1 /* 2 * Copyright 2024-2025 NXP 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <errno.h> 7 #include <common/debug.h> 8 #include <drivers/clk.h> 9 #include <lib/mmio.h> 10 #include <lib/xlat_tables/xlat_tables_v2.h> 11 #include <s32cc-clk-ids.h> 12 #include <s32cc-clk-modules.h> 13 #include <s32cc-clk-regs.h> 14 #include <s32cc-clk-utils.h> 15 #include <s32cc-mc-me.h> 16 17 #define MAX_STACK_DEPTH (40U) 18 19 /* This is used for floating-point precision calculations. */ 20 #define FP_PRECISION (100000000UL) 21 22 struct s32cc_clk_drv { 23 uintptr_t fxosc_base; 24 uintptr_t armpll_base; 25 uintptr_t periphpll_base; 26 uintptr_t armdfs_base; 27 uintptr_t cgm0_base; 28 uintptr_t cgm1_base; 29 uintptr_t cgm5_base; 30 uintptr_t ddrpll_base; 31 uintptr_t mc_me; 32 uintptr_t mc_rgm; 33 uintptr_t rdc; 34 }; 35 36 static int update_stack_depth(unsigned int *depth) 37 { 38 if (*depth == 0U) { 39 return -ENOMEM; 40 } 41 42 (*depth)--; 43 return 0; 44 } 45 46 static struct s32cc_clk_drv *get_drv(void) 47 { 48 static struct s32cc_clk_drv driver = { 49 .fxosc_base = FXOSC_BASE_ADDR, 50 .armpll_base = ARMPLL_BASE_ADDR, 51 .periphpll_base = PERIPHPLL_BASE_ADDR, 52 .armdfs_base = ARM_DFS_BASE_ADDR, 53 .cgm0_base = CGM0_BASE_ADDR, 54 .cgm1_base = CGM1_BASE_ADDR, 55 .cgm5_base = MC_CGM5_BASE_ADDR, 56 .ddrpll_base = DDRPLL_BASE_ADDR, 57 .mc_me = MC_ME_BASE_ADDR, 58 .mc_rgm = MC_RGM_BASE_ADDR, 59 .rdc = RDC_BASE_ADDR, 60 }; 61 62 return &driver; 63 } 64 65 static int enable_module(struct s32cc_clk_obj *module, 66 const struct s32cc_clk_drv *drv, 67 unsigned int depth); 68 69 static struct s32cc_clk_obj *get_clk_parent(const struct s32cc_clk_obj *module) 70 { 71 const struct s32cc_clk *clk = s32cc_obj2clk(module); 72 73 if (clk->module != NULL) { 74 return clk->module; 75 } 76 77 if (clk->pclock != NULL) { 78 return &clk->pclock->desc; 79 } 80 81 return NULL; 82 } 83 84 static int get_base_addr(enum s32cc_clk_source id, const struct s32cc_clk_drv *drv, 85 uintptr_t *base) 86 { 87 int ret = 0; 88 89 switch (id) { 90 case S32CC_FXOSC: 91 *base = drv->fxosc_base; 92 break; 93 case S32CC_ARM_PLL: 94 *base = drv->armpll_base; 95 break; 96 case S32CC_PERIPH_PLL: 97 *base = drv->periphpll_base; 98 break; 99 case S32CC_DDR_PLL: 100 *base = drv->ddrpll_base; 101 break; 102 case S32CC_ARM_DFS: 103 *base = drv->armdfs_base; 104 break; 105 case S32CC_CGM0: 106 *base = drv->cgm0_base; 107 break; 108 case S32CC_CGM1: 109 *base = drv->cgm1_base; 110 break; 111 case S32CC_CGM5: 112 *base = drv->cgm5_base; 113 break; 114 case S32CC_FIRC: 115 break; 116 case S32CC_SIRC: 117 break; 118 default: 119 ret = -EINVAL; 120 break; 121 } 122 123 if (ret != 0) { 124 ERROR("Unknown clock source id: %u\n", id); 125 } 126 127 return ret; 128 } 129 130 static void enable_fxosc(const struct s32cc_clk_drv *drv) 131 { 132 uintptr_t fxosc_base = drv->fxosc_base; 133 uint32_t ctrl; 134 135 ctrl = mmio_read_32(FXOSC_CTRL(fxosc_base)); 136 if ((ctrl & FXOSC_CTRL_OSCON) != U(0)) { 137 return; 138 } 139 140 ctrl = FXOSC_CTRL_COMP_EN; 141 ctrl &= ~FXOSC_CTRL_OSC_BYP; 142 ctrl |= FXOSC_CTRL_EOCV(0x1); 143 ctrl |= FXOSC_CTRL_GM_SEL(0x7); 144 mmio_write_32(FXOSC_CTRL(fxosc_base), ctrl); 145 146 /* Switch ON the crystal oscillator. */ 147 mmio_setbits_32(FXOSC_CTRL(fxosc_base), FXOSC_CTRL_OSCON); 148 149 /* Wait until the clock is stable. */ 150 while ((mmio_read_32(FXOSC_STAT(fxosc_base)) & FXOSC_STAT_OSC_STAT) == U(0)) { 151 } 152 } 153 154 static int enable_osc(struct s32cc_clk_obj *module, 155 const struct s32cc_clk_drv *drv, 156 unsigned int depth) 157 { 158 const struct s32cc_osc *osc = s32cc_obj2osc(module); 159 unsigned int ldepth = depth; 160 int ret = 0; 161 162 ret = update_stack_depth(&ldepth); 163 if (ret != 0) { 164 return ret; 165 } 166 167 switch (osc->source) { 168 case S32CC_FXOSC: 169 enable_fxosc(drv); 170 break; 171 /* FIRC and SIRC oscillators are enabled by default */ 172 case S32CC_FIRC: 173 break; 174 case S32CC_SIRC: 175 break; 176 default: 177 ERROR("Invalid oscillator %d\n", osc->source); 178 ret = -EINVAL; 179 break; 180 }; 181 182 return ret; 183 } 184 185 static struct s32cc_clk_obj *get_pll_parent(const struct s32cc_clk_obj *module) 186 { 187 const struct s32cc_pll *pll = s32cc_obj2pll(module); 188 189 if (pll->source == NULL) { 190 ERROR("Failed to identify PLL's parent\n"); 191 } 192 193 return pll->source; 194 } 195 196 static int get_pll_mfi_mfn(unsigned long pll_vco, unsigned long ref_freq, 197 uint32_t *mfi, uint32_t *mfn) 198 199 { 200 unsigned long vco; 201 unsigned long mfn64; 202 203 /* FRAC-N mode */ 204 *mfi = (uint32_t)(pll_vco / ref_freq); 205 206 /* MFN formula : (double)(pll_vco % ref_freq) / ref_freq * 18432.0 */ 207 mfn64 = pll_vco % ref_freq; 208 mfn64 *= FP_PRECISION; 209 mfn64 /= ref_freq; 210 mfn64 *= 18432UL; 211 mfn64 /= FP_PRECISION; 212 213 if (mfn64 > UINT32_MAX) { 214 return -EINVAL; 215 } 216 217 *mfn = (uint32_t)mfn64; 218 219 vco = ((unsigned long)*mfn * FP_PRECISION) / 18432UL; 220 vco += (unsigned long)*mfi * FP_PRECISION; 221 vco *= ref_freq; 222 vco /= FP_PRECISION; 223 224 if (vco != pll_vco) { 225 ERROR("Failed to find MFI and MFN settings for PLL freq %lu. Nearest freq = %lu\n", 226 pll_vco, vco); 227 return -EINVAL; 228 } 229 230 return 0; 231 } 232 233 static struct s32cc_clkmux *get_pll_mux(const struct s32cc_pll *pll) 234 { 235 const struct s32cc_clk_obj *source = pll->source; 236 const struct s32cc_clk *clk; 237 238 if (source == NULL) { 239 ERROR("Failed to identify PLL's parent\n"); 240 return NULL; 241 } 242 243 if (source->type != s32cc_clk_t) { 244 ERROR("The parent of the PLL isn't a clock\n"); 245 return NULL; 246 } 247 248 clk = s32cc_obj2clk(source); 249 250 if (clk->module == NULL) { 251 ERROR("The clock isn't connected to a module\n"); 252 return NULL; 253 } 254 255 source = clk->module; 256 257 if ((source->type != s32cc_clkmux_t) && 258 (source->type != s32cc_shared_clkmux_t)) { 259 ERROR("The parent of the PLL isn't a MUX\n"); 260 return NULL; 261 } 262 263 return s32cc_obj2clkmux(source); 264 } 265 266 static void disable_odiv(uintptr_t pll_addr, uint32_t div_index) 267 { 268 mmio_clrbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE); 269 } 270 271 static void enable_odiv(uintptr_t pll_addr, uint32_t div_index) 272 { 273 mmio_setbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE); 274 } 275 276 static void disable_odivs(uintptr_t pll_addr, uint32_t ndivs) 277 { 278 uint32_t i; 279 280 for (i = 0; i < ndivs; i++) { 281 disable_odiv(pll_addr, i); 282 } 283 } 284 285 static void enable_pll_hw(uintptr_t pll_addr) 286 { 287 /* Enable the PLL. */ 288 mmio_write_32(PLLDIG_PLLCR(pll_addr), 0x0); 289 290 /* Poll until PLL acquires lock. */ 291 while ((mmio_read_32(PLLDIG_PLLSR(pll_addr)) & PLLDIG_PLLSR_LOCK) == 0U) { 292 } 293 } 294 295 static void disable_pll_hw(uintptr_t pll_addr) 296 { 297 mmio_write_32(PLLDIG_PLLCR(pll_addr), PLLDIG_PLLCR_PLLPD); 298 } 299 300 static int program_pll(const struct s32cc_pll *pll, uintptr_t pll_addr, 301 const struct s32cc_clk_drv *drv, uint32_t sclk_id, 302 unsigned long sclk_freq) 303 { 304 uint32_t rdiv = 1, mfi, mfn; 305 int ret; 306 307 ret = get_pll_mfi_mfn(pll->vco_freq, sclk_freq, &mfi, &mfn); 308 if (ret != 0) { 309 return -EINVAL; 310 } 311 312 /* Disable ODIVs*/ 313 disable_odivs(pll_addr, pll->ndividers); 314 315 /* Disable PLL */ 316 disable_pll_hw(pll_addr); 317 318 /* Program PLLCLKMUX */ 319 mmio_write_32(PLLDIG_PLLCLKMUX(pll_addr), sclk_id); 320 321 /* Program VCO */ 322 mmio_clrsetbits_32(PLLDIG_PLLDV(pll_addr), 323 PLLDIG_PLLDV_RDIV_MASK | PLLDIG_PLLDV_MFI_MASK, 324 PLLDIG_PLLDV_RDIV_SET(rdiv) | PLLDIG_PLLDV_MFI(mfi)); 325 326 mmio_write_32(PLLDIG_PLLFD(pll_addr), 327 PLLDIG_PLLFD_MFN_SET(mfn) | PLLDIG_PLLFD_SMDEN); 328 329 enable_pll_hw(pll_addr); 330 331 return ret; 332 } 333 334 static int enable_pll(struct s32cc_clk_obj *module, 335 const struct s32cc_clk_drv *drv, 336 unsigned int depth) 337 { 338 const struct s32cc_pll *pll = s32cc_obj2pll(module); 339 const struct s32cc_clkmux *mux; 340 uintptr_t pll_addr = UL(0x0); 341 unsigned int ldepth = depth; 342 unsigned long sclk_freq; 343 uint32_t sclk_id; 344 int ret; 345 346 ret = update_stack_depth(&ldepth); 347 if (ret != 0) { 348 return ret; 349 } 350 351 mux = get_pll_mux(pll); 352 if (mux == NULL) { 353 return -EINVAL; 354 } 355 356 if (pll->instance != mux->module) { 357 ERROR("MUX type is not in sync with PLL ID\n"); 358 return -EINVAL; 359 } 360 361 ret = get_base_addr(pll->instance, drv, &pll_addr); 362 if (ret != 0) { 363 ERROR("Failed to detect PLL instance\n"); 364 return ret; 365 } 366 367 switch (mux->source_id) { 368 case S32CC_CLK_FIRC: 369 sclk_freq = 48U * MHZ; 370 sclk_id = 0; 371 break; 372 case S32CC_CLK_FXOSC: 373 sclk_freq = 40U * MHZ; 374 sclk_id = 1; 375 break; 376 default: 377 ERROR("Invalid source selection for PLL 0x%lx\n", 378 pll_addr); 379 return -EINVAL; 380 }; 381 382 return program_pll(pll, pll_addr, drv, sclk_id, sclk_freq); 383 } 384 385 static inline struct s32cc_pll *get_div_pll(const struct s32cc_pll_out_div *pdiv) 386 { 387 const struct s32cc_clk_obj *parent; 388 389 parent = pdiv->parent; 390 if (parent == NULL) { 391 ERROR("Failed to identify PLL divider's parent\n"); 392 return NULL; 393 } 394 395 if (parent->type != s32cc_pll_t) { 396 ERROR("The parent of the divider is not a PLL instance\n"); 397 return NULL; 398 } 399 400 return s32cc_obj2pll(parent); 401 } 402 403 static void config_pll_out_div(uintptr_t pll_addr, uint32_t div_index, uint32_t dc) 404 { 405 uint32_t pllodiv; 406 uint32_t pdiv; 407 408 pllodiv = mmio_read_32(PLLDIG_PLLODIV(pll_addr, div_index)); 409 pdiv = PLLDIG_PLLODIV_DIV(pllodiv); 410 411 if (((pdiv + 1U) == dc) && ((pllodiv & PLLDIG_PLLODIV_DE) != 0U)) { 412 return; 413 } 414 415 if ((pllodiv & PLLDIG_PLLODIV_DE) != 0U) { 416 disable_odiv(pll_addr, div_index); 417 } 418 419 pllodiv = PLLDIG_PLLODIV_DIV_SET(dc - 1U); 420 mmio_write_32(PLLDIG_PLLODIV(pll_addr, div_index), pllodiv); 421 422 enable_odiv(pll_addr, div_index); 423 } 424 425 static struct s32cc_clk_obj *get_pll_div_parent(const struct s32cc_clk_obj *module) 426 { 427 const struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); 428 429 if (pdiv->parent == NULL) { 430 ERROR("Failed to identify PLL DIV's parent\n"); 431 } 432 433 return pdiv->parent; 434 } 435 436 static int enable_pll_div(struct s32cc_clk_obj *module, 437 const struct s32cc_clk_drv *drv, 438 unsigned int depth) 439 { 440 const struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); 441 uintptr_t pll_addr = 0x0ULL; 442 unsigned int ldepth = depth; 443 const struct s32cc_pll *pll; 444 uint32_t dc; 445 int ret; 446 447 ret = update_stack_depth(&ldepth); 448 if (ret != 0) { 449 return ret; 450 } 451 452 pll = get_div_pll(pdiv); 453 if (pll == NULL) { 454 ERROR("The parent of the PLL DIV is invalid\n"); 455 return 0; 456 } 457 458 ret = get_base_addr(pll->instance, drv, &pll_addr); 459 if (ret != 0) { 460 ERROR("Failed to detect PLL instance\n"); 461 return -EINVAL; 462 } 463 464 dc = (uint32_t)(pll->vco_freq / pdiv->freq); 465 466 config_pll_out_div(pll_addr, pdiv->index, dc); 467 468 return 0; 469 } 470 471 static int cgm_mux_clk_config(uintptr_t cgm_addr, uint32_t mux, uint32_t source, 472 bool safe_clk) 473 { 474 uint32_t css, csc; 475 476 css = mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)); 477 478 /* Already configured */ 479 if ((MC_CGM_MUXn_CSS_SELSTAT(css) == source) && 480 (MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SUCCESS) && 481 ((css & MC_CGM_MUXn_CSS_SWIP) == 0U) && !safe_clk) { 482 return 0; 483 } 484 485 /* Ongoing clock switch? */ 486 while ((mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)) & 487 MC_CGM_MUXn_CSS_SWIP) != 0U) { 488 } 489 490 csc = mmio_read_32(CGM_MUXn_CSC(cgm_addr, mux)); 491 492 /* Clear previous source. */ 493 csc &= ~(MC_CGM_MUXn_CSC_SELCTL_MASK); 494 495 if (!safe_clk) { 496 /* Select the clock source and trigger the clock switch. */ 497 csc |= MC_CGM_MUXn_CSC_SELCTL(source) | MC_CGM_MUXn_CSC_CLK_SW; 498 } else { 499 /* Switch to safe clock */ 500 csc |= MC_CGM_MUXn_CSC_SAFE_SW; 501 } 502 503 mmio_write_32(CGM_MUXn_CSC(cgm_addr, mux), csc); 504 505 /* Wait for configuration bit to auto-clear. */ 506 while ((mmio_read_32(CGM_MUXn_CSC(cgm_addr, mux)) & 507 MC_CGM_MUXn_CSC_CLK_SW) != 0U) { 508 } 509 510 /* Is the clock switch completed? */ 511 while ((mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)) & 512 MC_CGM_MUXn_CSS_SWIP) != 0U) { 513 } 514 515 /* 516 * Check if the switch succeeded. 517 * Check switch trigger cause and the source. 518 */ 519 css = mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)); 520 if (!safe_clk) { 521 if ((MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SUCCESS) && 522 (MC_CGM_MUXn_CSS_SELSTAT(css) == source)) { 523 return 0; 524 } 525 526 ERROR("Failed to change the source of mux %" PRIu32 " to %" PRIu32 " (CGM=%lu)\n", 527 mux, source, cgm_addr); 528 } else { 529 if (((MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SAFE_CLK) || 530 (MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SAFE_CLK_INACTIVE)) && 531 ((MC_CGM_MUXn_CSS_SAFE_SW & css) != 0U)) { 532 return 0; 533 } 534 535 ERROR("The switch of mux %" PRIu32 " (CGM=%lu) to safe clock failed\n", 536 mux, cgm_addr); 537 } 538 539 return -EINVAL; 540 } 541 542 static int enable_cgm_mux(const struct s32cc_clkmux *mux, 543 const struct s32cc_clk_drv *drv) 544 { 545 uintptr_t cgm_addr = UL(0x0); 546 uint32_t mux_hw_clk; 547 int ret; 548 549 ret = get_base_addr(mux->module, drv, &cgm_addr); 550 if (ret != 0) { 551 return ret; 552 } 553 554 mux_hw_clk = (uint32_t)S32CC_CLK_ID(mux->source_id); 555 556 return cgm_mux_clk_config(cgm_addr, mux->index, 557 mux_hw_clk, false); 558 } 559 560 static struct s32cc_clk_obj *get_mux_parent(const struct s32cc_clk_obj *module) 561 { 562 const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module); 563 struct s32cc_clk *clk; 564 565 if (mux == NULL) { 566 return NULL; 567 } 568 569 clk = s32cc_get_arch_clk(mux->source_id); 570 if (clk == NULL) { 571 ERROR("Invalid parent (%lu) for mux %" PRIu8 "\n", 572 mux->source_id, mux->index); 573 return NULL; 574 } 575 576 return &clk->desc; 577 } 578 579 static int enable_mux(struct s32cc_clk_obj *module, 580 const struct s32cc_clk_drv *drv, 581 unsigned int depth) 582 { 583 const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module); 584 unsigned int ldepth = depth; 585 const struct s32cc_clk *clk; 586 int ret = 0; 587 588 ret = update_stack_depth(&ldepth); 589 if (ret != 0) { 590 return ret; 591 } 592 593 if (mux == NULL) { 594 return -EINVAL; 595 } 596 597 clk = s32cc_get_arch_clk(mux->source_id); 598 if (clk == NULL) { 599 ERROR("Invalid parent (%lu) for mux %" PRIu8 "\n", 600 mux->source_id, mux->index); 601 return -EINVAL; 602 } 603 604 switch (mux->module) { 605 /* PLL mux will be enabled by PLL setup */ 606 case S32CC_ARM_PLL: 607 case S32CC_PERIPH_PLL: 608 case S32CC_DDR_PLL: 609 break; 610 case S32CC_CGM1: 611 ret = enable_cgm_mux(mux, drv); 612 break; 613 case S32CC_CGM0: 614 ret = enable_cgm_mux(mux, drv); 615 break; 616 case S32CC_CGM5: 617 ret = enable_cgm_mux(mux, drv); 618 break; 619 default: 620 ERROR("Unknown mux parent type: %d\n", mux->module); 621 ret = -EINVAL; 622 break; 623 }; 624 625 return ret; 626 } 627 628 static struct s32cc_clk_obj *get_dfs_parent(const struct s32cc_clk_obj *module) 629 { 630 const struct s32cc_dfs *dfs = s32cc_obj2dfs(module); 631 632 if (dfs->parent == NULL) { 633 ERROR("Failed to identify DFS's parent\n"); 634 } 635 636 return dfs->parent; 637 } 638 639 static int enable_dfs(struct s32cc_clk_obj *module, 640 const struct s32cc_clk_drv *drv, 641 unsigned int depth) 642 { 643 unsigned int ldepth = depth; 644 int ret = 0; 645 646 ret = update_stack_depth(&ldepth); 647 if (ret != 0) { 648 return ret; 649 } 650 651 return 0; 652 } 653 654 static struct s32cc_dfs *get_div_dfs(const struct s32cc_dfs_div *dfs_div) 655 { 656 const struct s32cc_clk_obj *parent = dfs_div->parent; 657 658 if (parent->type != s32cc_dfs_t) { 659 ERROR("DFS DIV doesn't have a DFS as parent\n"); 660 return NULL; 661 } 662 663 return s32cc_obj2dfs(parent); 664 } 665 666 static struct s32cc_pll *dfsdiv2pll(const struct s32cc_dfs_div *dfs_div) 667 { 668 const struct s32cc_clk_obj *parent; 669 const struct s32cc_dfs *dfs; 670 671 dfs = get_div_dfs(dfs_div); 672 if (dfs == NULL) { 673 return NULL; 674 } 675 676 parent = dfs->parent; 677 if (parent->type != s32cc_pll_t) { 678 return NULL; 679 } 680 681 return s32cc_obj2pll(parent); 682 } 683 684 static int get_dfs_mfi_mfn(unsigned long dfs_freq, const struct s32cc_dfs_div *dfs_div, 685 uint32_t *mfi, uint32_t *mfn) 686 { 687 uint64_t factor64, tmp64, ofreq; 688 uint32_t factor32; 689 690 unsigned long in = dfs_freq; 691 unsigned long out = dfs_div->freq; 692 693 /** 694 * factor = (IN / OUT) / 2 695 * MFI = integer(factor) 696 * MFN = (factor - MFI) * 36 697 */ 698 factor64 = ((((uint64_t)in) * FP_PRECISION) / ((uint64_t)out)) / 2ULL; 699 tmp64 = factor64 / FP_PRECISION; 700 if (tmp64 > UINT32_MAX) { 701 return -EINVAL; 702 } 703 704 factor32 = (uint32_t)tmp64; 705 *mfi = factor32; 706 707 tmp64 = ((factor64 - ((uint64_t)*mfi * FP_PRECISION)) * 36UL) / FP_PRECISION; 708 if (tmp64 > UINT32_MAX) { 709 return -EINVAL; 710 } 711 712 *mfn = (uint32_t)tmp64; 713 714 /* div_freq = in / (2 * (*mfi + *mfn / 36.0)) */ 715 factor64 = (((uint64_t)*mfn) * FP_PRECISION) / 36ULL; 716 factor64 += ((uint64_t)*mfi) * FP_PRECISION; 717 factor64 *= 2ULL; 718 ofreq = (((uint64_t)in) * FP_PRECISION) / factor64; 719 720 if (ofreq != dfs_div->freq) { 721 ERROR("Failed to find MFI and MFN settings for DFS DIV freq %lu\n", 722 dfs_div->freq); 723 ERROR("Nearest freq = %" PRIx64 "\n", ofreq); 724 return -EINVAL; 725 } 726 727 return 0; 728 } 729 730 static int init_dfs_port(uintptr_t dfs_addr, uint32_t port, 731 uint32_t mfi, uint32_t mfn) 732 { 733 uint32_t portsr, portolsr; 734 uint32_t mask, old_mfi, old_mfn; 735 uint32_t dvport; 736 bool init_dfs; 737 738 dvport = mmio_read_32(DFS_DVPORTn(dfs_addr, port)); 739 740 old_mfi = DFS_DVPORTn_MFI(dvport); 741 old_mfn = DFS_DVPORTn_MFN(dvport); 742 743 portsr = mmio_read_32(DFS_PORTSR(dfs_addr)); 744 portolsr = mmio_read_32(DFS_PORTOLSR(dfs_addr)); 745 746 /* Skip configuration if it's not needed */ 747 if (((portsr & BIT_32(port)) != 0U) && 748 ((portolsr & BIT_32(port)) == 0U) && 749 (mfi == old_mfi) && (mfn == old_mfn)) { 750 return 0; 751 } 752 753 init_dfs = (portsr == 0U); 754 755 if (init_dfs) { 756 mask = DFS_PORTRESET_MASK; 757 } else { 758 mask = DFS_PORTRESET_SET(BIT_32(port)); 759 } 760 761 mmio_write_32(DFS_PORTOLSR(dfs_addr), mask); 762 mmio_write_32(DFS_PORTRESET(dfs_addr), mask); 763 764 while ((mmio_read_32(DFS_PORTSR(dfs_addr)) & mask) != 0U) { 765 } 766 767 if (init_dfs) { 768 mmio_write_32(DFS_CTL(dfs_addr), DFS_CTL_RESET); 769 } 770 771 mmio_write_32(DFS_DVPORTn(dfs_addr, port), 772 DFS_DVPORTn_MFI_SET(mfi) | DFS_DVPORTn_MFN_SET(mfn)); 773 774 if (init_dfs) { 775 /* DFS clk enable programming */ 776 mmio_clrbits_32(DFS_CTL(dfs_addr), DFS_CTL_RESET); 777 } 778 779 mmio_clrbits_32(DFS_PORTRESET(dfs_addr), BIT_32(port)); 780 781 while ((mmio_read_32(DFS_PORTSR(dfs_addr)) & BIT_32(port)) != BIT_32(port)) { 782 } 783 784 portolsr = mmio_read_32(DFS_PORTOLSR(dfs_addr)); 785 if ((portolsr & DFS_PORTOLSR_LOL(port)) != 0U) { 786 ERROR("Failed to lock DFS divider\n"); 787 return -EINVAL; 788 } 789 790 return 0; 791 } 792 793 static struct s32cc_clk_obj * 794 get_dfs_div_parent(const struct s32cc_clk_obj *module) 795 { 796 const struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module); 797 798 if (dfs_div->parent == NULL) { 799 ERROR("Failed to identify DFS divider's parent\n"); 800 } 801 802 return dfs_div->parent; 803 } 804 805 static int enable_dfs_div(struct s32cc_clk_obj *module, 806 const struct s32cc_clk_drv *drv, 807 unsigned int depth) 808 { 809 const struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module); 810 unsigned int ldepth = depth; 811 const struct s32cc_pll *pll; 812 const struct s32cc_dfs *dfs; 813 uintptr_t dfs_addr = 0UL; 814 uint32_t mfi, mfn; 815 int ret = 0; 816 817 ret = update_stack_depth(&ldepth); 818 if (ret != 0) { 819 return ret; 820 } 821 822 dfs = get_div_dfs(dfs_div); 823 if (dfs == NULL) { 824 return -EINVAL; 825 } 826 827 pll = dfsdiv2pll(dfs_div); 828 if (pll == NULL) { 829 ERROR("Failed to identify DFS divider's parent\n"); 830 return -EINVAL; 831 } 832 833 ret = get_base_addr(dfs->instance, drv, &dfs_addr); 834 if ((ret != 0) || (dfs_addr == 0UL)) { 835 return -EINVAL; 836 } 837 838 ret = get_dfs_mfi_mfn(pll->vco_freq, dfs_div, &mfi, &mfn); 839 if (ret != 0) { 840 return -EINVAL; 841 } 842 843 return init_dfs_port(dfs_addr, dfs_div->index, mfi, mfn); 844 } 845 846 typedef int (*enable_clk_t)(struct s32cc_clk_obj *module, 847 const struct s32cc_clk_drv *drv, 848 unsigned int depth); 849 850 static int enable_part(struct s32cc_clk_obj *module, 851 const struct s32cc_clk_drv *drv, 852 unsigned int depth) 853 { 854 const struct s32cc_part *part = s32cc_obj2part(module); 855 uint32_t part_no = part->partition_id; 856 857 if ((drv->mc_me == 0UL) || (drv->mc_rgm == 0UL) || (drv->rdc == 0UL)) { 858 return -EINVAL; 859 } 860 861 return mc_me_enable_partition(drv->mc_me, drv->mc_rgm, drv->rdc, part_no); 862 } 863 864 static int enable_part_block(struct s32cc_clk_obj *module, 865 const struct s32cc_clk_drv *drv, 866 unsigned int depth) 867 { 868 const struct s32cc_part_block *block = s32cc_obj2partblock(module); 869 const struct s32cc_part *part = block->part; 870 uint32_t part_no = part->partition_id; 871 unsigned int ldepth = depth; 872 uint32_t cofb; 873 int ret; 874 875 ret = update_stack_depth(&ldepth); 876 if (ret != 0) { 877 return ret; 878 } 879 880 if ((block->block >= s32cc_part_block0) && 881 (block->block <= s32cc_part_block15)) { 882 cofb = (uint32_t)block->block - (uint32_t)s32cc_part_block0; 883 mc_me_enable_part_cofb(drv->mc_me, part_no, cofb, block->status); 884 } else { 885 ERROR("Unknown partition block type: %d\n", block->block); 886 return -EINVAL; 887 } 888 889 return 0; 890 } 891 892 static struct s32cc_clk_obj * 893 get_part_block_parent(const struct s32cc_clk_obj *module) 894 { 895 const struct s32cc_part_block *block = s32cc_obj2partblock(module); 896 897 return &block->part->desc; 898 } 899 900 static int enable_module_with_refcount(struct s32cc_clk_obj *module, 901 const struct s32cc_clk_drv *drv, 902 unsigned int depth); 903 904 static int enable_part_block_link(struct s32cc_clk_obj *module, 905 const struct s32cc_clk_drv *drv, 906 unsigned int depth) 907 { 908 const struct s32cc_part_block_link *link = s32cc_obj2partblocklink(module); 909 struct s32cc_part_block *block = link->block; 910 unsigned int ldepth = depth; 911 int ret; 912 913 ret = update_stack_depth(&ldepth); 914 if (ret != 0) { 915 return ret; 916 } 917 918 /* Move the enablement algorithm to partition tree */ 919 return enable_module_with_refcount(&block->desc, drv, ldepth); 920 } 921 922 static struct s32cc_clk_obj * 923 get_part_block_link_parent(const struct s32cc_clk_obj *module) 924 { 925 const struct s32cc_part_block_link *link = s32cc_obj2partblocklink(module); 926 927 return link->parent; 928 } 929 930 static int no_enable(struct s32cc_clk_obj *module, 931 const struct s32cc_clk_drv *drv, 932 unsigned int depth) 933 { 934 return 0; 935 } 936 937 static int exec_cb_with_refcount(enable_clk_t en_cb, struct s32cc_clk_obj *mod, 938 const struct s32cc_clk_drv *drv, bool leaf_node, 939 unsigned int depth) 940 { 941 unsigned int ldepth = depth; 942 int ret = 0; 943 944 if (mod == NULL) { 945 return 0; 946 } 947 948 ret = update_stack_depth(&ldepth); 949 if (ret != 0) { 950 return ret; 951 } 952 953 /* Refcount will be updated as part of the recursivity */ 954 if (leaf_node) { 955 return en_cb(mod, drv, ldepth); 956 } 957 958 if (mod->refcount == 0U) { 959 ret = en_cb(mod, drv, ldepth); 960 } 961 962 if (ret == 0) { 963 mod->refcount++; 964 } 965 966 return ret; 967 } 968 969 static struct s32cc_clk_obj *get_module_parent(const struct s32cc_clk_obj *module); 970 971 static int enable_module(struct s32cc_clk_obj *module, 972 const struct s32cc_clk_drv *drv, 973 unsigned int depth) 974 { 975 struct s32cc_clk_obj *parent = get_module_parent(module); 976 static const enable_clk_t enable_clbs[12] = { 977 [s32cc_clk_t] = no_enable, 978 [s32cc_osc_t] = enable_osc, 979 [s32cc_pll_t] = enable_pll, 980 [s32cc_pll_out_div_t] = enable_pll_div, 981 [s32cc_clkmux_t] = enable_mux, 982 [s32cc_shared_clkmux_t] = enable_mux, 983 [s32cc_dfs_t] = enable_dfs, 984 [s32cc_dfs_div_t] = enable_dfs_div, 985 [s32cc_part_t] = enable_part, 986 [s32cc_part_block_t] = enable_part_block, 987 [s32cc_part_block_link_t] = enable_part_block_link, 988 }; 989 unsigned int ldepth = depth; 990 uint32_t index; 991 int ret = 0; 992 993 ret = update_stack_depth(&ldepth); 994 if (ret != 0) { 995 return ret; 996 } 997 998 if (drv == NULL) { 999 return -EINVAL; 1000 } 1001 1002 index = (uint32_t)module->type; 1003 1004 if (index >= ARRAY_SIZE(enable_clbs)) { 1005 ERROR("Undefined module type: %d\n", module->type); 1006 return -EINVAL; 1007 } 1008 1009 if (enable_clbs[index] == NULL) { 1010 ERROR("Undefined callback for the clock type: %d\n", 1011 module->type); 1012 return -EINVAL; 1013 } 1014 1015 parent = get_module_parent(module); 1016 1017 ret = exec_cb_with_refcount(enable_module, parent, drv, 1018 false, ldepth); 1019 if (ret != 0) { 1020 return ret; 1021 } 1022 1023 ret = exec_cb_with_refcount(enable_clbs[index], module, drv, 1024 true, ldepth); 1025 if (ret != 0) { 1026 return ret; 1027 } 1028 1029 return ret; 1030 } 1031 1032 static int enable_module_with_refcount(struct s32cc_clk_obj *module, 1033 const struct s32cc_clk_drv *drv, 1034 unsigned int depth) 1035 { 1036 return exec_cb_with_refcount(enable_module, module, drv, false, depth); 1037 } 1038 1039 static int s32cc_clk_enable(unsigned long id) 1040 { 1041 const struct s32cc_clk_drv *drv = get_drv(); 1042 unsigned int depth = MAX_STACK_DEPTH; 1043 struct s32cc_clk *clk; 1044 1045 clk = s32cc_get_arch_clk(id); 1046 if (clk == NULL) { 1047 return -EINVAL; 1048 } 1049 1050 return enable_module_with_refcount(&clk->desc, drv, depth); 1051 } 1052 1053 static void s32cc_clk_disable(unsigned long id) 1054 { 1055 } 1056 1057 static bool s32cc_clk_is_enabled(unsigned long id) 1058 { 1059 return false; 1060 } 1061 1062 static int set_module_rate(const struct s32cc_clk_obj *module, 1063 unsigned long rate, unsigned long *orate, 1064 unsigned int *depth); 1065 1066 static int set_osc_freq(const struct s32cc_clk_obj *module, unsigned long rate, 1067 unsigned long *orate, unsigned int *depth) 1068 { 1069 struct s32cc_osc *osc = s32cc_obj2osc(module); 1070 int ret; 1071 1072 ret = update_stack_depth(depth); 1073 if (ret != 0) { 1074 return ret; 1075 } 1076 1077 if ((osc->freq != 0UL) && (rate != osc->freq)) { 1078 ERROR("Already initialized oscillator. freq = %lu\n", 1079 osc->freq); 1080 return -EINVAL; 1081 } 1082 1083 osc->freq = rate; 1084 *orate = osc->freq; 1085 1086 return 0; 1087 } 1088 1089 static int get_osc_freq(const struct s32cc_clk_obj *module, 1090 const struct s32cc_clk_drv *drv, 1091 unsigned long *rate, unsigned int depth) 1092 { 1093 const struct s32cc_osc *osc = s32cc_obj2osc(module); 1094 unsigned int ldepth = depth; 1095 int ret; 1096 1097 ret = update_stack_depth(&ldepth); 1098 if (ret != 0) { 1099 return ret; 1100 } 1101 1102 if (osc->freq == 0UL) { 1103 ERROR("Uninitialized oscillator\n"); 1104 return -EINVAL; 1105 } 1106 1107 *rate = osc->freq; 1108 1109 return 0; 1110 } 1111 1112 static int set_clk_freq(const struct s32cc_clk_obj *module, unsigned long rate, 1113 unsigned long *orate, unsigned int *depth) 1114 { 1115 const struct s32cc_clk *clk = s32cc_obj2clk(module); 1116 int ret; 1117 1118 ret = update_stack_depth(depth); 1119 if (ret != 0) { 1120 return ret; 1121 } 1122 1123 if ((clk->min_freq != 0UL) && (clk->max_freq != 0UL) && 1124 ((rate < clk->min_freq) || (rate > clk->max_freq))) { 1125 ERROR("%lu frequency is out of the allowed range: [%lu:%lu]\n", 1126 rate, clk->min_freq, clk->max_freq); 1127 return -EINVAL; 1128 } 1129 1130 if (clk->module != NULL) { 1131 return set_module_rate(clk->module, rate, orate, depth); 1132 } 1133 1134 if (clk->pclock != NULL) { 1135 return set_clk_freq(&clk->pclock->desc, rate, orate, depth); 1136 } 1137 1138 return -EINVAL; 1139 } 1140 1141 static int set_pll_freq(const struct s32cc_clk_obj *module, unsigned long rate, 1142 unsigned long *orate, unsigned int *depth) 1143 { 1144 struct s32cc_pll *pll = s32cc_obj2pll(module); 1145 int ret; 1146 1147 ret = update_stack_depth(depth); 1148 if (ret != 0) { 1149 return ret; 1150 } 1151 1152 if ((pll->vco_freq != 0UL) && (pll->vco_freq != rate)) { 1153 ERROR("PLL frequency was already set\n"); 1154 return -EINVAL; 1155 } 1156 1157 pll->vco_freq = rate; 1158 *orate = pll->vco_freq; 1159 1160 return 0; 1161 } 1162 1163 static int set_pll_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, 1164 unsigned long *orate, unsigned int *depth) 1165 { 1166 struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); 1167 const struct s32cc_pll *pll; 1168 unsigned long prate, dc; 1169 int ret; 1170 1171 ret = update_stack_depth(depth); 1172 if (ret != 0) { 1173 return ret; 1174 } 1175 1176 if (pdiv->parent == NULL) { 1177 ERROR("Failed to identify PLL divider's parent\n"); 1178 return -EINVAL; 1179 } 1180 1181 pll = s32cc_obj2pll(pdiv->parent); 1182 if (pll == NULL) { 1183 ERROR("The parent of the PLL DIV is invalid\n"); 1184 return -EINVAL; 1185 } 1186 1187 prate = pll->vco_freq; 1188 1189 /** 1190 * The PLL is not initialized yet, so let's take a risk 1191 * and accept the proposed rate. 1192 */ 1193 if (prate == 0UL) { 1194 pdiv->freq = rate; 1195 *orate = rate; 1196 return 0; 1197 } 1198 1199 /* Decline in case the rate cannot fit PLL's requirements. */ 1200 dc = prate / rate; 1201 if ((prate / dc) != rate) { 1202 return -EINVAL; 1203 } 1204 1205 pdiv->freq = rate; 1206 *orate = pdiv->freq; 1207 1208 return 0; 1209 } 1210 1211 static int set_fixed_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, 1212 unsigned long *orate, unsigned int *depth) 1213 { 1214 const struct s32cc_fixed_div *fdiv = s32cc_obj2fixeddiv(module); 1215 int ret; 1216 1217 ret = update_stack_depth(depth); 1218 if (ret != 0) { 1219 return ret; 1220 } 1221 1222 if (fdiv->parent == NULL) { 1223 ERROR("The divider doesn't have a valid parent\b"); 1224 return -EINVAL; 1225 } 1226 1227 ret = set_module_rate(fdiv->parent, rate * fdiv->rate_div, orate, depth); 1228 1229 /* Update the output rate based on the parent's rate */ 1230 *orate /= fdiv->rate_div; 1231 1232 return ret; 1233 } 1234 1235 static int set_mux_freq(const struct s32cc_clk_obj *module, unsigned long rate, 1236 unsigned long *orate, unsigned int *depth) 1237 { 1238 const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module); 1239 const struct s32cc_clk *clk = s32cc_get_arch_clk(mux->source_id); 1240 int ret; 1241 1242 ret = update_stack_depth(depth); 1243 if (ret != 0) { 1244 return ret; 1245 } 1246 1247 if (clk == NULL) { 1248 ERROR("Mux (id:%" PRIu8 ") without a valid source (%lu)\n", 1249 mux->index, mux->source_id); 1250 return -EINVAL; 1251 } 1252 1253 return set_module_rate(&clk->desc, rate, orate, depth); 1254 } 1255 1256 static int set_dfs_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, 1257 unsigned long *orate, unsigned int *depth) 1258 { 1259 struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module); 1260 const struct s32cc_dfs *dfs; 1261 int ret; 1262 1263 ret = update_stack_depth(depth); 1264 if (ret != 0) { 1265 return ret; 1266 } 1267 1268 if (dfs_div->parent == NULL) { 1269 ERROR("Failed to identify DFS divider's parent\n"); 1270 return -EINVAL; 1271 } 1272 1273 /* Sanity check */ 1274 dfs = s32cc_obj2dfs(dfs_div->parent); 1275 if (dfs->parent == NULL) { 1276 ERROR("Failed to identify DFS's parent\n"); 1277 return -EINVAL; 1278 } 1279 1280 if ((dfs_div->freq != 0U) && (dfs_div->freq != rate)) { 1281 ERROR("DFS DIV frequency was already set to %lu\n", 1282 dfs_div->freq); 1283 return -EINVAL; 1284 } 1285 1286 dfs_div->freq = rate; 1287 *orate = rate; 1288 1289 return ret; 1290 } 1291 1292 static int set_module_rate(const struct s32cc_clk_obj *module, 1293 unsigned long rate, unsigned long *orate, 1294 unsigned int *depth) 1295 { 1296 int ret = 0; 1297 1298 ret = update_stack_depth(depth); 1299 if (ret != 0) { 1300 return ret; 1301 } 1302 1303 ret = -EINVAL; 1304 1305 switch (module->type) { 1306 case s32cc_clk_t: 1307 ret = set_clk_freq(module, rate, orate, depth); 1308 break; 1309 case s32cc_osc_t: 1310 ret = set_osc_freq(module, rate, orate, depth); 1311 break; 1312 case s32cc_pll_t: 1313 ret = set_pll_freq(module, rate, orate, depth); 1314 break; 1315 case s32cc_pll_out_div_t: 1316 ret = set_pll_div_freq(module, rate, orate, depth); 1317 break; 1318 case s32cc_fixed_div_t: 1319 ret = set_fixed_div_freq(module, rate, orate, depth); 1320 break; 1321 case s32cc_clkmux_t: 1322 ret = set_mux_freq(module, rate, orate, depth); 1323 break; 1324 case s32cc_shared_clkmux_t: 1325 ret = set_mux_freq(module, rate, orate, depth); 1326 break; 1327 case s32cc_dfs_t: 1328 ERROR("Setting the frequency of a DFS is not allowed!"); 1329 break; 1330 case s32cc_dfs_div_t: 1331 ret = set_dfs_div_freq(module, rate, orate, depth); 1332 break; 1333 default: 1334 break; 1335 } 1336 1337 return ret; 1338 } 1339 1340 static int get_module_rate(const struct s32cc_clk_obj *module, 1341 const struct s32cc_clk_drv *drv, 1342 unsigned long *rate, 1343 unsigned int depth) 1344 { 1345 unsigned int ldepth = depth; 1346 int ret = 0; 1347 1348 ret = update_stack_depth(&ldepth); 1349 if (ret != 0) { 1350 return ret; 1351 } 1352 1353 switch (module->type) { 1354 case s32cc_osc_t: 1355 ret = get_osc_freq(module, drv, rate, ldepth); 1356 break; 1357 default: 1358 ret = -EINVAL; 1359 break; 1360 } 1361 1362 return ret; 1363 } 1364 1365 static int s32cc_clk_set_rate(unsigned long id, unsigned long rate, 1366 unsigned long *orate) 1367 { 1368 unsigned int depth = MAX_STACK_DEPTH; 1369 const struct s32cc_clk *clk; 1370 int ret; 1371 1372 clk = s32cc_get_arch_clk(id); 1373 if (clk == NULL) { 1374 return -EINVAL; 1375 } 1376 1377 ret = set_module_rate(&clk->desc, rate, orate, &depth); 1378 if (ret != 0) { 1379 ERROR("Failed to set frequency (%lu MHz) for clock %lu\n", 1380 rate, id); 1381 } 1382 1383 return ret; 1384 } 1385 1386 static unsigned long s32cc_clk_get_rate(unsigned long id) 1387 { 1388 const struct s32cc_clk_drv *drv = get_drv(); 1389 unsigned int depth = MAX_STACK_DEPTH; 1390 const struct s32cc_clk *clk; 1391 unsigned long rate = 0UL; 1392 int ret; 1393 1394 clk = s32cc_get_arch_clk(id); 1395 if (clk == NULL) { 1396 return 0; 1397 } 1398 1399 ret = get_module_rate(&clk->desc, drv, &rate, depth); 1400 if (ret != 0) { 1401 ERROR("Failed to get frequency (%lu MHz) for clock %lu\n", 1402 rate, id); 1403 return 0; 1404 } 1405 1406 return rate; 1407 } 1408 1409 static struct s32cc_clk_obj *get_no_parent(const struct s32cc_clk_obj *module) 1410 { 1411 return NULL; 1412 } 1413 1414 typedef struct s32cc_clk_obj *(*get_parent_clb_t)(const struct s32cc_clk_obj *clk_obj); 1415 1416 static struct s32cc_clk_obj *get_module_parent(const struct s32cc_clk_obj *module) 1417 { 1418 static const get_parent_clb_t parents_clbs[12] = { 1419 [s32cc_clk_t] = get_clk_parent, 1420 [s32cc_osc_t] = get_no_parent, 1421 [s32cc_pll_t] = get_pll_parent, 1422 [s32cc_pll_out_div_t] = get_pll_div_parent, 1423 [s32cc_clkmux_t] = get_mux_parent, 1424 [s32cc_shared_clkmux_t] = get_mux_parent, 1425 [s32cc_dfs_t] = get_dfs_parent, 1426 [s32cc_dfs_div_t] = get_dfs_div_parent, 1427 [s32cc_part_t] = get_no_parent, 1428 [s32cc_part_block_t] = get_part_block_parent, 1429 [s32cc_part_block_link_t] = get_part_block_link_parent, 1430 }; 1431 uint32_t index; 1432 1433 if (module == NULL) { 1434 return NULL; 1435 } 1436 1437 index = (uint32_t)module->type; 1438 1439 if (index >= ARRAY_SIZE(parents_clbs)) { 1440 ERROR("Undefined module type: %d\n", module->type); 1441 return NULL; 1442 } 1443 1444 if (parents_clbs[index] == NULL) { 1445 ERROR("Undefined parent getter for type: %d\n", module->type); 1446 return NULL; 1447 } 1448 1449 return parents_clbs[index](module); 1450 } 1451 1452 static int s32cc_clk_get_parent(unsigned long id) 1453 { 1454 struct s32cc_clk *parent_clk; 1455 const struct s32cc_clk_obj *parent; 1456 const struct s32cc_clk *clk; 1457 unsigned long parent_id; 1458 int ret; 1459 1460 clk = s32cc_get_arch_clk(id); 1461 if (clk == NULL) { 1462 return -EINVAL; 1463 } 1464 1465 parent = get_module_parent(clk->module); 1466 if (parent == NULL) { 1467 return -EINVAL; 1468 } 1469 1470 parent_clk = s32cc_obj2clk(parent); 1471 if (parent_clk == NULL) { 1472 return -EINVAL; 1473 } 1474 1475 ret = s32cc_get_clk_id(parent_clk, &parent_id); 1476 if (ret != 0) { 1477 return ret; 1478 } 1479 1480 if (parent_id > (unsigned long)INT_MAX) { 1481 return -E2BIG; 1482 } 1483 1484 return (int)parent_id; 1485 } 1486 1487 static int s32cc_clk_set_parent(unsigned long id, unsigned long parent_id) 1488 { 1489 const struct s32cc_clk *parent; 1490 const struct s32cc_clk *clk; 1491 bool valid_source = false; 1492 struct s32cc_clkmux *mux; 1493 uint8_t i; 1494 1495 clk = s32cc_get_arch_clk(id); 1496 if (clk == NULL) { 1497 return -EINVAL; 1498 } 1499 1500 parent = s32cc_get_arch_clk(parent_id); 1501 if (parent == NULL) { 1502 return -EINVAL; 1503 } 1504 1505 if (!is_s32cc_clk_mux(clk)) { 1506 ERROR("Clock %lu is not a mux\n", id); 1507 return -EINVAL; 1508 } 1509 1510 mux = s32cc_clk2mux(clk); 1511 if (mux == NULL) { 1512 ERROR("Failed to cast clock %lu to clock mux\n", id); 1513 return -EINVAL; 1514 } 1515 1516 for (i = 0; i < mux->nclks; i++) { 1517 if (mux->clkids[i] == parent_id) { 1518 valid_source = true; 1519 break; 1520 } 1521 } 1522 1523 if (!valid_source) { 1524 ERROR("Clock %lu is not a valid clock for mux %lu\n", 1525 parent_id, id); 1526 return -EINVAL; 1527 } 1528 1529 mux->source_id = parent_id; 1530 1531 return 0; 1532 } 1533 1534 static int s32cc_clk_mmap_regs(const struct s32cc_clk_drv *drv) 1535 { 1536 const uintptr_t base_addrs[11] = { 1537 drv->fxosc_base, 1538 drv->armpll_base, 1539 drv->periphpll_base, 1540 drv->armdfs_base, 1541 drv->cgm0_base, 1542 drv->cgm1_base, 1543 drv->cgm5_base, 1544 drv->ddrpll_base, 1545 drv->mc_me, 1546 drv->mc_rgm, 1547 drv->rdc, 1548 }; 1549 size_t i; 1550 int ret; 1551 1552 for (i = 0U; i < ARRAY_SIZE(base_addrs); i++) { 1553 ret = mmap_add_dynamic_region(base_addrs[i], base_addrs[i], 1554 PAGE_SIZE, 1555 MT_DEVICE | MT_RW | MT_SECURE); 1556 if (ret != 0) { 1557 ERROR("Failed to map clock module 0x%" PRIuPTR "\n", 1558 base_addrs[i]); 1559 return ret; 1560 } 1561 } 1562 1563 return 0; 1564 } 1565 1566 int s32cc_clk_register_drv(bool mmap_regs) 1567 { 1568 static const struct clk_ops s32cc_clk_ops = { 1569 .enable = s32cc_clk_enable, 1570 .disable = s32cc_clk_disable, 1571 .is_enabled = s32cc_clk_is_enabled, 1572 .get_rate = s32cc_clk_get_rate, 1573 .set_rate = s32cc_clk_set_rate, 1574 .get_parent = s32cc_clk_get_parent, 1575 .set_parent = s32cc_clk_set_parent, 1576 }; 1577 const struct s32cc_clk_drv *drv; 1578 1579 clk_register(&s32cc_clk_ops); 1580 1581 drv = get_drv(); 1582 if (drv == NULL) { 1583 return -EINVAL; 1584 } 1585 1586 if (mmap_regs) { 1587 return s32cc_clk_mmap_regs(drv); 1588 } 1589 1590 return 0; 1591 } 1592 1593