}
541 
542 	spin_unlock(lock);
543 }
544 
545 bool stm32mp1_rcc_is_secure(void)
546 {
547 	uintptr_t rcc_base = stm32mp_rcc_base();
548 
549 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
550 }
551 
552 void stm32mp1_clk_rcc_regs_lock(void)
553 {
554 	stm32mp1_clk_lock(&reg_lock);
555 }
556 
557 void stm32mp1_clk_rcc_regs_unlock(void)
558 {
559 	stm32mp1_clk_unlock(&reg_lock);
560 }
561 
562 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
563 {
564 	if (idx >= NB_OSC) {
565 		return 0;
566 	}
567 
568 	return stm32mp1_osc[idx];
569 }
570 
571 static int stm32mp1_clk_get_gated_id(unsigned long id)
572 {
573 	unsigned int i;
574 
575 	for (i = 0U; i < NB_GATES; i++) {
576 		if (gate_ref(i)->index == id) {
577 			return i;
578 		}
579 	}
580 
581 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
582 
583 	return -EINVAL;
584 }
585 
586 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
587 {
588 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
589 }
590 
591 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
592 {
593 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
594 }
595 
596 static int stm32mp1_clk_get_parent(unsigned long id)
597 {
598 	const struct stm32mp1_clk_sel *sel;
599 	uint32_t j, p_sel;
600 	int i;
601 	enum stm32mp1_parent_id p;
602 	enum stm32mp1_parent_sel s;
603 	uintptr_t rcc_base = stm32mp_rcc_base();
604 
605 	for (j = 0U; j < ARRAY_SIZE(stm32mp1_clks); j++) {
606 		if (stm32mp1_clks[j][0] == id) {
607 			return (int)stm32mp1_clks[j][1];
608 		}
609 	}
610 
611 	i = stm32mp1_clk_get_gated_id(id);
612 	if (i < 0) {
613 		panic();
614 	}
615 
616 	p = stm32mp1_clk_get_fixed_parent(i);
617 	if (p < _PARENT_NB) {
618 		return (int)p;
619 	}
620 
621 	s = stm32mp1_clk_get_sel(i);
622 	if (s == _UNKNOWN_SEL) {
623 		return -EINVAL;
624 	}
625 	if (s >= _PARENT_SEL_NB) {
626 		panic();
627 	}
628 
629 	sel = clk_sel_ref(s);
630 	p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) & sel->msk;
631 	if (p_sel < sel->nb_parent) {
632 		return (int)sel->parent[p_sel];
633 	}
634 
635 	return -EINVAL;
636 }
637 
638 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
639 {
640 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
641 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
642 
643 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
644 }
645 
646 /*
647  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
648  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
649  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
650  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
651  */
652 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
653 {
654 	unsigned long refclk, fvco;
655 	uint32_t cfgr1, fracr, divm, divn;
656 	uintptr_t rcc_base = stm32mp_rcc_base();
657 
658 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
659 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
660 
661 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
662 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
663 
664 	refclk = stm32mp1_pll_get_fref(pll);
665 
666 	/*
667 	 * With FRACV :
668 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
669 	 * Without FRACV
670 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
671 	 */
672 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
673 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
674 				 RCC_PLLNFRACR_FRACV_SHIFT;
675 		unsigned long long numerator, denominator;
676 
677 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
678 		numerator = refclk * numerator;
679 		denominator = ((unsigned long long)divm + 1U) << 13;
680 		fvco = (unsigned long)(numerator / denominator);
681 	} else {
682 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
683 	}
684 
685 	return fvco;
686 }
687 
688 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
689 					    enum stm32mp1_div_id div_id)
690 {
691 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
692 	unsigned long dfout;
693 	uint32_t cfgr2, divy;
694 
695 	if (div_id >= _DIV_NB) {
696 		return 0;
697 	}
698 
699 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
700 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
701 
702 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
703 
704 	return dfout;
705 }
706 
707 static unsigned long get_clock_rate(int p)
708 {
709 	uint32_t reg, clkdiv;
710 	unsigned long clock = 0;
711 	uintptr_t rcc_base = stm32mp_rcc_base();
712 
713 	switch (p) {
714 	case _CK_MPU:
715 	/* MPU sub system */
716 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
717 		switch (reg & RCC_SELR_SRC_MASK) {
718 		case RCC_MPCKSELR_HSI:
719 			clock = stm32mp1_clk_get_fixed(_HSI);
720 			break;
721 		case RCC_MPCKSELR_HSE:
722 			clock = stm32mp1_clk_get_fixed(_HSE);
723 			break;
724 		case RCC_MPCKSELR_PLL:
725 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
726 			break;
727 		case RCC_MPCKSELR_PLL_MPUDIV:
728 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
729 
730 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
731 			clkdiv = reg & RCC_MPUDIV_MASK;
732 			if (clkdiv != 0U) {
733 				clock /= stm32mp1_mpu_div[clkdiv];
734 			}
735 			break;
736 		default:
737 			break;
738 		}
739 		break;
740 	/* AXI sub system */
741 	case _ACLK:
742 	case _HCLK2:
743 	case _HCLK6:
744 	case _PCLK4:
745 	case _PCLK5:
746 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
747 		switch (reg & RCC_SELR_SRC_MASK) {
748 		case RCC_ASSCKSELR_HSI:
749 			clock = stm32mp1_clk_get_fixed(_HSI);
750 			break;
751 		case RCC_ASSCKSELR_HSE:
752 			clock = stm32mp1_clk_get_fixed(_HSE);
753 			break;
754 		case RCC_ASSCKSELR_PLL:
755 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
756 			break;
757 		default:
758 			break;
759 		}
760 
761 		/* System clock divider */
762 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
763 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
764 
765 		switch (p) {
766 		case _PCLK4:
767 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
768 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
769 			break;
770 		case _PCLK5:
771 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
772 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
773 			break;
774 		default:
775 			break;
776 		}
777 		break;
778 	case _CK_PER:
779 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
780 		switch (reg & RCC_SELR_SRC_MASK) {
781 		case RCC_CPERCKSELR_HSI:
782 			clock = stm32mp1_clk_get_fixed(_HSI);
783 			break;
784 		case RCC_CPERCKSELR_HSE:
785 			clock = stm32mp1_clk_get_fixed(_HSE);
786 			break;
787 		case RCC_CPERCKSELR_CSI:
788 			clock = stm32mp1_clk_get_fixed(_CSI);
789 			break;
790 		default:
791 			break;
792 		}
793 		break;
794 	case _HSI:
795 	case _HSI_KER:
796 		clock = stm32mp1_clk_get_fixed(_HSI);
797 		break;
798 	case _CSI:
799 	case _CSI_KER:
800 		clock = stm32mp1_clk_get_fixed(_CSI);
801 		break;
802 	case _HSE:
803 	case _HSE_KER:
804 		clock = stm32mp1_clk_get_fixed(_HSE);
805 		break;
806 	case _HSE_KER_DIV2:
807 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
808 		break;
809 	case _LSI:
810 		clock = stm32mp1_clk_get_fixed(_LSI);
811 		break;
812 	case _LSE:
813 		clock = stm32mp1_clk_get_fixed(_LSE);
814 		break;
815 	/* PLL */
816 	case _PLL1_P:
817 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
818 		break;
819 	case _PLL1_Q:
820 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
821 		break;
822 	case _PLL1_R:
823 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
824 		break;
825 	case _PLL2_P:
826 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
827 		break;
828 	case _PLL2_Q:
829 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
830 		break;
831 	case _PLL2_R:
832 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
833 		break;
834 	case _PLL3_P:
835 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
836 		break;
837 	case _PLL3_Q:
838 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
839 		break;
840 	case _PLL3_R:
841 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
842 		break;
843 	case _PLL4_P:
844 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
845 		break;
846 	case _PLL4_Q:
847 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
848 		break;
849 	case _PLL4_R:
850 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
851 		break;
852 	/* Other */
853 	case _USB_PHY_48:
854 		clock = USB_PHY_48_MHZ;
855 		break;
856 	default:
857 		break;
858 	}
859 
860 	return clock;
861 }
862 
863 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
864 {
865 	uintptr_t rcc_base = stm32mp_rcc_base();
866 
867 	if (gate->set_clr != 0U) {
868 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
869 	} else {
870 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
871 	}
872 
873 	VERBOSE("Clock %d has been enabled", gate->index);
874 }
875 
876 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
877 {
878 	uintptr_t rcc_base = stm32mp_rcc_base();
879 
880 	if (gate->set_clr != 0U) {
881 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
882 			      BIT(gate->bit));
883 	} else {
884 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
885 	}
886 
887 	VERBOSE("Clock %d has been disabled", gate->index);
888 }
889 
890 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
891 {
892 	uintptr_t rcc_base = stm32mp_rcc_base();
893 
894 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
895 }
896 
897 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
898 {
899 	int i = stm32mp1_clk_get_gated_id(id);
900 
901 	if (i < 0) {
902 		panic();
903 	}
904 
905 	return gate_refcounts[i];
906 }
907 
908 void __stm32mp1_clk_enable(unsigned long id, bool secure)
909 {
910 	const struct stm32mp1_clk_gate *gate;
911 	int i = stm32mp1_clk_get_gated_id(id);
912 	unsigned int *refcnt;
913 
914 	if (i < 0) {
915 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
916 		panic();
917 	}
918 
919 	gate = gate_ref(i);
920 	refcnt = &gate_refcounts[i];
921 
922 	stm32mp1_clk_lock(&refcount_lock);
923 
924 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
925 		__clk_enable(gate);
926 	}
927 
928 	stm32mp1_clk_unlock(&refcount_lock);
929 }
930 
931 void __stm32mp1_clk_disable(unsigned long id, bool secure)
932 {
933 	const struct stm32mp1_clk_gate *gate;
934 	int i = stm32mp1_clk_get_gated_id(id);
935 	unsigned int *refcnt;
936 
937 	if (i < 0) {
938 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
939 		panic();
940 	}
941 
942 	gate = gate_ref(i);
943 	refcnt = &gate_refcounts[i];
944 
945 	stm32mp1_clk_lock(&refcount_lock);
946 
947 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
948 		__clk_disable(gate);
949 	}
950 
951 	stm32mp1_clk_unlock(&refcount_lock);
952 }
953 
954 void stm32mp_clk_enable(unsigned long id)
955 {
956 	__stm32mp1_clk_enable(id, true);
957 }
958 
959 void stm32mp_clk_disable(unsigned long id)
960 {
961 	__stm32mp1_clk_disable(id, true);
962 }
963 
964 bool stm32mp_clk_is_enabled(unsigned long id)
965 {
966 	int i = stm32mp1_clk_get_gated_id(id);
967 
968 	if (i < 0) {
969 		panic();
970 	}
971 
972 	return __clk_is_enabled(gate_ref(i));
973 }
974 
975 unsigned long stm32mp_clk_get_rate(unsigned long id)
976 {
977 	int p = stm32mp1_clk_get_parent(id);
978 
979 	if (p < 0) {
980 		return 0;
981 	}
982 
983 	return get_clock_rate(p);
984 }
985 
986 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
987 {
988 	uintptr_t address = stm32mp_rcc_base() + offset;
989 
990 	if (enable) {
991 		mmio_setbits_32(address, mask_on);
992 	} else {
993 		mmio_clrbits_32(address, mask_on);
994 	}
995 }
996 
997 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
998 {
999 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1000 	uintptr_t address = stm32mp_rcc_base() + offset;
1001 
1002 	mmio_write_32(address, mask_on);
1003 }
1004 
1005 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1006 {
1007 	uint64_t timeout;
1008 	uint32_t mask_test;
1009 	uintptr_t address = stm32mp_rcc_base() + offset;
1010 
1011 	if (enable) {
1012 		mask_test = mask_rdy;
1013 	} else {
1014 		mask_test = 0;
1015 	}
1016 
1017 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1018 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1019 		if (timeout_elapsed(timeout)) {
1020 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1021 			      mask_rdy, address, enable, mmio_read_32(address));
1022 			return -ETIMEDOUT;
1023 		}
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1030 {
1031 	uint32_t value;
1032 	uintptr_t rcc_base = stm32mp_rcc_base();
1033 
1034 	if (digbyp) {
1035 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1036 	}
1037 
1038 	if (bypass || digbyp) {
1039 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1040 	}
1041 
1042 	/*
1043 	 * Warning: not recommended to switch directly from "high drive"
1044 	 * to "medium low drive", and vice-versa.
1045 	 */
1046 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1047 		RCC_BDCR_LSEDRV_SHIFT;
1048 
1049 	while (value != lsedrv) {
1050 		if (value > lsedrv) {
1051 			value--;
1052 		} else {
1053 			value++;
1054 		}
1055 
1056 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1057 				   RCC_BDCR_LSEDRV_MASK,
1058 				   value << RCC_BDCR_LSEDRV_SHIFT);
1059 	}
1060 
1061 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1062 }
1063 
1064 static void stm32mp1_lse_wait(void)
1065 {
1066 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1067 		VERBOSE("%s: failed\n", __func__);
1068 	}
1069 }
1070 
1071 static void stm32mp1_lsi_set(bool enable)
1072 {
1073 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1074 
1075 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1076 		VERBOSE("%s: failed\n", __func__);
1077 	}
1078 }
1079 
1080 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1081 {
1082 	uintptr_t rcc_base = stm32mp_rcc_base();
1083 
1084 	if (digbyp) {
1085 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1086 	}
1087 
1088 	if (bypass || digbyp) {
1089 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1090 	}
1091 
1092 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1093 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1094 		VERBOSE("%s: failed\n", __func__);
1095 	}
1096 
1097 	if (css) {
1098 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1099 	}
1100 }
1101 
1102 static void stm32mp1_csi_set(bool enable)
1103 {
1104 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1105 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1106 		VERBOSE("%s: failed\n", __func__);
1107 	}
1108 }
1109 
1110 static void stm32mp1_hsi_set(bool enable)
1111 {
1112 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1113 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1114 		VERBOSE("%s: failed\n", __func__);
1115 	}
1116 }
1117 
1118 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1119 {
1120 	uint64_t timeout;
1121 	uintptr_t rcc_base = stm32mp_rcc_base();
1122 	uintptr_t address = rcc_base + RCC_OCRDYR;
1123 
1124 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1125 			   RCC_HSICFGR_HSIDIV_MASK,
1126 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1127 
1128 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1129 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1130 		if (timeout_elapsed(timeout)) {
1131 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1132 			      address, mmio_read_32(address));
1133 			return -ETIMEDOUT;
1134 		}
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static int stm32mp1_hsidiv(unsigned long hsifreq)
1141 {
1142 	uint8_t hsidiv;
1143 	uint32_t hsidivfreq = MAX_HSI_HZ;
1144 
1145 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1146 		if (hsidivfreq == hsifreq) {
1147 			break;
1148 		}
1149 
1150 		hsidivfreq /= 2U;
1151 	}
1152 
1153 	if (hsidiv == 4U) {
1154 		ERROR("Invalid clk-hsi frequency\n");
1155 		return -1;
1156 	}
1157 
1158 	if (hsidiv != 0U) {
1159 		return stm32mp1_set_hsidiv(hsidiv);
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1166 				    unsigned int clksrc,
1167 				    uint32_t *pllcfg, int plloff)
1168 {
1169 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1170 	uintptr_t rcc_base = stm32mp_rcc_base();
1171 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1172 	enum stm32mp1_plltype type = pll->plltype;
1173 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1174 	unsigned long refclk;
1175 	uint32_t ifrge = 0U;
1176 	uint32_t src, value, fracv;
1177 
1178 	/* Check PLL output */
1179 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1180 		return false;
1181 	}
1182 
1183 	/* Check current clksrc */
1184 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1185 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1186 		return false;
1187 	}
1188 
1189 	/* Check Div */
1190 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1191 
1192 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1193 		 (pllcfg[PLLCFG_M] + 1U);
1194 
1195 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1196 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1197 		return false;
1198 	}
1199 
1200 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1201 		ifrge = 1U;
1202 	}
1203 
1204 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1205 		RCC_PLLNCFGR1_DIVN_MASK;
1206 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1207 		 RCC_PLLNCFGR1_DIVM_MASK;
1208 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1209 		 RCC_PLLNCFGR1_IFRGE_MASK;
1210 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1211 		return false;
1212 	}
1213 
1214 	/* Fractional configuration */
1215 	fracv = fdt_read_uint32_default(plloff, "frac", 0);
1216 
1217 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1218 	value |= RCC_PLLNFRACR_FRACLE;
1219 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1220 		return false;
1221 	}
1222 
1223 	/* Output config */
1224 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1225 		RCC_PLLNCFGR2_DIVP_MASK;
1226 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1227 		 RCC_PLLNCFGR2_DIVQ_MASK;
1228 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1229 		 RCC_PLLNCFGR2_DIVR_MASK;
1230 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1231 		return false;
1232 	}
1233 
1234 	return true;
1235 }
1236 
1237 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1238 {
1239 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1240 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1241 
1242 	mmio_write_32(pllxcr, RCC_PLLNCR_PLLON);
1243 }
1244 
1245 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1246 {
1247 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1248 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1249 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1250 
1251 	/* Wait PLL lock */
1252 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1253 		if (timeout_elapsed(timeout)) {
1254 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1255 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1256 			return -ETIMEDOUT;
1257 		}
1258 	}
1259 
1260 	/* Start the requested output */
1261 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1262 
1263 	return 0;
1264 }
1265 
1266 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1267 {
1268 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1269 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1270 	uint64_t timeout;
1271 
1272 	/* Stop all output */
1273 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1274 			RCC_PLLNCR_DIVREN);
1275 
1276 	/* Stop PLL */
1277 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1278 
1279 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1280 	/* Wait PLL stopped */
1281 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1282 		if (timeout_elapsed(timeout)) {
1283 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1284 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1285 			return -ETIMEDOUT;
1286 		}
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1293 				       uint32_t *pllcfg)
1294 {
1295 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1296 	uintptr_t rcc_base = stm32mp_rcc_base();
1297 	uint32_t value;
1298 
1299 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1300 		RCC_PLLNCFGR2_DIVP_MASK;
1301 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1302 		 RCC_PLLNCFGR2_DIVQ_MASK;
1303 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1304 		 RCC_PLLNCFGR2_DIVR_MASK;
1305 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1306 }
1307 
1308 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1309 			       uint32_t *pllcfg, uint32_t fracv)
1310 {
1311 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1312 	uintptr_t rcc_base = stm32mp_rcc_base();
1313 	enum stm32mp1_plltype type = pll->plltype;
1314 	unsigned long refclk;
1315 	uint32_t ifrge = 0;
1316 	uint32_t src, value;
1317 
1318 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1319 		RCC_SELR_REFCLK_SRC_MASK;
1320 
1321 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1322 		 (pllcfg[PLLCFG_M] + 1U);
1323 
1324 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1325 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1326 		return -EINVAL;
1327 	}
1328 
1329 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1330 		ifrge = 1U;
1331 	}
1332 
1333 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1334 		RCC_PLLNCFGR1_DIVN_MASK;
1335 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1336 		 RCC_PLLNCFGR1_DIVM_MASK;
1337 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1338 		 RCC_PLLNCFGR1_IFRGE_MASK;
1339 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1340 
1341 	/* Fractional configuration */
1342 	value = 0;
1343 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1344 
1345 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1346 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1347 
1348 	value |= RCC_PLLNFRACR_FRACLE;
1349 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1350 
1351 	stm32mp1_pll_config_output(pll_id, pllcfg);
1352 
1353 	return 0;
1354 }
1355 
1356 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1357 {
1358 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1359 	uint32_t pllxcsg = 0;
1360 
1361 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1362 		    RCC_PLLNCSGR_MOD_PER_MASK;
1363 
1364 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1365 		    RCC_PLLNCSGR_INC_STEP_MASK;
1366 
1367 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1368 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1369 
1370 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1371 }
1372 
1373 static int stm32mp1_set_clksrc(unsigned int clksrc)
1374 {
1375 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1376 	uint64_t timeout;
1377 
1378 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1379 			   clksrc & RCC_SELR_SRC_MASK);
1380 
1381 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1382 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1383 		if (timeout_elapsed(timeout)) {
1384 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1385 			      clksrc_address, mmio_read_32(clksrc_address));
1386 			return -ETIMEDOUT;
1387 		}
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1394 {
1395 	uint64_t timeout;
1396 
1397 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1398 			   clkdiv & RCC_DIVR_DIV_MASK);
1399 
1400 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1401 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1402 		if (timeout_elapsed(timeout)) {
1403 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1404 			      clkdiv, address, mmio_read_32(address));
1405 			return -ETIMEDOUT;
1406 		}
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1413 {
1414 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1415 
1416 	/*
1417 	 * Binding clksrc :
1418 	 *      bit15-4 offset
1419 	 *      bit3:   disable
1420 	 *      bit2-0: MCOSEL[2:0]
1421 	 */
1422 	if ((clksrc & 0x8U) != 0U) {
1423 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1424 	} else {
1425 		mmio_clrsetbits_32(clksrc_address,
1426 				   RCC_MCOCFG_MCOSRC_MASK,
1427 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1428 		mmio_clrsetbits_32(clksrc_address,
1429 				   RCC_MCOCFG_MCODIV_MASK,
1430 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1431 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1432 	}
1433 }
1434 
1435 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1436 {
1437 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1438 
1439 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1440 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1441 		mmio_clrsetbits_32(address,
1442 				   RCC_BDCR_RTCSRC_MASK,
1443 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1444 
1445 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1446 	}
1447 
1448 	if (lse_css) {
1449 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1450 	}
1451 }
1452 
1453 #define CNTCVL_OFF	0x008
1454 #define CNTCVU_OFF	0x00C
1455 
1456 static void stm32mp1_stgen_config(void)
1457 {
1458 	uintptr_t stgen;
1459 	uint32_t cntfid0;
1460 	unsigned long rate;
1461 	unsigned long long counter;
1462 
1463 	stgen = fdt_get_stgen_base();
1464 	cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
1465 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1466 
1467 	if (cntfid0 == rate) {
1468 		return;
1469 	}
1470 
1471 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1472 	counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
1473 	counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
1474 	counter = (counter * rate / cntfid0);
1475 
1476 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
1477 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
1478 	mmio_write_32(stgen + CNTFID_OFF, rate);
1479 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1480 
1481 	write_cntfrq((u_register_t)rate);
1482 
1483 	/* Need to update timer with new frequency */
1484 	generic_delay_timer_init();
1485 }
1486 
1487 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1488 {
1489 	uintptr_t stgen;
1490 	unsigned long long cnt;
1491 
1492 	stgen = fdt_get_stgen_base();
1493 
1494 	cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
1495 		mmio_read_32(stgen + CNTCVL_OFF);
1496 
1497 	cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
1498 
1499 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1500 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
1501 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1502 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1503 }
1504 
1505 static void stm32mp1_pkcs_config(uint32_t pkcs)
1506 {
1507 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1508 	uint32_t value = pkcs & 0xFU;
1509 	uint32_t mask = 0xFU;
1510 
1511 	if ((pkcs & BIT(31)) != 0U) {
1512 		mask <<= 4;
1513 		value <<= 4;
1514 	}
1515 
1516 	mmio_clrsetbits_32(address, mask, value);
1517 }
1518 
1519 int stm32mp1_clk_init(void)
1520 {
1521 	uintptr_t rcc_base = stm32mp_rcc_base();
1522 	unsigned int clksrc[CLKSRC_NB];
1523 	unsigned int clkdiv[CLKDIV_NB];
1524 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1525 	int plloff[_PLL_NB];
1526 	int ret, len;
1527 	enum stm32mp1_pll_id i;
1528 	bool lse_css = false;
1529 	bool pll3_preserve = false;
1530 	bool pll4_preserve = false;
1531 	bool pll4_bootrom = false;
1532 	const fdt32_t *pkcs_cell;
1533 
1534 	/* Check status field to disable security */
1535 	if (!fdt_get_rcc_secure_status()) {
1536 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1537 	}
1538 
1539 	ret = fdt_rcc_read_uint32_array("st,clksrc", clksrc,
1540 					(uint32_t)CLKSRC_NB);
1541 	if (ret < 0) {
1542 		return -FDT_ERR_NOTFOUND;
1543 	}
1544 
1545 	ret = fdt_rcc_read_uint32_array("st,clkdiv", clkdiv,
1546 					(uint32_t)CLKDIV_NB);
1547 	if (ret < 0) {
1548 		return -FDT_ERR_NOTFOUND;
1549 	}
1550 
1551 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1552 		char name[12];
1553 
1554 		snprintf(name, sizeof(name), "st,pll@%d", i);
1555 		plloff[i] = fdt_rcc_subnode_offset(name);
1556 
1557 		if (!fdt_check_node(plloff[i])) {
1558 			continue;
1559 		}
1560 
1561 		ret = fdt_read_uint32_array(plloff[i], "cfg",
1562 					    pllcfg[i], (int)PLLCFG_NB);
1563 		if (ret < 0) {
1564 			return -FDT_ERR_NOTFOUND;
1565 		}
1566 	}
1567 
1568 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1569 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1570 
1571 	/*
1572 	 * Switch ON oscillator found in device-tree.
1573 	 * Note: HSI already ON after BootROM stage.
1574 	 */
1575 	if (stm32mp1_osc[_LSI] != 0U) {
1576 		stm32mp1_lsi_set(true);
1577 	}
1578 	if (stm32mp1_osc[_LSE] != 0U) {
1579 		bool bypass, digbyp;
1580 		uint32_t lsedrv;
1581 
1582 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1583 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1584 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1585 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1586 						     LSEDRV_MEDIUM_HIGH);
1587 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1588 	}
1589 	if (stm32mp1_osc[_HSE] != 0U) {
1590 		bool bypass, digbyp, css;
1591 
1592 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1593 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1594 		css = fdt_osc_read_bool(_HSE, "st,css");
1595 		stm32mp1_hse_enable(bypass, digbyp, css);
1596 	}
1597 	/*
1598 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1599 	 * => switch on CSI even if node is not present in device tree
1600 	 */
1601 	stm32mp1_csi_set(true);
1602 
1603 	/* Come back to HSI */
1604 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1605 	if (ret != 0) {
1606 		return ret;
1607 	}
1608 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1609 	if (ret != 0) {
1610 		return ret;
1611 	}
1612 
1613 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1614 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1615 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1616 							clksrc[CLKSRC_PLL3],
1617 							pllcfg[_PLL3],
1618 							plloff[_PLL3]);
1619 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1620 							clksrc[CLKSRC_PLL4],
1621 							pllcfg[_PLL4],
1622 							plloff[_PLL4]);
1623 	}
1624 
1625 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1626 		if (((i == _PLL3) && pll3_preserve) ||
1627 		    ((i == _PLL4) && pll4_preserve)) {
1628 			continue;
1629 		}
1630 
1631 		ret = stm32mp1_pll_stop(i);
1632 		if (ret != 0) {
1633 			return ret;
1634 		}
1635 	}
1636 
1637 	/* Configure HSIDIV */
1638 	if (stm32mp1_osc[_HSI] != 0U) {
1639 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1640 		if (ret != 0) {
1641 			return ret;
1642 		}
1643 		stm32mp1_stgen_config();
1644 	}
1645 
1646 	/* Select DIV */
1647 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1648 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1649 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1650 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1651 	if (ret != 0) {
1652 		return ret;
1653 	}
1654 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1655 	if (ret != 0) {
1656 		return ret;
1657 	}
1658 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1659 	if (ret != 0) {
1660 		return ret;
1661 	}
1662 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1663 	if (ret != 0) {
1664 		return ret;
1665 	}
1666 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1667 	if (ret != 0) {
1668 		return ret;
1669 	}
1670 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1671 	if (ret != 0) {
1672 		return ret;
1673 	}
1674 
1675 	/* No ready bit for RTC */
1676 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1677 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1678 
1679 	/* Configure PLLs source */
1680 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1681 	if (ret != 0) {
1682 		return ret;
1683 	}
1684 
1685 	if (!pll3_preserve) {
1686 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1687 		if (ret != 0) {
1688 			return ret;
1689 		}
1690 	}
1691 
1692 	if (!pll4_preserve) {
1693 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1694 		if (ret != 0) {
1695 			return ret;
1696 		}
1697 	}
1698 
1699 	/* Configure and start PLLs */
1700 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1701 		uint32_t fracv;
1702 		uint32_t csg[PLLCSG_NB];
1703 
1704 		if (((i == _PLL3) && pll3_preserve) ||
1705 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1706 			continue;
1707 		}
1708 
1709 		if (!fdt_check_node(plloff[i])) {
1710 			continue;
1711 		}
1712 
1713 		if ((i == _PLL4) && pll4_bootrom) {
1714 			/* Set output divider if not done by the Bootrom */
1715 			stm32mp1_pll_config_output(i, pllcfg[i]);
1716 			continue;
1717 		}
1718 
1719 		fracv = fdt_read_uint32_default(plloff[i], "frac", 0);
1720 
1721 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1722 		if (ret != 0) {
1723 			return ret;
1724 		}
1725 		ret = fdt_read_uint32_array(plloff[i], "csg", csg,
1726 					    (uint32_t)PLLCSG_NB);
1727 		if (ret == 0) {
1728 			stm32mp1_pll_csg(i, csg);
1729 		} else if (ret != -FDT_ERR_NOTFOUND) {
1730 			return ret;
1731 		}
1732 
1733 		stm32mp1_pll_start(i);
1734 	}
1735 	/* Wait and start PLLs ouptut when ready */
1736 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1737 		if (!fdt_check_node(plloff[i])) {
1738 			continue;
1739 		}
1740 
1741 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1742 		if (ret != 0) {
1743 			return ret;
1744 		}
1745 	}
1746 	/* Wait LSE ready before to use it */
1747 	if (stm32mp1_osc[_LSE] != 0U) {
1748 		stm32mp1_lse_wait();
1749 	}
1750 
1751 	/* Configure with expected clock source */
1752 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1753 	if (ret != 0) {
1754 		return ret;
1755 	}
1756 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1757 	if (ret != 0) {
1758 		return ret;
1759 	}
1760 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1761 
1762 	/* Configure PKCK */
1763 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1764 	if (pkcs_cell != NULL) {
1765 		bool ckper_disabled = false;
1766 		uint32_t j;
1767 
1768 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1769 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1770 
1771 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1772 				ckper_disabled = true;
1773 				continue;
1774 			}
1775 			stm32mp1_pkcs_config(pkcs);
1776 		}
1777 
1778 		/*
1779 		 * CKPER is source for some peripheral clocks
1780 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1781 		 * only if previous clock is still ON
1782 		 * => deactivated CKPER only after switching clock
1783 		 */
1784 		if (ckper_disabled) {
1785 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
1786 		}
1787 	}
1788 
1789 	/* Switch OFF HSI if not found in device-tree */
1790 	if (stm32mp1_osc[_HSI] == 0U) {
1791 		stm32mp1_hsi_set(false);
1792 	}
1793 	stm32mp1_stgen_config();
1794 
1795 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1796 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
1797 			   RCC_DDRITFCR_DDRCKMOD_MASK,
1798 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
1799 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
1800 
1801 	return 0;
1802 }
1803 
1804 static void stm32mp1_osc_clk_init(const char *name,
1805 				  enum stm32mp_osc_id index)
1806 {
1807 	uint32_t frequency;
1808 
1809 	if (fdt_osc_read_freq(name, &frequency) == 0) {
1810 		stm32mp1_osc[index] = frequency;
1811 	}
1812 }
1813 
1814 static void stm32mp1_osc_init(void)
1815 {
1816 	enum stm32mp_osc_id i;
1817 
1818 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
1819 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
1820 	}
1821 }
1822 
1823 int stm32mp1_clk_probe(void)
1824 {
1825 	stm32mp1_osc_init();
1826 
1827 	return 0;
1828 }
1829