xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision cbd3f3706d4217ee3669deeb52b158e84eb97f56)
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include "../common/gic_common_private.h"
13 #include "gicv3_private.h"
14 
15 /*
16  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
17  * interrupt `id`, 32 interrupt IDs at a time.
18  */
19 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
20 {
21 	unsigned n = id >> IGRPMODR_SHIFT;
22 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
23 }
24 
25 /*
26  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
27  * interrupt `id`, 32 interrupt IDs at a time.
28  */
29 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
30 {
31 	unsigned n = id >> IGRPMODR_SHIFT;
32 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
33 }
34 
35 /*
36  * Accessor to get the bit corresponding to interrupt ID
37  * in GIC Distributor IGRPMODR.
38  */
39 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
40 {
41 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
42 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
43 
44 	return (reg_val >> bit_num) & 0x1;
45 }
46 
47 /*
48  * Accessor to set the bit corresponding to interrupt ID
49  * in GIC Distributor IGRPMODR.
50  */
51 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
52 {
53 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
54 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
55 
56 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
57 }
58 
59 /*
60  * Accessor to clear the bit corresponding to interrupt ID
61  * in GIC Distributor IGRPMODR.
62  */
63 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
64 {
65 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
66 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
67 
68 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
69 }
70 
71 /*
72  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
73  * interrupt `id`, 4 interrupts IDs at a time.
74  */
75 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
76 {
77 	unsigned n = id >> IPRIORITYR_SHIFT;
78 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
79 }
80 
81 /*
82  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
83  * interrupt `id`, 4 interrupts IDs at a time.
84  */
85 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
86 {
87 	unsigned n = id >> IPRIORITYR_SHIFT;
88 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
89 }
90 
91 /*
92  * Accessor to get the bit corresponding to interrupt ID
93  * from GIC Re-distributor IGROUPR0.
94  */
95 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
96 {
97 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
98 	unsigned int reg_val = gicr_read_igroupr0(base);
99 
100 	return (reg_val >> bit_num) & 0x1;
101 }
102 
103 /*
104  * Accessor to set the bit corresponding to interrupt ID
105  * in GIC Re-distributor IGROUPR0.
106  */
107 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
108 {
109 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
110 	unsigned int reg_val = gicr_read_igroupr0(base);
111 
112 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
113 }
114 
115 /*
116  * Accessor to clear the bit corresponding to interrupt ID
117  * in GIC Re-distributor IGROUPR0.
118  */
119 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
120 {
121 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
122 	unsigned int reg_val = gicr_read_igroupr0(base);
123 
124 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
125 }
126 
127 /*
128  * Accessor to get the bit corresponding to interrupt ID
129  * from GIC Re-distributor IGRPMODR0.
130  */
131 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
132 {
133 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
134 	unsigned int reg_val = gicr_read_igrpmodr0(base);
135 
136 	return (reg_val >> bit_num) & 0x1;
137 }
138 
139 /*
140  * Accessor to set the bit corresponding to interrupt ID
141  * in GIC Re-distributor IGRPMODR0.
142  */
143 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
144 {
145 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
146 	unsigned int reg_val = gicr_read_igrpmodr0(base);
147 
148 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
149 }
150 
151 /*
152  * Accessor to clear the bit corresponding to interrupt ID
153  * in GIC Re-distributor IGRPMODR0.
154  */
155 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
156 {
157 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
158 	unsigned int reg_val = gicr_read_igrpmodr0(base);
159 
160 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
161 }
162 
163 /*
164  * Accessor to set the bit corresponding to interrupt ID
165  * in GIC Re-distributor ISENABLER0.
166  */
167 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
168 {
169 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
170 
171 	gicr_write_isenabler0(base, (1 << bit_num));
172 }
173 
174 /*
175  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
176  * ISACTIVER0.
177  */
178 unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
179 {
180 	unsigned bit_num = id & ((1 << ISACTIVER_SHIFT) - 1);
181 	unsigned int reg_val = gicr_read_isactiver0(base);
182 
183 	return (reg_val >> bit_num) & 0x1;
184 }
185 
186 /*
187  * Accessor to set the byte corresponding to interrupt ID
188  * in GIC Re-distributor IPRIORITYR.
189  */
190 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
191 {
192 	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
193 }
194 
195 /******************************************************************************
196  * This function marks the core as awake in the re-distributor and
197  * ensures that the interface is active.
198  *****************************************************************************/
199 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
200 {
201 	/*
202 	 * The WAKER_PS_BIT should be changed to 0
203 	 * only when WAKER_CA_BIT is 1.
204 	 */
205 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
206 
207 	/* Mark the connected core as awake */
208 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
209 
210 	/* Wait till the WAKER_CA_BIT changes to 0 */
211 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
212 		;
213 }
214 
215 
216 /******************************************************************************
217  * This function marks the core as asleep in the re-distributor and ensures
218  * that the interface is quiescent.
219  *****************************************************************************/
220 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
221 {
222 	/* Mark the connected core as asleep */
223 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
224 
225 	/* Wait till the WAKER_CA_BIT changes to 1 */
226 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
227 		;
228 }
229 
230 
231 /*******************************************************************************
232  * This function probes the Redistributor frames when the driver is initialised
233  * and saves their base addresses. These base addresses are used later to
234  * initialise each Redistributor interface.
235  ******************************************************************************/
236 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
237 					unsigned int rdistif_num,
238 					uintptr_t gicr_base,
239 					mpidr_hash_fn mpidr_to_core_pos)
240 {
241 	u_register_t mpidr;
242 	unsigned int proc_num;
243 	unsigned long long typer_val;
244 	uintptr_t rdistif_base = gicr_base;
245 
246 	assert(rdistif_base_addrs);
247 
248 	/*
249 	 * Iterate over the Redistributor frames. Store the base address of each
250 	 * frame in the platform provided array. Use the "Processor Number"
251 	 * field to index into the array if the platform has not provided a hash
252 	 * function to convert an MPIDR (obtained from the "Affinity Value"
253 	 * field into a linear index.
254 	 */
255 	do {
256 		typer_val = gicr_read_typer(rdistif_base);
257 		if (mpidr_to_core_pos) {
258 			mpidr = mpidr_from_gicr_typer(typer_val);
259 			proc_num = mpidr_to_core_pos(mpidr);
260 		} else {
261 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
262 				TYPER_PROC_NUM_MASK;
263 		}
264 		assert(proc_num < rdistif_num);
265 		rdistif_base_addrs[proc_num] = rdistif_base;
266 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
267 	} while (!(typer_val & TYPER_LAST_BIT));
268 }
269 
270 /*******************************************************************************
271  * Helper function to configure the default attributes of SPIs.
272  ******************************************************************************/
273 void gicv3_spis_configure_defaults(uintptr_t gicd_base)
274 {
275 	unsigned int index, num_ints;
276 
277 	num_ints = gicd_read_typer(gicd_base);
278 	num_ints &= TYPER_IT_LINES_NO_MASK;
279 	num_ints = (num_ints + 1) << 5;
280 
281 	/*
282 	 * Treat all SPIs as G1NS by default. The number of interrupts is
283 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
284 	 */
285 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
286 		gicd_write_igroupr(gicd_base, index, ~0U);
287 
288 	/* Setup the default SPI priorities doing four at a time */
289 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
290 		gicd_write_ipriorityr(gicd_base,
291 				      index,
292 				      GICD_IPRIORITYR_DEF_VAL);
293 
294 	/*
295 	 * Treat all SPIs as level triggered by default, write 16 at
296 	 * a time
297 	 */
298 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
299 		gicd_write_icfgr(gicd_base, index, 0);
300 }
301 
302 /*******************************************************************************
303  * Helper function to configure secure G0 and G1S SPIs.
304  ******************************************************************************/
305 void gicv3_secure_spis_configure(uintptr_t gicd_base,
306 				     unsigned int num_ints,
307 				     const unsigned int *sec_intr_list,
308 				     unsigned int int_grp)
309 {
310 	unsigned int index, irq_num;
311 	unsigned long long gic_affinity_val;
312 
313 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
314 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
315 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
316 
317 	for (index = 0; index < num_ints; index++) {
318 		irq_num = sec_intr_list[index];
319 		if (irq_num >= MIN_SPI_ID) {
320 
321 			/* Configure this interrupt as a secure interrupt */
322 			gicd_clr_igroupr(gicd_base, irq_num);
323 
324 			/* Configure this interrupt as G0 or a G1S interrupt */
325 			if (int_grp == INTR_GROUP1S)
326 				gicd_set_igrpmodr(gicd_base, irq_num);
327 			else
328 				gicd_clr_igrpmodr(gicd_base, irq_num);
329 
330 			/* Set the priority of this interrupt */
331 			gicd_set_ipriorityr(gicd_base,
332 					      irq_num,
333 					      GIC_HIGHEST_SEC_PRIORITY);
334 
335 			/* Target SPIs to the primary CPU */
336 			gic_affinity_val =
337 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
338 			gicd_write_irouter(gicd_base,
339 					   irq_num,
340 					   gic_affinity_val);
341 
342 			/* Enable this interrupt */
343 			gicd_set_isenabler(gicd_base, irq_num);
344 		}
345 	}
346 
347 }
348 
349 /*******************************************************************************
350  * Helper function to configure the default attributes of SPIs.
351  ******************************************************************************/
352 void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
353 {
354 	unsigned int index;
355 
356 	/*
357 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
358 	 * more scalable approach as it avoids clearing the enable bits in the
359 	 * GICD_CTLR
360 	 */
361 	gicr_write_icenabler0(gicr_base, ~0);
362 	gicr_wait_for_pending_write(gicr_base);
363 
364 	/* Treat all SGIs/PPIs as G1NS by default. */
365 	gicr_write_igroupr0(gicr_base, ~0U);
366 
367 	/* Setup the default PPI/SGI priorities doing four at a time */
368 	for (index = 0; index < MIN_SPI_ID; index += 4)
369 		gicr_write_ipriorityr(gicr_base,
370 				      index,
371 				      GICD_IPRIORITYR_DEF_VAL);
372 
373 	/* Configure all PPIs as level triggered by default */
374 	gicr_write_icfgr1(gicr_base, 0);
375 }
376 
377 /*******************************************************************************
378  * Helper function to configure secure G0 and G1S SPIs.
379  ******************************************************************************/
380 void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
381 					unsigned int num_ints,
382 					const unsigned int *sec_intr_list,
383 					unsigned int int_grp)
384 {
385 	unsigned int index, irq_num;
386 
387 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
388 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
389 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
390 
391 	for (index = 0; index < num_ints; index++) {
392 		irq_num = sec_intr_list[index];
393 		if (irq_num < MIN_SPI_ID) {
394 
395 			/* Configure this interrupt as a secure interrupt */
396 			gicr_clr_igroupr0(gicr_base, irq_num);
397 
398 			/* Configure this interrupt as G0 or a G1S interrupt */
399 			if (int_grp == INTR_GROUP1S)
400 				gicr_set_igrpmodr0(gicr_base, irq_num);
401 			else
402 				gicr_clr_igrpmodr0(gicr_base, irq_num);
403 
404 			/* Set the priority of this interrupt */
405 			gicr_set_ipriorityr(gicr_base,
406 					    irq_num,
407 					    GIC_HIGHEST_SEC_PRIORITY);
408 
409 			/* Enable this interrupt */
410 			gicr_set_isenabler0(gicr_base, irq_num);
411 		}
412 	}
413 }
414