xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 0aa9f3c0f2f2ff675c3c12ae5ac6ceb475d6a16f)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_PER_SEL,
111 	_RTC_SEL,
112 	_PARENT_SEL_NB,
113 	_UNKNOWN_SEL = 0xff,
114 };
115 
116 /* State the parent clock ID straight related to a clock */
117 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
118 	[_HSE] = CK_HSE,
119 	[_HSI] = CK_HSI,
120 	[_CSI] = CK_CSI,
121 	[_LSE] = CK_LSE,
122 	[_LSI] = CK_LSI,
123 	[_I2S_CKIN] = _UNKNOWN_ID,
124 	[_USB_PHY_48] = _UNKNOWN_ID,
125 	[_HSI_KER] = CK_HSI,
126 	[_HSE_KER] = CK_HSE,
127 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
128 	[_CSI_KER] = CK_CSI,
129 	[_PLL1_P] = PLL1_P,
130 	[_PLL1_Q] = PLL1_Q,
131 	[_PLL1_R] = PLL1_R,
132 	[_PLL2_P] = PLL2_P,
133 	[_PLL2_Q] = PLL2_Q,
134 	[_PLL2_R] = PLL2_R,
135 	[_PLL3_P] = PLL3_P,
136 	[_PLL3_Q] = PLL3_Q,
137 	[_PLL3_R] = PLL3_R,
138 	[_PLL4_P] = PLL4_P,
139 	[_PLL4_Q] = PLL4_Q,
140 	[_PLL4_R] = PLL4_R,
141 	[_ACLK] = CK_AXI,
142 	[_PCLK1] = CK_AXI,
143 	[_PCLK2] = CK_AXI,
144 	[_PCLK3] = CK_AXI,
145 	[_PCLK4] = CK_AXI,
146 	[_PCLK5] = CK_AXI,
147 	[_CK_PER] = CK_PER,
148 	[_CK_MPU] = CK_MPU,
149 	[_CK_MCU] = CK_MCU,
150 };
151 
152 static unsigned int clock_id2parent_id(unsigned long id)
153 {
154 	unsigned int n;
155 
156 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
157 		if (parent_id_clock_id[n] == id) {
158 			return n;
159 		}
160 	}
161 
162 	return _UNKNOWN_ID;
163 }
164 
165 enum stm32mp1_pll_id {
166 	_PLL1,
167 	_PLL2,
168 	_PLL3,
169 	_PLL4,
170 	_PLL_NB
171 };
172 
173 enum stm32mp1_div_id {
174 	_DIV_P,
175 	_DIV_Q,
176 	_DIV_R,
177 	_DIV_NB,
178 };
179 
180 enum stm32mp1_clksrc_id {
181 	CLKSRC_MPU,
182 	CLKSRC_AXI,
183 	CLKSRC_MCU,
184 	CLKSRC_PLL12,
185 	CLKSRC_PLL3,
186 	CLKSRC_PLL4,
187 	CLKSRC_RTC,
188 	CLKSRC_MCO1,
189 	CLKSRC_MCO2,
190 	CLKSRC_NB
191 };
192 
193 enum stm32mp1_clkdiv_id {
194 	CLKDIV_MPU,
195 	CLKDIV_AXI,
196 	CLKDIV_MCU,
197 	CLKDIV_APB1,
198 	CLKDIV_APB2,
199 	CLKDIV_APB3,
200 	CLKDIV_APB4,
201 	CLKDIV_APB5,
202 	CLKDIV_RTC,
203 	CLKDIV_MCO1,
204 	CLKDIV_MCO2,
205 	CLKDIV_NB
206 };
207 
208 enum stm32mp1_pllcfg {
209 	PLLCFG_M,
210 	PLLCFG_N,
211 	PLLCFG_P,
212 	PLLCFG_Q,
213 	PLLCFG_R,
214 	PLLCFG_O,
215 	PLLCFG_NB
216 };
217 
218 enum stm32mp1_pllcsg {
219 	PLLCSG_MOD_PER,
220 	PLLCSG_INC_STEP,
221 	PLLCSG_SSCG_MODE,
222 	PLLCSG_NB
223 };
224 
225 enum stm32mp1_plltype {
226 	PLL_800,
227 	PLL_1600,
228 	PLL_TYPE_NB
229 };
230 
231 struct stm32mp1_pll {
232 	uint8_t refclk_min;
233 	uint8_t refclk_max;
234 	uint8_t divn_max;
235 };
236 
237 struct stm32mp1_clk_gate {
238 	uint16_t offset;
239 	uint8_t bit;
240 	uint8_t index;
241 	uint8_t set_clr;
242 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
243 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
244 };
245 
246 struct stm32mp1_clk_sel {
247 	uint16_t offset;
248 	uint8_t src;
249 	uint8_t msk;
250 	uint8_t nb_parent;
251 	const uint8_t *parent;
252 };
253 
254 #define REFCLK_SIZE 4
255 struct stm32mp1_clk_pll {
256 	enum stm32mp1_plltype plltype;
257 	uint16_t rckxselr;
258 	uint16_t pllxcfgr1;
259 	uint16_t pllxcfgr2;
260 	uint16_t pllxfracr;
261 	uint16_t pllxcr;
262 	uint16_t pllxcsgr;
263 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
264 };
265 
266 /* Clocks with selectable source and non set/clr register access */
267 #define _CLK_SELEC(off, b, idx, s)			\
268 	{						\
269 		.offset = (off),			\
270 		.bit = (b),				\
271 		.index = (idx),				\
272 		.set_clr = 0,				\
273 		.sel = (s),				\
274 		.fixed = _UNKNOWN_ID,			\
275 	}
276 
277 /* Clocks with fixed source and non set/clr register access */
278 #define _CLK_FIXED(off, b, idx, f)			\
279 	{						\
280 		.offset = (off),			\
281 		.bit = (b),				\
282 		.index = (idx),				\
283 		.set_clr = 0,				\
284 		.sel = _UNKNOWN_SEL,			\
285 		.fixed = (f),				\
286 	}
287 
288 /* Clocks with selectable source and set/clr register access */
289 #define _CLK_SC_SELEC(off, b, idx, s)			\
290 	{						\
291 		.offset = (off),			\
292 		.bit = (b),				\
293 		.index = (idx),				\
294 		.set_clr = 1,				\
295 		.sel = (s),				\
296 		.fixed = _UNKNOWN_ID,			\
297 	}
298 
299 /* Clocks with fixed source and set/clr register access */
300 #define _CLK_SC_FIXED(off, b, idx, f)			\
301 	{						\
302 		.offset = (off),			\
303 		.bit = (b),				\
304 		.index = (idx),				\
305 		.set_clr = 1,				\
306 		.sel = _UNKNOWN_SEL,			\
307 		.fixed = (f),				\
308 	}
309 
310 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
311 	[_ ## _label ## _SEL] = {				\
312 		.offset = _rcc_selr,				\
313 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
314 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
315 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
316 		.parent = (_parents),				\
317 		.nb_parent = ARRAY_SIZE(_parents)		\
318 	}
319 
320 #define _CLK_PLL(idx, type, off1, off2, off3,		\
321 		 off4, off5, off6,			\
322 		 p1, p2, p3, p4)			\
323 	[(idx)] = {					\
324 		.plltype = (type),			\
325 		.rckxselr = (off1),			\
326 		.pllxcfgr1 = (off2),			\
327 		.pllxcfgr2 = (off3),			\
328 		.pllxfracr = (off4),			\
329 		.pllxcr = (off5),			\
330 		.pllxcsgr = (off6),			\
331 		.refclk[0] = (p1),			\
332 		.refclk[1] = (p2),			\
333 		.refclk[2] = (p3),			\
334 		.refclk[3] = (p4),			\
335 	}
336 
337 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
338 
339 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
340 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
341 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
342 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
343 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
344 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
345 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
346 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
347 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
348 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
349 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
350 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
351 
352 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
353 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
354 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
361 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
362 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
363 
364 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
365 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
366 
367 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
368 
369 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
370 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
371 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
372 
373 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
374 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
375 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
376 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
377 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
378 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
381 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
382 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
383 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
384 
385 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
386 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
387 
388 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
389 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
397 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
398 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
399 
400 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
401 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
402 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
403 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
404 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
405 
406 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
407 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
409 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
410 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
411 
412 	_CLK_SELEC(RCC_BDCR, 20, RTC, _RTC_SEL),
413 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
414 };
415 
416 static const uint8_t i2c12_parents[] = {
417 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
418 };
419 
420 static const uint8_t i2c35_parents[] = {
421 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
422 };
423 
424 static const uint8_t stgen_parents[] = {
425 	_HSI_KER, _HSE_KER
426 };
427 
428 static const uint8_t i2c46_parents[] = {
429 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
430 };
431 
432 static const uint8_t spi6_parents[] = {
433 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
434 };
435 
436 static const uint8_t usart1_parents[] = {
437 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
438 };
439 
440 static const uint8_t rng1_parents[] = {
441 	_CSI, _PLL4_R, _LSE, _LSI
442 };
443 
444 static const uint8_t uart6_parents[] = {
445 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
446 };
447 
448 static const uint8_t uart234578_parents[] = {
449 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
450 };
451 
452 static const uint8_t sdmmc12_parents[] = {
453 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
454 };
455 
456 static const uint8_t sdmmc3_parents[] = {
457 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
458 };
459 
460 static const uint8_t qspi_parents[] = {
461 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
462 };
463 
464 static const uint8_t fmc_parents[] = {
465 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
466 };
467 
468 static const uint8_t ass_parents[] = {
469 	_HSI, _HSE, _PLL2
470 };
471 
472 static const uint8_t mss_parents[] = {
473 	_HSI, _HSE, _CSI, _PLL3
474 };
475 
476 static const uint8_t usbphy_parents[] = {
477 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
478 };
479 
480 static const uint8_t usbo_parents[] = {
481 	_PLL4_R, _USB_PHY_48
482 };
483 
484 static const uint8_t mpu_parents[] = {
485 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
486 };
487 
488 static const uint8_t per_parents[] = {
489 	_HSI, _HSE, _CSI,
490 };
491 
492 static const uint8_t rtc_parents[] = {
493 	_UNKNOWN_ID, _LSE, _LSI, _HSE
494 };
495 
496 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
497 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
498 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
499 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
500 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
501 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
502 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
503 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
504 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
505 	_CLK_PARENT_SEL(PER, RCC_CPERCKSELR, per_parents),
506 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
507 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
508 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
509 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
510 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
511 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
512 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
513 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
514 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
515 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
516 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
517 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
518 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
519 };
520 
521 /* Define characteristic of PLL according type */
522 #define DIVN_MIN	24
523 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
524 	[PLL_800] = {
525 		.refclk_min = 4,
526 		.refclk_max = 16,
527 		.divn_max = 99,
528 	},
529 	[PLL_1600] = {
530 		.refclk_min = 8,
531 		.refclk_max = 16,
532 		.divn_max = 199,
533 	},
534 };
535 
536 /* PLLNCFGR2 register divider by output */
537 static const uint8_t pllncfgr2[_DIV_NB] = {
538 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
539 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
540 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
541 };
542 
543 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
544 	_CLK_PLL(_PLL1, PLL_1600,
545 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
546 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
547 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
548 	_CLK_PLL(_PLL2, PLL_1600,
549 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
550 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
551 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
552 	_CLK_PLL(_PLL3, PLL_800,
553 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
554 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
555 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
556 	_CLK_PLL(_PLL4, PLL_800,
557 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
558 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
559 		 _HSI, _HSE, _CSI, _I2S_CKIN),
560 };
561 
562 /* Prescaler table lookups for clock computation */
563 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
564 static const uint8_t stm32mp1_mcu_div[16] = {
565 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
566 };
567 
568 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
569 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
570 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
571 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
572 	0, 1, 2, 3, 4, 4, 4, 4
573 };
574 
575 /* div = /1 /2 /3 /4 */
576 static const uint8_t stm32mp1_axi_div[8] = {
577 	1, 2, 3, 4, 4, 4, 4, 4
578 };
579 
580 /* RCC clock device driver private */
581 static unsigned long stm32mp1_osc[NB_OSC];
582 static struct spinlock reg_lock;
583 static unsigned int gate_refcounts[NB_GATES];
584 static struct spinlock refcount_lock;
585 
586 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
587 {
588 	return &stm32mp1_clk_gate[idx];
589 }
590 
591 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
592 {
593 	return &stm32mp1_clk_sel[idx];
594 }
595 
596 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
597 {
598 	return &stm32mp1_clk_pll[idx];
599 }
600 
601 static void stm32mp1_clk_lock(struct spinlock *lock)
602 {
603 	if (stm32mp_lock_available()) {
604 		/* Assume interrupts are masked */
605 		spin_lock(lock);
606 	}
607 }
608 
609 static void stm32mp1_clk_unlock(struct spinlock *lock)
610 {
611 	if (stm32mp_lock_available()) {
612 		spin_unlock(lock);
613 	}
614 }
615 
616 bool stm32mp1_rcc_is_secure(void)
617 {
618 	uintptr_t rcc_base = stm32mp_rcc_base();
619 
620 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_TZEN) != 0;
621 }
622 
623 bool stm32mp1_rcc_is_mckprot(void)
624 {
625 	uintptr_t rcc_base = stm32mp_rcc_base();
626 
627 	return (mmio_read_32(rcc_base + RCC_TZCR) & RCC_TZCR_MCKPROT) != 0;
628 }
629 
630 void stm32mp1_clk_rcc_regs_lock(void)
631 {
632 	stm32mp1_clk_lock(&reg_lock);
633 }
634 
635 void stm32mp1_clk_rcc_regs_unlock(void)
636 {
637 	stm32mp1_clk_unlock(&reg_lock);
638 }
639 
640 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
641 {
642 	if (idx >= NB_OSC) {
643 		return 0;
644 	}
645 
646 	return stm32mp1_osc[idx];
647 }
648 
649 static int stm32mp1_clk_get_gated_id(unsigned long id)
650 {
651 	unsigned int i;
652 
653 	for (i = 0U; i < NB_GATES; i++) {
654 		if (gate_ref(i)->index == id) {
655 			return i;
656 		}
657 	}
658 
659 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
660 
661 	return -EINVAL;
662 }
663 
664 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
665 {
666 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
667 }
668 
669 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
670 {
671 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
672 }
673 
674 static int stm32mp1_clk_get_parent(unsigned long id)
675 {
676 	const struct stm32mp1_clk_sel *sel;
677 	uint32_t p_sel;
678 	int i;
679 	enum stm32mp1_parent_id p;
680 	enum stm32mp1_parent_sel s;
681 	uintptr_t rcc_base = stm32mp_rcc_base();
682 
683 	/* Few non gateable clock have a static parent ID, find them */
684 	i = (int)clock_id2parent_id(id);
685 	if (i != _UNKNOWN_ID) {
686 		return i;
687 	}
688 
689 	i = stm32mp1_clk_get_gated_id(id);
690 	if (i < 0) {
691 		panic();
692 	}
693 
694 	p = stm32mp1_clk_get_fixed_parent(i);
695 	if (p < _PARENT_NB) {
696 		return (int)p;
697 	}
698 
699 	s = stm32mp1_clk_get_sel(i);
700 	if (s == _UNKNOWN_SEL) {
701 		return -EINVAL;
702 	}
703 	if (s >= _PARENT_SEL_NB) {
704 		panic();
705 	}
706 
707 	sel = clk_sel_ref(s);
708 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
709 		 (sel->msk << sel->src)) >> sel->src;
710 	if (p_sel < sel->nb_parent) {
711 		return (int)sel->parent[p_sel];
712 	}
713 
714 	return -EINVAL;
715 }
716 
717 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
718 {
719 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
720 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
721 
722 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
723 }
724 
725 /*
726  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
727  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
728  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
729  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
730  */
731 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
732 {
733 	unsigned long refclk, fvco;
734 	uint32_t cfgr1, fracr, divm, divn;
735 	uintptr_t rcc_base = stm32mp_rcc_base();
736 
737 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
738 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
739 
740 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
741 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
742 
743 	refclk = stm32mp1_pll_get_fref(pll);
744 
745 	/*
746 	 * With FRACV :
747 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
748 	 * Without FRACV
749 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
750 	 */
751 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
752 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
753 				 RCC_PLLNFRACR_FRACV_SHIFT;
754 		unsigned long long numerator, denominator;
755 
756 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
757 		numerator = refclk * numerator;
758 		denominator = ((unsigned long long)divm + 1U) << 13;
759 		fvco = (unsigned long)(numerator / denominator);
760 	} else {
761 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
762 	}
763 
764 	return fvco;
765 }
766 
767 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
768 					    enum stm32mp1_div_id div_id)
769 {
770 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
771 	unsigned long dfout;
772 	uint32_t cfgr2, divy;
773 
774 	if (div_id >= _DIV_NB) {
775 		return 0;
776 	}
777 
778 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
779 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
780 
781 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
782 
783 	return dfout;
784 }
785 
786 static unsigned long get_clock_rate(int p)
787 {
788 	uint32_t reg, clkdiv;
789 	unsigned long clock = 0;
790 	uintptr_t rcc_base = stm32mp_rcc_base();
791 
792 	switch (p) {
793 	case _CK_MPU:
794 	/* MPU sub system */
795 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
796 		switch (reg & RCC_SELR_SRC_MASK) {
797 		case RCC_MPCKSELR_HSI:
798 			clock = stm32mp1_clk_get_fixed(_HSI);
799 			break;
800 		case RCC_MPCKSELR_HSE:
801 			clock = stm32mp1_clk_get_fixed(_HSE);
802 			break;
803 		case RCC_MPCKSELR_PLL:
804 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
805 			break;
806 		case RCC_MPCKSELR_PLL_MPUDIV:
807 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
808 
809 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
810 			clkdiv = reg & RCC_MPUDIV_MASK;
811 			if (clkdiv != 0U) {
812 				clock /= stm32mp1_mpu_div[clkdiv];
813 			}
814 			break;
815 		default:
816 			break;
817 		}
818 		break;
819 	/* AXI sub system */
820 	case _ACLK:
821 	case _HCLK2:
822 	case _HCLK6:
823 	case _PCLK4:
824 	case _PCLK5:
825 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
826 		switch (reg & RCC_SELR_SRC_MASK) {
827 		case RCC_ASSCKSELR_HSI:
828 			clock = stm32mp1_clk_get_fixed(_HSI);
829 			break;
830 		case RCC_ASSCKSELR_HSE:
831 			clock = stm32mp1_clk_get_fixed(_HSE);
832 			break;
833 		case RCC_ASSCKSELR_PLL:
834 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
835 			break;
836 		default:
837 			break;
838 		}
839 
840 		/* System clock divider */
841 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
842 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
843 
844 		switch (p) {
845 		case _PCLK4:
846 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
847 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
848 			break;
849 		case _PCLK5:
850 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
851 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
852 			break;
853 		default:
854 			break;
855 		}
856 		break;
857 	/* MCU sub system */
858 	case _CK_MCU:
859 	case _PCLK1:
860 	case _PCLK2:
861 	case _PCLK3:
862 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
863 		switch (reg & RCC_SELR_SRC_MASK) {
864 		case RCC_MSSCKSELR_HSI:
865 			clock = stm32mp1_clk_get_fixed(_HSI);
866 			break;
867 		case RCC_MSSCKSELR_HSE:
868 			clock = stm32mp1_clk_get_fixed(_HSE);
869 			break;
870 		case RCC_MSSCKSELR_CSI:
871 			clock = stm32mp1_clk_get_fixed(_CSI);
872 			break;
873 		case RCC_MSSCKSELR_PLL:
874 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
875 			break;
876 		default:
877 			break;
878 		}
879 
880 		/* MCU clock divider */
881 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
882 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
883 
884 		switch (p) {
885 		case _PCLK1:
886 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
887 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
888 			break;
889 		case _PCLK2:
890 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
891 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
892 			break;
893 		case _PCLK3:
894 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
895 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
896 			break;
897 		case _CK_MCU:
898 		default:
899 			break;
900 		}
901 		break;
902 	case _CK_PER:
903 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
904 		switch (reg & RCC_SELR_SRC_MASK) {
905 		case RCC_CPERCKSELR_HSI:
906 			clock = stm32mp1_clk_get_fixed(_HSI);
907 			break;
908 		case RCC_CPERCKSELR_HSE:
909 			clock = stm32mp1_clk_get_fixed(_HSE);
910 			break;
911 		case RCC_CPERCKSELR_CSI:
912 			clock = stm32mp1_clk_get_fixed(_CSI);
913 			break;
914 		default:
915 			break;
916 		}
917 		break;
918 	case _HSI:
919 	case _HSI_KER:
920 		clock = stm32mp1_clk_get_fixed(_HSI);
921 		break;
922 	case _CSI:
923 	case _CSI_KER:
924 		clock = stm32mp1_clk_get_fixed(_CSI);
925 		break;
926 	case _HSE:
927 	case _HSE_KER:
928 		clock = stm32mp1_clk_get_fixed(_HSE);
929 		break;
930 	case _HSE_KER_DIV2:
931 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
932 		break;
933 	case _LSI:
934 		clock = stm32mp1_clk_get_fixed(_LSI);
935 		break;
936 	case _LSE:
937 		clock = stm32mp1_clk_get_fixed(_LSE);
938 		break;
939 	/* PLL */
940 	case _PLL1_P:
941 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
942 		break;
943 	case _PLL1_Q:
944 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
945 		break;
946 	case _PLL1_R:
947 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
948 		break;
949 	case _PLL2_P:
950 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
951 		break;
952 	case _PLL2_Q:
953 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
954 		break;
955 	case _PLL2_R:
956 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
957 		break;
958 	case _PLL3_P:
959 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
960 		break;
961 	case _PLL3_Q:
962 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
963 		break;
964 	case _PLL3_R:
965 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
966 		break;
967 	case _PLL4_P:
968 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
969 		break;
970 	case _PLL4_Q:
971 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
972 		break;
973 	case _PLL4_R:
974 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
975 		break;
976 	/* Other */
977 	case _USB_PHY_48:
978 		clock = USB_PHY_48_MHZ;
979 		break;
980 	default:
981 		break;
982 	}
983 
984 	return clock;
985 }
986 
987 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
988 {
989 	uintptr_t rcc_base = stm32mp_rcc_base();
990 
991 	VERBOSE("Enable clock %u\n", gate->index);
992 
993 	if (gate->set_clr != 0U) {
994 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
995 	} else {
996 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
997 	}
998 }
999 
1000 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1001 {
1002 	uintptr_t rcc_base = stm32mp_rcc_base();
1003 
1004 	VERBOSE("Disable clock %u\n", gate->index);
1005 
1006 	if (gate->set_clr != 0U) {
1007 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1008 			      BIT(gate->bit));
1009 	} else {
1010 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1011 	}
1012 }
1013 
1014 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1015 {
1016 	uintptr_t rcc_base = stm32mp_rcc_base();
1017 
1018 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1019 }
1020 
1021 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1022 {
1023 	int i = stm32mp1_clk_get_gated_id(id);
1024 
1025 	if (i < 0) {
1026 		panic();
1027 	}
1028 
1029 	return gate_refcounts[i];
1030 }
1031 
1032 /* Oscillators and PLLs are not gated at runtime */
1033 static bool clock_is_always_on(unsigned long id)
1034 {
1035 	switch (id) {
1036 	case CK_HSE:
1037 	case CK_CSI:
1038 	case CK_LSI:
1039 	case CK_LSE:
1040 	case CK_HSI:
1041 	case CK_HSE_DIV2:
1042 	case PLL1_Q:
1043 	case PLL1_R:
1044 	case PLL2_P:
1045 	case PLL2_Q:
1046 	case PLL2_R:
1047 	case PLL3_P:
1048 	case PLL3_Q:
1049 	case PLL3_R:
1050 		return true;
1051 	default:
1052 		return false;
1053 	}
1054 }
1055 
1056 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1057 {
1058 	const struct stm32mp1_clk_gate *gate;
1059 	int i;
1060 	unsigned int *refcnt;
1061 
1062 	if (clock_is_always_on(id)) {
1063 		return;
1064 	}
1065 
1066 	i = stm32mp1_clk_get_gated_id(id);
1067 	if (i < 0) {
1068 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1069 		panic();
1070 	}
1071 
1072 	gate = gate_ref(i);
1073 	refcnt = &gate_refcounts[i];
1074 
1075 	stm32mp1_clk_lock(&refcount_lock);
1076 
1077 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1078 		__clk_enable(gate);
1079 	}
1080 
1081 	stm32mp1_clk_unlock(&refcount_lock);
1082 }
1083 
1084 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1085 {
1086 	const struct stm32mp1_clk_gate *gate;
1087 	int i;
1088 	unsigned int *refcnt;
1089 
1090 	if (clock_is_always_on(id)) {
1091 		return;
1092 	}
1093 
1094 	i = stm32mp1_clk_get_gated_id(id);
1095 	if (i < 0) {
1096 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1097 		panic();
1098 	}
1099 
1100 	gate = gate_ref(i);
1101 	refcnt = &gate_refcounts[i];
1102 
1103 	stm32mp1_clk_lock(&refcount_lock);
1104 
1105 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1106 		__clk_disable(gate);
1107 	}
1108 
1109 	stm32mp1_clk_unlock(&refcount_lock);
1110 }
1111 
1112 void stm32mp_clk_enable(unsigned long id)
1113 {
1114 	__stm32mp1_clk_enable(id, true);
1115 }
1116 
1117 void stm32mp_clk_disable(unsigned long id)
1118 {
1119 	__stm32mp1_clk_disable(id, true);
1120 }
1121 
1122 bool stm32mp_clk_is_enabled(unsigned long id)
1123 {
1124 	int i;
1125 
1126 	if (clock_is_always_on(id)) {
1127 		return true;
1128 	}
1129 
1130 	i = stm32mp1_clk_get_gated_id(id);
1131 	if (i < 0) {
1132 		panic();
1133 	}
1134 
1135 	return __clk_is_enabled(gate_ref(i));
1136 }
1137 
1138 unsigned long stm32mp_clk_get_rate(unsigned long id)
1139 {
1140 	int p = stm32mp1_clk_get_parent(id);
1141 
1142 	if (p < 0) {
1143 		return 0;
1144 	}
1145 
1146 	return get_clock_rate(p);
1147 }
1148 
1149 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1150 {
1151 	uintptr_t address = stm32mp_rcc_base() + offset;
1152 
1153 	if (enable) {
1154 		mmio_setbits_32(address, mask_on);
1155 	} else {
1156 		mmio_clrbits_32(address, mask_on);
1157 	}
1158 }
1159 
1160 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1161 {
1162 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1163 	uintptr_t address = stm32mp_rcc_base() + offset;
1164 
1165 	mmio_write_32(address, mask_on);
1166 }
1167 
1168 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1169 {
1170 	uint64_t timeout;
1171 	uint32_t mask_test;
1172 	uintptr_t address = stm32mp_rcc_base() + offset;
1173 
1174 	if (enable) {
1175 		mask_test = mask_rdy;
1176 	} else {
1177 		mask_test = 0;
1178 	}
1179 
1180 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1181 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1182 		if (timeout_elapsed(timeout)) {
1183 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1184 			      mask_rdy, address, enable, mmio_read_32(address));
1185 			return -ETIMEDOUT;
1186 		}
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1193 {
1194 	uint32_t value;
1195 	uintptr_t rcc_base = stm32mp_rcc_base();
1196 
1197 	if (digbyp) {
1198 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1199 	}
1200 
1201 	if (bypass || digbyp) {
1202 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1203 	}
1204 
1205 	/*
1206 	 * Warning: not recommended to switch directly from "high drive"
1207 	 * to "medium low drive", and vice-versa.
1208 	 */
1209 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1210 		RCC_BDCR_LSEDRV_SHIFT;
1211 
1212 	while (value != lsedrv) {
1213 		if (value > lsedrv) {
1214 			value--;
1215 		} else {
1216 			value++;
1217 		}
1218 
1219 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1220 				   RCC_BDCR_LSEDRV_MASK,
1221 				   value << RCC_BDCR_LSEDRV_SHIFT);
1222 	}
1223 
1224 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1225 }
1226 
1227 static void stm32mp1_lse_wait(void)
1228 {
1229 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1230 		VERBOSE("%s: failed\n", __func__);
1231 	}
1232 }
1233 
1234 static void stm32mp1_lsi_set(bool enable)
1235 {
1236 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1237 
1238 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1239 		VERBOSE("%s: failed\n", __func__);
1240 	}
1241 }
1242 
1243 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1244 {
1245 	uintptr_t rcc_base = stm32mp_rcc_base();
1246 
1247 	if (digbyp) {
1248 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1249 	}
1250 
1251 	if (bypass || digbyp) {
1252 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1253 	}
1254 
1255 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1256 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1257 		VERBOSE("%s: failed\n", __func__);
1258 	}
1259 
1260 	if (css) {
1261 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1262 	}
1263 }
1264 
1265 static void stm32mp1_csi_set(bool enable)
1266 {
1267 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1268 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1269 		VERBOSE("%s: failed\n", __func__);
1270 	}
1271 }
1272 
1273 static void stm32mp1_hsi_set(bool enable)
1274 {
1275 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1276 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1277 		VERBOSE("%s: failed\n", __func__);
1278 	}
1279 }
1280 
1281 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1282 {
1283 	uint64_t timeout;
1284 	uintptr_t rcc_base = stm32mp_rcc_base();
1285 	uintptr_t address = rcc_base + RCC_OCRDYR;
1286 
1287 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1288 			   RCC_HSICFGR_HSIDIV_MASK,
1289 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1290 
1291 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1292 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1293 		if (timeout_elapsed(timeout)) {
1294 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1295 			      address, mmio_read_32(address));
1296 			return -ETIMEDOUT;
1297 		}
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int stm32mp1_hsidiv(unsigned long hsifreq)
1304 {
1305 	uint8_t hsidiv;
1306 	uint32_t hsidivfreq = MAX_HSI_HZ;
1307 
1308 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1309 		if (hsidivfreq == hsifreq) {
1310 			break;
1311 		}
1312 
1313 		hsidivfreq /= 2U;
1314 	}
1315 
1316 	if (hsidiv == 4U) {
1317 		ERROR("Invalid clk-hsi frequency\n");
1318 		return -1;
1319 	}
1320 
1321 	if (hsidiv != 0U) {
1322 		return stm32mp1_set_hsidiv(hsidiv);
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1329 				    unsigned int clksrc,
1330 				    uint32_t *pllcfg, int plloff)
1331 {
1332 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1333 	uintptr_t rcc_base = stm32mp_rcc_base();
1334 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1335 	enum stm32mp1_plltype type = pll->plltype;
1336 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1337 	unsigned long refclk;
1338 	uint32_t ifrge = 0U;
1339 	uint32_t src, value, fracv = 0;
1340 	void *fdt;
1341 
1342 	/* Check PLL output */
1343 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1344 		return false;
1345 	}
1346 
1347 	/* Check current clksrc */
1348 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1349 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1350 		return false;
1351 	}
1352 
1353 	/* Check Div */
1354 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1355 
1356 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1357 		 (pllcfg[PLLCFG_M] + 1U);
1358 
1359 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1360 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1361 		return false;
1362 	}
1363 
1364 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1365 		ifrge = 1U;
1366 	}
1367 
1368 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1369 		RCC_PLLNCFGR1_DIVN_MASK;
1370 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1371 		 RCC_PLLNCFGR1_DIVM_MASK;
1372 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1373 		 RCC_PLLNCFGR1_IFRGE_MASK;
1374 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1375 		return false;
1376 	}
1377 
1378 	/* Fractional configuration */
1379 	if (fdt_get_address(&fdt) == 1) {
1380 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1381 	}
1382 
1383 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1384 	value |= RCC_PLLNFRACR_FRACLE;
1385 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1386 		return false;
1387 	}
1388 
1389 	/* Output config */
1390 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1391 		RCC_PLLNCFGR2_DIVP_MASK;
1392 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1393 		 RCC_PLLNCFGR2_DIVQ_MASK;
1394 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1395 		 RCC_PLLNCFGR2_DIVR_MASK;
1396 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1397 		return false;
1398 	}
1399 
1400 	return true;
1401 }
1402 
1403 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1404 {
1405 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1406 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1407 
1408 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1409 	mmio_clrsetbits_32(pllxcr,
1410 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1411 			   RCC_PLLNCR_DIVREN,
1412 			   RCC_PLLNCR_PLLON);
1413 }
1414 
1415 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1416 {
1417 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1418 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1419 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1420 
1421 	/* Wait PLL lock */
1422 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1423 		if (timeout_elapsed(timeout)) {
1424 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1425 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1426 			return -ETIMEDOUT;
1427 		}
1428 	}
1429 
1430 	/* Start the requested output */
1431 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1432 
1433 	return 0;
1434 }
1435 
1436 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1437 {
1438 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1439 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1440 	uint64_t timeout;
1441 
1442 	/* Stop all output */
1443 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1444 			RCC_PLLNCR_DIVREN);
1445 
1446 	/* Stop PLL */
1447 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1448 
1449 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1450 	/* Wait PLL stopped */
1451 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1452 		if (timeout_elapsed(timeout)) {
1453 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1454 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1455 			return -ETIMEDOUT;
1456 		}
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1463 				       uint32_t *pllcfg)
1464 {
1465 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1466 	uintptr_t rcc_base = stm32mp_rcc_base();
1467 	uint32_t value;
1468 
1469 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1470 		RCC_PLLNCFGR2_DIVP_MASK;
1471 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1472 		 RCC_PLLNCFGR2_DIVQ_MASK;
1473 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1474 		 RCC_PLLNCFGR2_DIVR_MASK;
1475 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1476 }
1477 
1478 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1479 			       uint32_t *pllcfg, uint32_t fracv)
1480 {
1481 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1482 	uintptr_t rcc_base = stm32mp_rcc_base();
1483 	enum stm32mp1_plltype type = pll->plltype;
1484 	unsigned long refclk;
1485 	uint32_t ifrge = 0;
1486 	uint32_t src, value;
1487 
1488 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1489 		RCC_SELR_REFCLK_SRC_MASK;
1490 
1491 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1492 		 (pllcfg[PLLCFG_M] + 1U);
1493 
1494 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1495 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1496 		return -EINVAL;
1497 	}
1498 
1499 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1500 		ifrge = 1U;
1501 	}
1502 
1503 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1504 		RCC_PLLNCFGR1_DIVN_MASK;
1505 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1506 		 RCC_PLLNCFGR1_DIVM_MASK;
1507 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1508 		 RCC_PLLNCFGR1_IFRGE_MASK;
1509 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1510 
1511 	/* Fractional configuration */
1512 	value = 0;
1513 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1514 
1515 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1516 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1517 
1518 	value |= RCC_PLLNFRACR_FRACLE;
1519 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1520 
1521 	stm32mp1_pll_config_output(pll_id, pllcfg);
1522 
1523 	return 0;
1524 }
1525 
1526 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1527 {
1528 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1529 	uint32_t pllxcsg = 0;
1530 
1531 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1532 		    RCC_PLLNCSGR_MOD_PER_MASK;
1533 
1534 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1535 		    RCC_PLLNCSGR_INC_STEP_MASK;
1536 
1537 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1538 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1539 
1540 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1541 
1542 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1543 			RCC_PLLNCR_SSCG_CTRL);
1544 }
1545 
1546 static int stm32mp1_set_clksrc(unsigned int clksrc)
1547 {
1548 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1549 	uint64_t timeout;
1550 
1551 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1552 			   clksrc & RCC_SELR_SRC_MASK);
1553 
1554 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1555 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1556 		if (timeout_elapsed(timeout)) {
1557 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1558 			      clksrc_address, mmio_read_32(clksrc_address));
1559 			return -ETIMEDOUT;
1560 		}
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1567 {
1568 	uint64_t timeout;
1569 
1570 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1571 			   clkdiv & RCC_DIVR_DIV_MASK);
1572 
1573 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1574 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1575 		if (timeout_elapsed(timeout)) {
1576 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1577 			      clkdiv, address, mmio_read_32(address));
1578 			return -ETIMEDOUT;
1579 		}
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1586 {
1587 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1588 
1589 	/*
1590 	 * Binding clksrc :
1591 	 *      bit15-4 offset
1592 	 *      bit3:   disable
1593 	 *      bit2-0: MCOSEL[2:0]
1594 	 */
1595 	if ((clksrc & 0x8U) != 0U) {
1596 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1597 	} else {
1598 		mmio_clrsetbits_32(clksrc_address,
1599 				   RCC_MCOCFG_MCOSRC_MASK,
1600 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1601 		mmio_clrsetbits_32(clksrc_address,
1602 				   RCC_MCOCFG_MCODIV_MASK,
1603 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1604 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1605 	}
1606 }
1607 
1608 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1609 {
1610 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1611 
1612 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1613 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1614 		mmio_clrsetbits_32(address,
1615 				   RCC_BDCR_RTCSRC_MASK,
1616 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1617 
1618 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1619 	}
1620 
1621 	if (lse_css) {
1622 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1623 	}
1624 }
1625 
1626 static void stm32mp1_stgen_config(void)
1627 {
1628 	uintptr_t stgen;
1629 	uint32_t cntfid0;
1630 	unsigned long rate;
1631 	unsigned long long counter;
1632 
1633 	stgen = fdt_get_stgen_base();
1634 	cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
1635 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1636 
1637 	if (cntfid0 == rate) {
1638 		return;
1639 	}
1640 
1641 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1642 	counter = (unsigned long long)mmio_read_32(stgen + CNTCVL_OFF);
1643 	counter |= ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF)) << 32;
1644 	counter = (counter * rate / cntfid0);
1645 
1646 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
1647 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
1648 	mmio_write_32(stgen + CNTFID_OFF, rate);
1649 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1650 
1651 	write_cntfrq((u_register_t)rate);
1652 
1653 	/* Need to update timer with new frequency */
1654 	generic_delay_timer_init();
1655 }
1656 
1657 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1658 {
1659 	uintptr_t stgen;
1660 	unsigned long long cnt;
1661 
1662 	stgen = fdt_get_stgen_base();
1663 
1664 	cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
1665 		mmio_read_32(stgen + CNTCVL_OFF);
1666 
1667 	cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
1668 
1669 	mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1670 	mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
1671 	mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1672 	mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
1673 }
1674 
1675 static void stm32mp1_pkcs_config(uint32_t pkcs)
1676 {
1677 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1678 	uint32_t value = pkcs & 0xFU;
1679 	uint32_t mask = 0xFU;
1680 
1681 	if ((pkcs & BIT(31)) != 0U) {
1682 		mask <<= 4;
1683 		value <<= 4;
1684 	}
1685 
1686 	mmio_clrsetbits_32(address, mask, value);
1687 }
1688 
1689 int stm32mp1_clk_init(void)
1690 {
1691 	uintptr_t rcc_base = stm32mp_rcc_base();
1692 	unsigned int clksrc[CLKSRC_NB];
1693 	unsigned int clkdiv[CLKDIV_NB];
1694 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1695 	int plloff[_PLL_NB];
1696 	int ret, len;
1697 	enum stm32mp1_pll_id i;
1698 	bool lse_css = false;
1699 	bool pll3_preserve = false;
1700 	bool pll4_preserve = false;
1701 	bool pll4_bootrom = false;
1702 	const fdt32_t *pkcs_cell;
1703 	void *fdt;
1704 
1705 	if (fdt_get_address(&fdt) == 0) {
1706 		return false;
1707 	}
1708 
1709 	/* Check status field to disable security */
1710 	if (!fdt_get_rcc_secure_status()) {
1711 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1712 	}
1713 
1714 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1715 					clksrc);
1716 	if (ret < 0) {
1717 		return -FDT_ERR_NOTFOUND;
1718 	}
1719 
1720 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1721 					clkdiv);
1722 	if (ret < 0) {
1723 		return -FDT_ERR_NOTFOUND;
1724 	}
1725 
1726 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1727 		char name[12];
1728 
1729 		snprintf(name, sizeof(name), "st,pll@%d", i);
1730 		plloff[i] = fdt_rcc_subnode_offset(name);
1731 
1732 		if (!fdt_check_node(plloff[i])) {
1733 			continue;
1734 		}
1735 
1736 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1737 					    (int)PLLCFG_NB, pllcfg[i]);
1738 		if (ret < 0) {
1739 			return -FDT_ERR_NOTFOUND;
1740 		}
1741 	}
1742 
1743 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1744 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1745 
1746 	/*
1747 	 * Switch ON oscillator found in device-tree.
1748 	 * Note: HSI already ON after BootROM stage.
1749 	 */
1750 	if (stm32mp1_osc[_LSI] != 0U) {
1751 		stm32mp1_lsi_set(true);
1752 	}
1753 	if (stm32mp1_osc[_LSE] != 0U) {
1754 		bool bypass, digbyp;
1755 		uint32_t lsedrv;
1756 
1757 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1758 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1759 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1760 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1761 						     LSEDRV_MEDIUM_HIGH);
1762 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1763 	}
1764 	if (stm32mp1_osc[_HSE] != 0U) {
1765 		bool bypass, digbyp, css;
1766 
1767 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1768 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1769 		css = fdt_osc_read_bool(_HSE, "st,css");
1770 		stm32mp1_hse_enable(bypass, digbyp, css);
1771 	}
1772 	/*
1773 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1774 	 * => switch on CSI even if node is not present in device tree
1775 	 */
1776 	stm32mp1_csi_set(true);
1777 
1778 	/* Come back to HSI */
1779 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1780 	if (ret != 0) {
1781 		return ret;
1782 	}
1783 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1784 	if (ret != 0) {
1785 		return ret;
1786 	}
1787 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1788 	if (ret != 0) {
1789 		return ret;
1790 	}
1791 
1792 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1793 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1794 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1795 							clksrc[CLKSRC_PLL3],
1796 							pllcfg[_PLL3],
1797 							plloff[_PLL3]);
1798 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1799 							clksrc[CLKSRC_PLL4],
1800 							pllcfg[_PLL4],
1801 							plloff[_PLL4]);
1802 	}
1803 
1804 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1805 		if (((i == _PLL3) && pll3_preserve) ||
1806 		    ((i == _PLL4) && pll4_preserve)) {
1807 			continue;
1808 		}
1809 
1810 		ret = stm32mp1_pll_stop(i);
1811 		if (ret != 0) {
1812 			return ret;
1813 		}
1814 	}
1815 
1816 	/* Configure HSIDIV */
1817 	if (stm32mp1_osc[_HSI] != 0U) {
1818 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1819 		if (ret != 0) {
1820 			return ret;
1821 		}
1822 		stm32mp1_stgen_config();
1823 	}
1824 
1825 	/* Select DIV */
1826 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1827 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1828 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1829 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1830 	if (ret != 0) {
1831 		return ret;
1832 	}
1833 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1834 	if (ret != 0) {
1835 		return ret;
1836 	}
1837 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1838 	if (ret != 0) {
1839 		return ret;
1840 	}
1841 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1842 	if (ret != 0) {
1843 		return ret;
1844 	}
1845 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1846 	if (ret != 0) {
1847 		return ret;
1848 	}
1849 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1850 	if (ret != 0) {
1851 		return ret;
1852 	}
1853 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1854 	if (ret != 0) {
1855 		return ret;
1856 	}
1857 
1858 	/* No ready bit for RTC */
1859 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1860 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1861 
1862 	/* Configure PLLs source */
1863 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1864 	if (ret != 0) {
1865 		return ret;
1866 	}
1867 
1868 	if (!pll3_preserve) {
1869 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1870 		if (ret != 0) {
1871 			return ret;
1872 		}
1873 	}
1874 
1875 	if (!pll4_preserve) {
1876 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1877 		if (ret != 0) {
1878 			return ret;
1879 		}
1880 	}
1881 
1882 	/* Configure and start PLLs */
1883 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1884 		uint32_t fracv;
1885 		uint32_t csg[PLLCSG_NB];
1886 
1887 		if (((i == _PLL3) && pll3_preserve) ||
1888 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1889 			continue;
1890 		}
1891 
1892 		if (!fdt_check_node(plloff[i])) {
1893 			continue;
1894 		}
1895 
1896 		if ((i == _PLL4) && pll4_bootrom) {
1897 			/* Set output divider if not done by the Bootrom */
1898 			stm32mp1_pll_config_output(i, pllcfg[i]);
1899 			continue;
1900 		}
1901 
1902 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1903 
1904 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1905 		if (ret != 0) {
1906 			return ret;
1907 		}
1908 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1909 					    (uint32_t)PLLCSG_NB, csg);
1910 		if (ret == 0) {
1911 			stm32mp1_pll_csg(i, csg);
1912 		} else if (ret != -FDT_ERR_NOTFOUND) {
1913 			return ret;
1914 		}
1915 
1916 		stm32mp1_pll_start(i);
1917 	}
1918 	/* Wait and start PLLs ouptut when ready */
1919 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1920 		if (!fdt_check_node(plloff[i])) {
1921 			continue;
1922 		}
1923 
1924 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1925 		if (ret != 0) {
1926 			return ret;
1927 		}
1928 	}
1929 	/* Wait LSE ready before to use it */
1930 	if (stm32mp1_osc[_LSE] != 0U) {
1931 		stm32mp1_lse_wait();
1932 	}
1933 
1934 	/* Configure with expected clock source */
1935 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1936 	if (ret != 0) {
1937 		return ret;
1938 	}
1939 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1940 	if (ret != 0) {
1941 		return ret;
1942 	}
1943 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1944 	if (ret != 0) {
1945 		return ret;
1946 	}
1947 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1948 
1949 	/* Configure PKCK */
1950 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1951 	if (pkcs_cell != NULL) {
1952 		bool ckper_disabled = false;
1953 		uint32_t j;
1954 
1955 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1956 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1957 
1958 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1959 				ckper_disabled = true;
1960 				continue;
1961 			}
1962 			stm32mp1_pkcs_config(pkcs);
1963 		}
1964 
1965 		/*
1966 		 * CKPER is source for some peripheral clocks
1967 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1968 		 * only if previous clock is still ON
1969 		 * => deactivated CKPER only after switching clock
1970 		 */
1971 		if (ckper_disabled) {
1972 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
1973 		}
1974 	}
1975 
1976 	/* Switch OFF HSI if not found in device-tree */
1977 	if (stm32mp1_osc[_HSI] == 0U) {
1978 		stm32mp1_hsi_set(false);
1979 	}
1980 	stm32mp1_stgen_config();
1981 
1982 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1983 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
1984 			   RCC_DDRITFCR_DDRCKMOD_MASK,
1985 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
1986 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
1987 
1988 	return 0;
1989 }
1990 
1991 static void stm32mp1_osc_clk_init(const char *name,
1992 				  enum stm32mp_osc_id index)
1993 {
1994 	uint32_t frequency;
1995 
1996 	if (fdt_osc_read_freq(name, &frequency) == 0) {
1997 		stm32mp1_osc[index] = frequency;
1998 	}
1999 }
2000 
2001 static void stm32mp1_osc_init(void)
2002 {
2003 	enum stm32mp_osc_id i;
2004 
2005 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2006 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2007 	}
2008 }
2009 
2010 static void sync_earlyboot_clocks_state(void)
2011 {
2012 	unsigned int idx;
2013 	const unsigned long secure_enable[] = {
2014 		AXIDCG,
2015 		BSEC,
2016 		DDRC1, DDRC1LP,
2017 		DDRC2, DDRC2LP,
2018 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2019 		DDRPHYC, DDRPHYCLP,
2020 		TZC1, TZC2,
2021 		TZPC,
2022 		STGEN_K,
2023 	};
2024 
2025 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2026 		stm32mp_clk_enable(secure_enable[idx]);
2027 	}
2028 
2029 	if (!stm32mp_is_single_core()) {
2030 		stm32mp1_clk_enable_secure(RTCAPB);
2031 	}
2032 }
2033 
2034 int stm32mp1_clk_probe(void)
2035 {
2036 	stm32mp1_osc_init();
2037 
2038 	sync_earlyboot_clocks_state();
2039 
2040 	return 0;
2041 }
2042