xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision f1b6b014d79b7522b0494c1595f7cd5900964681)
1 /*
2  * Copyright (c) 2015-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gic_common.h>
14 
15 #include "../common/gic_common_private.h"
16 #include "gicv3_private.h"
17 
18 /******************************************************************************
19  * This function marks the core as awake in the re-distributor and
20  * ensures that the interface is active.
21  *****************************************************************************/
22 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
23 {
24 	/*
25 	 * The WAKER_PS_BIT should be changed to 0
26 	 * only when WAKER_CA_BIT is 1.
27 	 */
28 	assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U);
29 
30 	/* Mark the connected core as awake */
31 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
32 
33 	/* Wait till the WAKER_CA_BIT changes to 0 */
34 	while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U) {
35 	}
36 }
37 
38 /******************************************************************************
39  * This function marks the core as asleep in the re-distributor and ensures
40  * that the interface is quiescent.
41  *****************************************************************************/
42 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
43 {
44 	/* Mark the connected core as asleep */
45 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
46 
47 	/* Wait till the WAKER_CA_BIT changes to 1 */
48 	while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) {
49 	}
50 }
51 
52 /*******************************************************************************
53  * This function probes the Redistributor frames when the driver is initialised
54  * and saves their base addresses. These base addresses are used later to
55  * initialise each Redistributor interface.
56  ******************************************************************************/
57 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
58 					unsigned int rdistif_num,
59 					uintptr_t gicr_base,
60 					mpidr_hash_fn mpidr_to_core_pos)
61 {
62 	u_register_t mpidr;
63 	unsigned int proc_num;
64 	uint64_t typer_val;
65 	uintptr_t rdistif_base = gicr_base;
66 
67 	assert(rdistif_base_addrs != NULL);
68 
69 	/*
70 	 * Iterate over the Redistributor frames. Store the base address of each
71 	 * frame in the platform provided array. Use the "Processor Number"
72 	 * field to index into the array if the platform has not provided a hash
73 	 * function to convert an MPIDR (obtained from the "Affinity Value"
74 	 * field into a linear index.
75 	 */
76 	do {
77 		typer_val = gicr_read_typer(rdistif_base);
78 		if (mpidr_to_core_pos != NULL) {
79 			mpidr = mpidr_from_gicr_typer(typer_val);
80 			proc_num = mpidr_to_core_pos(mpidr);
81 		} else {
82 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
83 				TYPER_PROC_NUM_MASK;
84 		}
85 
86 		if (proc_num < rdistif_num) {
87 			rdistif_base_addrs[proc_num] = rdistif_base;
88 		}
89 
90 		rdistif_base += (1U << GICR_PCPUBASE_SHIFT);
91 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
92 }
93 
94 /*******************************************************************************
95  * Helper function to get the maximum SPI INTID + 1.
96  ******************************************************************************/
97 unsigned int gicv3_get_spi_limit(uintptr_t gicd_base)
98 {
99 	unsigned int spi_limit;
100 	unsigned int typer_reg = gicd_read_typer(gicd_base);
101 
102 	/* (maximum SPI INTID + 1) is equal to 32 * (GICD_TYPER.ITLinesNumber+1) */
103 	spi_limit = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
104 
105 	/* Filter out special INTIDs 1020-1023 */
106 	if (spi_limit > (MAX_SPI_ID + 1U)) {
107 		return MAX_SPI_ID + 1U;
108 	}
109 
110 	return spi_limit;
111 }
112 
113 /*******************************************************************************
114  * Helper function to configure the default attributes of (E)SPIs.
115  ******************************************************************************/
116 void gicv3_spis_config_defaults(uintptr_t gicd_base)
117 {
118 	unsigned int i, num_ints;
119 #if GIC_EXT_INTID
120 	unsigned int num_eints;
121 #endif
122 	unsigned int typer_reg = gicd_read_typer(gicd_base);
123 
124 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
125 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
126 
127 	/*
128 	 * The GICv3 architecture allows GICD_TYPER.ITLinesNumber to be 31, so
129 	 * the maximum possible value for num_ints is 1024. Limit the value to
130 	 * MAX_SPI_ID + 1 to avoid getting wrong address in GICD_OFFSET() macro.
131 	 */
132 	if (num_ints > MAX_SPI_ID + 1U) {
133 		num_ints = MAX_SPI_ID + 1U;
134 	}
135 	INFO("Maximum SPI INTID supported: %u\n", num_ints - 1);
136 
137 	/* Treat all (E)SPIs as G1NS by default. We do 32 at a time. */
138 	for (i = MIN_SPI_ID; i < num_ints; i += (1U << IGROUPR_SHIFT)) {
139 		gicd_write_igroupr(gicd_base, i, ~0U);
140 	}
141 
142 #if GIC_EXT_INTID
143 	/* Check if extended SPI range is implemented */
144 	if ((typer_reg & TYPER_ESPI) != 0U) {
145 		/*
146 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
147 		 */
148 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
149 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID;
150 		INFO("Maximum ESPI INTID supported: %u\n", num_eints - 1);
151 
152 		for (i = MIN_ESPI_ID; i < num_eints;
153 					i += (1U << IGROUPR_SHIFT)) {
154 			gicd_write_igroupr(gicd_base, i, ~0U);
155 		}
156 	} else {
157 		num_eints = 0U;
158 		INFO("ESPI range is not implemented.\n");
159 	}
160 #endif
161 
162 	/* Setup the default (E)SPI priorities doing four at a time */
163 	for (i = MIN_SPI_ID; i < num_ints; i += (1U << IPRIORITYR_SHIFT)) {
164 		gicd_write_ipriorityr(gicd_base, i, GICD_IPRIORITYR_DEF_VAL);
165 	}
166 
167 #if GIC_EXT_INTID
168 	for (i = MIN_ESPI_ID; i < num_eints;
169 					i += (1U << IPRIORITYR_SHIFT)) {
170 		gicd_write_ipriorityr(gicd_base, i, GICD_IPRIORITYR_DEF_VAL);
171 	}
172 #endif
173 	/*
174 	 * Treat all (E)SPIs as level triggered by default, write 16 at a time
175 	 */
176 	for (i = MIN_SPI_ID; i < num_ints; i += (1U << ICFGR_SHIFT)) {
177 		gicd_write_icfgr(gicd_base, i, 0U);
178 	}
179 
180 #if GIC_EXT_INTID
181 	for (i = MIN_ESPI_ID; i < num_eints; i += (1U << ICFGR_SHIFT)) {
182 		gicd_write_icfgr(gicd_base, i, 0U);
183 	}
184 #endif
185 }
186 
187 /*******************************************************************************
188  * Helper function to configure properties of secure (E)SPIs
189  ******************************************************************************/
190 unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
191 		const interrupt_prop_t *interrupt_props,
192 		unsigned int interrupt_props_num)
193 {
194 	unsigned int i;
195 	const interrupt_prop_t *current_prop;
196 	unsigned long long gic_affinity_val;
197 	unsigned int ctlr_enable = 0U;
198 
199 	/* Make sure there's a valid property array */
200 	if (interrupt_props_num > 0U) {
201 		assert(interrupt_props != NULL);
202 	}
203 
204 	for (i = 0U; i < interrupt_props_num; i++) {
205 		current_prop = &interrupt_props[i];
206 
207 		unsigned int intr_num = current_prop->intr_num;
208 
209 		/* Skip SGI, (E)PPI and LPI interrupts */
210 		if (!IS_SPI(intr_num)) {
211 			continue;
212 		}
213 
214 		/* Configure this interrupt as a secure interrupt */
215 		gicd_clr_igroupr(gicd_base, intr_num);
216 
217 		/* Configure this interrupt as G0 or a G1S interrupt */
218 		assert((current_prop->intr_grp == INTR_GROUP0) ||
219 				(current_prop->intr_grp == INTR_GROUP1S));
220 
221 		if (current_prop->intr_grp == INTR_GROUP1S) {
222 			gicd_set_igrpmodr(gicd_base, intr_num);
223 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
224 		} else {
225 			gicd_clr_igrpmodr(gicd_base, intr_num);
226 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
227 		}
228 
229 		/* Set interrupt configuration */
230 		gicd_set_icfgr(gicd_base, intr_num, current_prop->intr_cfg);
231 
232 		/* Set the priority of this interrupt */
233 		gicd_set_ipriorityr(gicd_base, intr_num,
234 					current_prop->intr_pri);
235 
236 		/* Target (E)SPIs to the primary CPU */
237 		gic_affinity_val =
238 			gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
239 		gicd_write_irouter(gicd_base, intr_num,
240 					gic_affinity_val);
241 
242 		/* Enable this interrupt */
243 		gicd_set_isenabler(gicd_base, intr_num);
244 	}
245 
246 	return ctlr_enable;
247 }
248 
249 /*******************************************************************************
250  * Helper function to configure the default attributes of (E)SPIs
251  ******************************************************************************/
252 void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
253 {
254 	unsigned int i, ppi_regs_num, regs_num;
255 
256 #if GIC_EXT_INTID
257 	/* Calculate number of PPI registers */
258 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
259 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
260 	/* All other values except PPInum [0-2] are reserved */
261 	if (ppi_regs_num > 3U) {
262 		ppi_regs_num = 1U;
263 	}
264 #else
265 	ppi_regs_num = 1U;
266 #endif
267 	/*
268 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
269 	 * This is a more scalable approach as it avoids clearing
270 	 * the enable bits in the GICD_CTLR.
271 	 */
272 	for (i = 0U; i < ppi_regs_num; ++i) {
273 		gicr_write_icenabler(gicr_base, i, ~0U);
274 	}
275 
276 	/* Wait for pending writes to GICR_ICENABLER */
277 	gicr_wait_for_pending_write(gicr_base);
278 
279 	/* 32 interrupt IDs per GICR_IGROUPR register */
280 	for (i = 0U; i < ppi_regs_num; ++i) {
281 		/* Treat all SGIs/(E)PPIs as G1NS by default */
282 		gicr_write_igroupr(gicr_base, i, ~0U);
283 	}
284 
285 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
286 	regs_num = ppi_regs_num << 3;
287 	for (i = 0U; i < regs_num; ++i) {
288 		/* Setup the default (E)PPI/SGI priorities doing 4 at a time */
289 		gicr_write_ipriorityr(gicr_base, i, GICD_IPRIORITYR_DEF_VAL);
290 	}
291 
292 	/* 16 interrupt IDs per GICR_ICFGR register */
293 	regs_num = ppi_regs_num << 1;
294 	for (i = (MIN_PPI_ID >> ICFGR_SHIFT); i < regs_num; ++i) {
295 		/* Configure all (E)PPIs as level triggered by default */
296 		gicr_write_icfgr(gicr_base, i, 0U);
297 	}
298 }
299 
300 /*******************************************************************************
301  * Helper function to configure properties of secure G0 and G1S (E)PPIs and SGIs
302  ******************************************************************************/
303 unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
304 		const interrupt_prop_t *interrupt_props,
305 		unsigned int interrupt_props_num)
306 {
307 	unsigned int i;
308 	const interrupt_prop_t *current_prop;
309 	unsigned int ctlr_enable = 0U;
310 
311 	/* Make sure there's a valid property array */
312 	if (interrupt_props_num > 0U) {
313 		assert(interrupt_props != NULL);
314 	}
315 
316 	for (i = 0U; i < interrupt_props_num; i++) {
317 		current_prop = &interrupt_props[i];
318 
319 		unsigned int intr_num = current_prop->intr_num;
320 
321 		/* Skip (E)SPI interrupt */
322 		if (!IS_SGI_PPI(intr_num)) {
323 			continue;
324 		}
325 
326 		/* Configure this interrupt as a secure interrupt */
327 		gicr_clr_igroupr(gicr_base, intr_num);
328 
329 		/* Configure this interrupt as G0 or a G1S interrupt */
330 		assert((current_prop->intr_grp == INTR_GROUP0) ||
331 			(current_prop->intr_grp == INTR_GROUP1S));
332 
333 		if (current_prop->intr_grp == INTR_GROUP1S) {
334 			gicr_set_igrpmodr(gicr_base, intr_num);
335 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
336 		} else {
337 			gicr_clr_igrpmodr(gicr_base, intr_num);
338 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
339 		}
340 
341 		/* Set the priority of this interrupt */
342 		gicr_set_ipriorityr(gicr_base, intr_num,
343 					current_prop->intr_pri);
344 
345 		/*
346 		 * Set interrupt configuration for (E)PPIs.
347 		 * Configurations for SGIs 0-15 are ignored.
348 		 */
349 		if (intr_num >= MIN_PPI_ID) {
350 			gicr_set_icfgr(gicr_base, intr_num,
351 					current_prop->intr_cfg);
352 		}
353 
354 		/* Enable this interrupt */
355 		gicr_set_isenabler(gicr_base, intr_num);
356 	}
357 
358 	return ctlr_enable;
359 }
360 
361 /**
362  * gicv3_rdistif_get_number_frames() - determine size of GICv3 GICR region
363  * @gicr_frame: base address of the GICR region to check
364  *
365  * This iterates over the GICR_TYPER registers of multiple GICR frames in
366  * a GICR region, to find the instance which has the LAST bit set. For most
367  * systems this corresponds to the number of cores handled by a redistributor,
368  * but there could be disabled cores among them.
369  * It assumes that each GICR region is fully accessible (till the LAST bit
370  * marks the end of the region).
371  * If a platform has multiple GICR regions, this function would need to be
372  * called multiple times, providing the respective GICR base address each time.
373  *
374  * Return: number of valid GICR frames (at least 1, up to PLATFORM_CORE_COUNT)
375  ******************************************************************************/
376 unsigned int gicv3_rdistif_get_number_frames(const uintptr_t gicr_frame)
377 {
378 	uintptr_t rdistif_base = gicr_frame;
379 	unsigned int count;
380 
381 	for (count = 1; count < PLATFORM_CORE_COUNT; count++) {
382 		if ((gicr_read_typer(rdistif_base) & TYPER_LAST_BIT) != 0U) {
383 			break;
384 		}
385 		rdistif_base += (1U << GICR_PCPUBASE_SHIFT);
386 	}
387 
388 	return count;
389 }
390