xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision c42aefd3eb1b5888ee6f3d1f8645b62ec850cdcc)
1 /*
2  * Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2023, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <common/interrupt_props.h>
14 #include <drivers/arm/gic600_multichip.h>
15 #include <drivers/arm/gic_common.h>
16 
17 #include <platform_def.h>
18 
19 #include "../common/gic_common_private.h"
20 #include "gicv3_private.h"
21 
22 uintptr_t gicv3_get_multichip_base(uint32_t spi_id, uintptr_t gicd_base)
23 {
24 #if GICV3_IMPL_GIC600_MULTICHIP
25 	if (gic600_multichip_is_initialized()) {
26 		return gic600_multichip_gicd_base_for_spi(spi_id);
27 	}
28 #endif
29 	return gicd_base;
30 }
31 
32 /******************************************************************************
33  * This function marks the core as awake in the re-distributor and
34  * ensures that the interface is active.
35  *****************************************************************************/
36 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
37 {
38 	uint32_t waker = gicr_read_waker(gicr_base);
39 
40 	/* Only try to mark it as awake when it is asleep. */
41 	if ((waker & WAKER_PS_BIT) == 0U) {
42 		return;
43 	}
44 
45 	/*
46 	 * ProcessorSleep must only be changed when ChildrenAsleep is 1.
47 	 * If PS is 1 and CA isn't, wait for that to happen, but warn.
48 	 */
49 	if ((waker & WAKER_CA_BIT) == 0U) {
50 		WARN("GICR_WAKER.ChildrenAsleep unexpectedly set, waiting...\n");
51 		while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) {
52 		}
53 	}
54 
55 	/* Mark the connected core as awake */
56 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
57 
58 	/* Wait till the WAKER_CA_BIT changes to 0 */
59 	while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U) {
60 	}
61 }
62 
63 /******************************************************************************
64  * This function marks the core as asleep in the re-distributor and ensures
65  * that the interface is quiescent.
66  *****************************************************************************/
67 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
68 {
69 	/* Mark the connected core as asleep */
70 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
71 
72 	/* Wait till the WAKER_CA_BIT changes to 1 */
73 	while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) {
74 	}
75 }
76 
77 /*******************************************************************************
78  * This function probes the Redistributor frames when the driver is initialised
79  * and saves their base addresses. These base addresses are used later to
80  * initialise each Redistributor interface.
81  ******************************************************************************/
82 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
83 					unsigned int rdistif_num,
84 					uintptr_t gicr_base,
85 					mpidr_hash_fn mpidr_to_core_pos)
86 {
87 	u_register_t mpidr;
88 	unsigned int proc_num;
89 	uint64_t typer_val;
90 	uintptr_t rdistif_base = gicr_base;
91 
92 	assert(rdistif_base_addrs != NULL);
93 
94 	/*
95 	 * Iterate over the Redistributor frames. Store the base address of each
96 	 * frame in the platform provided array. Use the "Processor Number"
97 	 * field to index into the array if the platform has not provided a hash
98 	 * function to convert an MPIDR (obtained from the "Affinity Value"
99 	 * field into a linear index.
100 	 */
101 	do {
102 		typer_val = gicr_read_typer(rdistif_base);
103 		if (mpidr_to_core_pos != NULL) {
104 			mpidr = mpidr_from_gicr_typer(typer_val);
105 			proc_num = mpidr_to_core_pos(mpidr);
106 		} else {
107 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
108 				TYPER_PROC_NUM_MASK;
109 		}
110 
111 		if (proc_num < rdistif_num) {
112 			rdistif_base_addrs[proc_num] = rdistif_base;
113 		}
114 		rdistif_base += gicv3_redist_size(typer_val);
115 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
116 }
117 
118 /*******************************************************************************
119  * Helper function to get the maximum SPI INTID + 1.
120  ******************************************************************************/
121 unsigned int gicv3_get_spi_limit(uintptr_t gicd_base)
122 {
123 	unsigned int spi_limit;
124 	unsigned int typer_reg = gicd_read_typer(gicd_base);
125 
126 	/* (maximum SPI INTID + 1) is equal to 32 * (GICD_TYPER.ITLinesNumber+1) */
127 	spi_limit = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
128 
129 	/* Filter out special INTIDs 1020-1023 */
130 	if (spi_limit > (MAX_SPI_ID + 1U)) {
131 		return MAX_SPI_ID + 1U;
132 	}
133 
134 	return spi_limit;
135 }
136 
137 #if GIC_EXT_INTID
138 /*******************************************************************************
139  * Helper function to get the maximum ESPI INTID + 1.
140  ******************************************************************************/
141 unsigned int gicv3_get_espi_limit(uintptr_t gicd_base)
142 {
143 	unsigned int typer_reg = gicd_read_typer(gicd_base);
144 
145 	/* Check if extended SPI range is implemented */
146 	if ((typer_reg & TYPER_ESPI) != 0U) {
147 		/*
148 		 * (maximum ESPI INTID + 1) is equal to
149 		 * 32 * (GICD_TYPER.ESPI_range + 1) + 4096
150 		 */
151 		return ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
152 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID;
153 	}
154 
155 	return 0U;
156 }
157 #endif /* GIC_EXT_INTID */
158 
159 /*******************************************************************************
160  * Helper function to configure the default attributes of (E)SPIs.
161  ******************************************************************************/
162 void gicv3_spis_config_defaults(uintptr_t gicd_base)
163 {
164 	unsigned int i, num_ints;
165 #if GIC_EXT_INTID
166 	unsigned int num_eints;
167 #endif
168 
169 	num_ints = gicv3_get_spi_limit(gicd_base);
170 	INFO("Maximum SPI INTID supported: %u\n", num_ints - 1);
171 
172 	/* Treat all (E)SPIs as G1NS by default. We do 32 at a time. */
173 	for (i = MIN_SPI_ID; i < num_ints; i += (1U << IGROUPR_SHIFT)) {
174 		gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U);
175 	}
176 
177 #if GIC_EXT_INTID
178 	num_eints = gicv3_get_espi_limit(gicd_base);
179 	if (num_eints != 0U) {
180 		INFO("Maximum ESPI INTID supported: %u\n", num_eints - 1);
181 
182 		for (i = MIN_ESPI_ID; i < num_eints;
183 					i += (1U << IGROUPR_SHIFT)) {
184 			gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U);
185 		}
186 	} else {
187 		INFO("ESPI range is not implemented.\n");
188 	}
189 #endif
190 
191 	/* Setup the default (E)SPI priorities doing four at a time */
192 	for (i = MIN_SPI_ID; i < num_ints; i += (1U << IPRIORITYR_SHIFT)) {
193 		gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL);
194 	}
195 
196 #if GIC_EXT_INTID
197 	for (i = MIN_ESPI_ID; i < num_eints;
198 					i += (1U << IPRIORITYR_SHIFT)) {
199 		gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL);
200 	}
201 #endif
202 	/*
203 	 * Treat all (E)SPIs as level triggered by default, write 16 at a time
204 	 */
205 	for (i = MIN_SPI_ID; i < num_ints; i += (1U << ICFGR_SHIFT)) {
206 		gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U);
207 	}
208 
209 #if GIC_EXT_INTID
210 	for (i = MIN_ESPI_ID; i < num_eints; i += (1U << ICFGR_SHIFT)) {
211 		gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U);
212 	}
213 #endif
214 }
215 
216 /*******************************************************************************
217  * Helper function to configure properties of secure (E)SPIs
218  ******************************************************************************/
219 unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
220 		const interrupt_prop_t *interrupt_props,
221 		unsigned int interrupt_props_num)
222 {
223 	unsigned int i;
224 	const interrupt_prop_t *current_prop;
225 	unsigned long long gic_affinity_val;
226 	unsigned int ctlr_enable = 0U;
227 
228 	/* Make sure there's a valid property array */
229 	if (interrupt_props_num > 0U) {
230 		assert(interrupt_props != NULL);
231 	}
232 
233 	for (i = 0U; i < interrupt_props_num; i++) {
234 		current_prop = &interrupt_props[i];
235 
236 		unsigned int intr_num = current_prop->intr_num;
237 		uintptr_t multichip_gicd_base;
238 
239 		/* Skip SGI, (E)PPI and LPI interrupts */
240 		if (!IS_SPI(intr_num)) {
241 			continue;
242 		}
243 
244 		multichip_gicd_base =
245 			gicv3_get_multichip_base(intr_num, gicd_base);
246 
247 		/* Configure this interrupt as a secure interrupt */
248 		gicd_clr_igroupr(multichip_gicd_base, intr_num);
249 
250 		/* Configure this interrupt as G0 or a G1S interrupt */
251 		assert((current_prop->intr_grp == INTR_GROUP0) ||
252 				(current_prop->intr_grp == INTR_GROUP1S));
253 
254 		if (current_prop->intr_grp == INTR_GROUP1S) {
255 			gicd_set_igrpmodr(multichip_gicd_base, intr_num);
256 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
257 		} else {
258 			gicd_clr_igrpmodr(multichip_gicd_base, intr_num);
259 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
260 		}
261 
262 		/* Set interrupt configuration */
263 		gicd_set_icfgr(multichip_gicd_base, intr_num,
264 				current_prop->intr_cfg);
265 
266 		/* Set the priority of this interrupt */
267 		gicd_set_ipriorityr(multichip_gicd_base, intr_num,
268 				current_prop->intr_pri);
269 
270 		/* Target (E)SPIs to the primary CPU */
271 		gic_affinity_val =
272 			gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
273 		gicd_write_irouter(multichip_gicd_base, intr_num,
274 			gic_affinity_val);
275 
276 		/* Enable this interrupt */
277 		gicd_set_isenabler(multichip_gicd_base, intr_num);
278 	}
279 
280 	return ctlr_enable;
281 }
282 
283 /*******************************************************************************
284  * Helper function to configure the default attributes of (E)PPIs/SGIs
285  ******************************************************************************/
286 void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
287 {
288 	unsigned int i, ppi_regs_num, regs_num;
289 
290 #if GIC_EXT_INTID
291 	/* Calculate number of PPI registers */
292 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
293 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
294 	/* All other values except PPInum [0-2] are reserved */
295 	if (ppi_regs_num > 3U) {
296 		ppi_regs_num = 1U;
297 	}
298 #else
299 	ppi_regs_num = 1U;
300 #endif
301 	/*
302 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
303 	 * This is a more scalable approach as it avoids clearing
304 	 * the enable bits in the GICD_CTLR.
305 	 */
306 	for (i = 0U; i < ppi_regs_num; ++i) {
307 		gicr_write_icenabler(gicr_base, i, ~0U);
308 	}
309 
310 	/* Wait for pending writes to GICR_ICENABLER */
311 	gicr_wait_for_pending_write(gicr_base);
312 
313 	/* 32 interrupt IDs per GICR_IGROUPR register */
314 	for (i = 0U; i < ppi_regs_num; ++i) {
315 		/* Treat all SGIs/(E)PPIs as G1NS by default */
316 		gicr_write_igroupr(gicr_base, i, ~0U);
317 	}
318 
319 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
320 	regs_num = ppi_regs_num << 3;
321 	for (i = 0U; i < regs_num; ++i) {
322 		/* Setup the default (E)PPI/SGI priorities doing 4 at a time */
323 		gicr_write_ipriorityr(gicr_base, i << 2, GICD_IPRIORITYR_DEF_VAL);
324 	}
325 
326 	/* 16 interrupt IDs per GICR_ICFGR register */
327 	regs_num = ppi_regs_num << 1;
328 	for (i = (MIN_PPI_ID >> ICFGR_SHIFT); i < regs_num; ++i) {
329 		/* Configure all (E)PPIs as level triggered by default */
330 		gicr_write_icfgr(gicr_base, i, 0U);
331 	}
332 }
333 
334 /*******************************************************************************
335  * Helper function to configure properties of secure G0 and G1S (E)PPIs and SGIs
336  ******************************************************************************/
337 unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
338 		const interrupt_prop_t *interrupt_props,
339 		unsigned int interrupt_props_num)
340 {
341 	unsigned int i;
342 	const interrupt_prop_t *current_prop;
343 	unsigned int ctlr_enable = 0U;
344 
345 	/* Make sure there's a valid property array */
346 	if (interrupt_props_num > 0U) {
347 		assert(interrupt_props != NULL);
348 	}
349 
350 	for (i = 0U; i < interrupt_props_num; i++) {
351 		current_prop = &interrupt_props[i];
352 
353 		unsigned int intr_num = current_prop->intr_num;
354 
355 		/* Skip (E)SPI interrupt */
356 		if (!IS_SGI_PPI(intr_num)) {
357 			continue;
358 		}
359 
360 		/* Configure this interrupt as a secure interrupt */
361 		gicr_clr_igroupr(gicr_base, intr_num);
362 
363 		/* Configure this interrupt as G0 or a G1S interrupt */
364 		assert((current_prop->intr_grp == INTR_GROUP0) ||
365 			(current_prop->intr_grp == INTR_GROUP1S));
366 
367 		if (current_prop->intr_grp == INTR_GROUP1S) {
368 			gicr_set_igrpmodr(gicr_base, intr_num);
369 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
370 		} else {
371 			gicr_clr_igrpmodr(gicr_base, intr_num);
372 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
373 		}
374 
375 		/* Set the priority of this interrupt */
376 		gicr_set_ipriorityr(gicr_base, intr_num,
377 					current_prop->intr_pri);
378 
379 		/*
380 		 * Set interrupt configuration for (E)PPIs.
381 		 * Configurations for SGIs 0-15 are ignored.
382 		 */
383 		if (intr_num >= MIN_PPI_ID) {
384 			gicr_set_icfgr(gicr_base, intr_num,
385 					current_prop->intr_cfg);
386 		}
387 
388 		/* Enable this interrupt */
389 		gicr_set_isenabler(gicr_base, intr_num);
390 	}
391 
392 	return ctlr_enable;
393 }
394 
395 /**
396  * gicv3_rdistif_get_number_frames() - determine size of GICv3 GICR region
397  * @gicr_frame: base address of the GICR region to check
398  *
399  * This iterates over the GICR_TYPER registers of multiple GICR frames in
400  * a GICR region, to find the instance which has the LAST bit set. For most
401  * systems this corresponds to the number of cores handled by a redistributor,
402  * but there could be disabled cores among them.
403  * It assumes that each GICR region is fully accessible (till the LAST bit
404  * marks the end of the region).
405  * If a platform has multiple GICR regions, this function would need to be
406  * called multiple times, providing the respective GICR base address each time.
407  *
408  * Return: number of valid GICR frames (at least 1, up to PLATFORM_CORE_COUNT)
409  ******************************************************************************/
410 unsigned int gicv3_rdistif_get_number_frames(const uintptr_t gicr_frame)
411 {
412 	uintptr_t rdistif_base = gicr_frame;
413 	unsigned int count;
414 
415 	for (count = 1U; count < PLATFORM_CORE_COUNT; count++) {
416 		uint64_t typer_val = gicr_read_typer(rdistif_base);
417 
418 		if ((typer_val & TYPER_LAST_BIT) != 0U) {
419 			break;
420 		}
421 		rdistif_base += gicv3_redist_size(typer_val);
422 	}
423 
424 	return count;
425 }
426 
427 unsigned int gicv3_get_component_partnum(const uintptr_t gic_frame)
428 {
429 	unsigned int part_id;
430 
431 	/*
432 	 * The lower 8 bits of PIDR0, complemented by the lower 4 bits of
433 	 * PIDR1 contain a part number identifying the GIC component at a
434 	 * particular base address.
435 	 */
436 	part_id = mmio_read_32(gic_frame + GICD_PIDR0_GICV3) & 0xffU;
437 	part_id |= (mmio_read_32(gic_frame + GICD_PIDR1_GICV3) << 8) & 0xf00U;
438 
439 	return part_id;
440 }
441 
442 /*******************************************************************************
443  * Helper function to return product ID and revision of GIC
444  * @gicd_base:   base address of the GIC distributor
445  * @gic_prod_id: retrieved product id of GIC
446  * @gic_rev:     retrieved revision of GIC
447  ******************************************************************************/
448 void gicv3_get_component_prodid_rev(const uintptr_t gicd_base,
449 				    unsigned int *gic_prod_id,
450 				    uint8_t *gic_rev)
451 {
452 	unsigned int gicd_iidr;
453 	uint8_t gic_variant;
454 
455 	gicd_iidr = gicd_read_iidr(gicd_base);
456 	*gic_prod_id = gicd_iidr >> IIDR_PRODUCT_ID_SHIFT;
457 	*gic_prod_id &= IIDR_PRODUCT_ID_MASK;
458 
459 	gic_variant = (uint8_t)(gicd_iidr >> IIDR_VARIANT_SHIFT);
460 	gic_variant &= IIDR_VARIANT_MASK;
461 
462 	*gic_rev = (uint8_t)(gicd_iidr >> IIDR_REV_SHIFT);
463 	*gic_rev &= IIDR_REV_MASK;
464 
465 	/*
466 	 * pack gic variant and gic_rev in 1 byte
467 	 * gic_rev = gic_variant[7:4] and gic_rev[0:3]
468 	 */
469 	*gic_rev |= gic_variant << 0x4;
470 
471 }
472