xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision a2816a16440d9eb1223ba505bc30faf6cd31b0ee)
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include "../common/gic_common_private.h"
13 #include "gicv3_private.h"
14 
15 /*
16  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
17  * interrupt `id`, 32 interrupt IDs at a time.
18  */
19 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
20 {
21 	unsigned n = id >> IGRPMODR_SHIFT;
22 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
23 }
24 
25 /*
26  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
27  * interrupt `id`, 32 interrupt IDs at a time.
28  */
29 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
30 {
31 	unsigned n = id >> IGRPMODR_SHIFT;
32 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
33 }
34 
35 /*
36  * Accessor to get the bit corresponding to interrupt ID
37  * in GIC Distributor IGRPMODR.
38  */
39 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
40 {
41 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
42 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
43 
44 	return (reg_val >> bit_num) & 0x1;
45 }
46 
47 /*
48  * Accessor to set the bit corresponding to interrupt ID
49  * in GIC Distributor IGRPMODR.
50  */
51 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
52 {
53 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
54 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
55 
56 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
57 }
58 
59 /*
60  * Accessor to clear the bit corresponding to interrupt ID
61  * in GIC Distributor IGRPMODR.
62  */
63 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
64 {
65 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
66 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
67 
68 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
69 }
70 
71 /*
72  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
73  * interrupt `id`, 4 interrupts IDs at a time.
74  */
75 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
76 {
77 	unsigned n = id >> IPRIORITYR_SHIFT;
78 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
79 }
80 
81 /*
82  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
83  * interrupt `id`, 4 interrupts IDs at a time.
84  */
85 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
86 {
87 	unsigned n = id >> IPRIORITYR_SHIFT;
88 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
89 }
90 
91 /*
92  * Accessor to get the bit corresponding to interrupt ID
93  * from GIC Re-distributor IGROUPR0.
94  */
95 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
96 {
97 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
98 	unsigned int reg_val = gicr_read_igroupr0(base);
99 
100 	return (reg_val >> bit_num) & 0x1;
101 }
102 
103 /*
104  * Accessor to set the bit corresponding to interrupt ID
105  * in GIC Re-distributor IGROUPR0.
106  */
107 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
108 {
109 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
110 	unsigned int reg_val = gicr_read_igroupr0(base);
111 
112 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
113 }
114 
115 /*
116  * Accessor to clear the bit corresponding to interrupt ID
117  * in GIC Re-distributor IGROUPR0.
118  */
119 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
120 {
121 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
122 	unsigned int reg_val = gicr_read_igroupr0(base);
123 
124 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
125 }
126 
127 /*
128  * Accessor to get the bit corresponding to interrupt ID
129  * from GIC Re-distributor IGRPMODR0.
130  */
131 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
132 {
133 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
134 	unsigned int reg_val = gicr_read_igrpmodr0(base);
135 
136 	return (reg_val >> bit_num) & 0x1;
137 }
138 
139 /*
140  * Accessor to set the bit corresponding to interrupt ID
141  * in GIC Re-distributor IGRPMODR0.
142  */
143 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
144 {
145 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
146 	unsigned int reg_val = gicr_read_igrpmodr0(base);
147 
148 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
149 }
150 
151 /*
152  * Accessor to clear the bit corresponding to interrupt ID
153  * in GIC Re-distributor IGRPMODR0.
154  */
155 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
156 {
157 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
158 	unsigned int reg_val = gicr_read_igrpmodr0(base);
159 
160 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
161 }
162 
163 /*
164  * Accessor to set the bit corresponding to interrupt ID
165  * in GIC Re-distributor ISENABLER0.
166  */
167 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
168 {
169 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
170 
171 	gicr_write_isenabler0(base, (1 << bit_num));
172 }
173 
174 /*
175  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
176  * ICENABLER0.
177  */
178 void gicr_set_icenabler0(uintptr_t base, unsigned int id)
179 {
180 	unsigned bit_num = id & ((1 << ICENABLER_SHIFT) - 1);
181 
182 	gicr_write_icenabler0(base, (1 << bit_num));
183 }
184 
185 /*
186  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
187  * ISACTIVER0.
188  */
189 unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
190 {
191 	unsigned bit_num = id & ((1 << ISACTIVER_SHIFT) - 1);
192 	unsigned int reg_val = gicr_read_isactiver0(base);
193 
194 	return (reg_val >> bit_num) & 0x1;
195 }
196 
197 /*
198  * Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor
199  * ICPENDRR0.
200  */
201 void gicr_set_icpendr0(uintptr_t base, unsigned int id)
202 {
203 	unsigned bit_num = id & ((1 << ICPENDR_SHIFT) - 1);
204 
205 	gicr_write_icpendr0(base, (1 << bit_num));
206 }
207 
208 /*
209  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
210  * ISPENDR0.
211  */
212 void gicr_set_ispendr0(uintptr_t base, unsigned int id)
213 {
214 	unsigned bit_num = id & ((1 << ISPENDR_SHIFT) - 1);
215 
216 	gicr_write_ispendr0(base, (1 << bit_num));
217 }
218 
219 /*
220  * Accessor to set the byte corresponding to interrupt ID
221  * in GIC Re-distributor IPRIORITYR.
222  */
223 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
224 {
225 	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
226 }
227 
228 /******************************************************************************
229  * This function marks the core as awake in the re-distributor and
230  * ensures that the interface is active.
231  *****************************************************************************/
232 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
233 {
234 	/*
235 	 * The WAKER_PS_BIT should be changed to 0
236 	 * only when WAKER_CA_BIT is 1.
237 	 */
238 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
239 
240 	/* Mark the connected core as awake */
241 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
242 
243 	/* Wait till the WAKER_CA_BIT changes to 0 */
244 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
245 		;
246 }
247 
248 
249 /******************************************************************************
250  * This function marks the core as asleep in the re-distributor and ensures
251  * that the interface is quiescent.
252  *****************************************************************************/
253 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
254 {
255 	/* Mark the connected core as asleep */
256 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
257 
258 	/* Wait till the WAKER_CA_BIT changes to 1 */
259 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
260 		;
261 }
262 
263 
264 /*******************************************************************************
265  * This function probes the Redistributor frames when the driver is initialised
266  * and saves their base addresses. These base addresses are used later to
267  * initialise each Redistributor interface.
268  ******************************************************************************/
269 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
270 					unsigned int rdistif_num,
271 					uintptr_t gicr_base,
272 					mpidr_hash_fn mpidr_to_core_pos)
273 {
274 	u_register_t mpidr;
275 	unsigned int proc_num;
276 	unsigned long long typer_val;
277 	uintptr_t rdistif_base = gicr_base;
278 
279 	assert(rdistif_base_addrs);
280 
281 	/*
282 	 * Iterate over the Redistributor frames. Store the base address of each
283 	 * frame in the platform provided array. Use the "Processor Number"
284 	 * field to index into the array if the platform has not provided a hash
285 	 * function to convert an MPIDR (obtained from the "Affinity Value"
286 	 * field into a linear index.
287 	 */
288 	do {
289 		typer_val = gicr_read_typer(rdistif_base);
290 		if (mpidr_to_core_pos) {
291 			mpidr = mpidr_from_gicr_typer(typer_val);
292 			proc_num = mpidr_to_core_pos(mpidr);
293 		} else {
294 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
295 				TYPER_PROC_NUM_MASK;
296 		}
297 		assert(proc_num < rdistif_num);
298 		rdistif_base_addrs[proc_num] = rdistif_base;
299 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
300 	} while (!(typer_val & TYPER_LAST_BIT));
301 }
302 
303 /*******************************************************************************
304  * Helper function to configure the default attributes of SPIs.
305  ******************************************************************************/
306 void gicv3_spis_configure_defaults(uintptr_t gicd_base)
307 {
308 	unsigned int index, num_ints;
309 
310 	num_ints = gicd_read_typer(gicd_base);
311 	num_ints &= TYPER_IT_LINES_NO_MASK;
312 	num_ints = (num_ints + 1) << 5;
313 
314 	/*
315 	 * Treat all SPIs as G1NS by default. The number of interrupts is
316 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
317 	 */
318 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
319 		gicd_write_igroupr(gicd_base, index, ~0U);
320 
321 	/* Setup the default SPI priorities doing four at a time */
322 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
323 		gicd_write_ipriorityr(gicd_base,
324 				      index,
325 				      GICD_IPRIORITYR_DEF_VAL);
326 
327 	/*
328 	 * Treat all SPIs as level triggered by default, write 16 at
329 	 * a time
330 	 */
331 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
332 		gicd_write_icfgr(gicd_base, index, 0);
333 }
334 
335 /*******************************************************************************
336  * Helper function to configure secure G0 and G1S SPIs.
337  ******************************************************************************/
338 void gicv3_secure_spis_configure(uintptr_t gicd_base,
339 				     unsigned int num_ints,
340 				     const unsigned int *sec_intr_list,
341 				     unsigned int int_grp)
342 {
343 	unsigned int index, irq_num;
344 	unsigned long long gic_affinity_val;
345 
346 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
347 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
348 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
349 
350 	for (index = 0; index < num_ints; index++) {
351 		irq_num = sec_intr_list[index];
352 		if (irq_num >= MIN_SPI_ID) {
353 
354 			/* Configure this interrupt as a secure interrupt */
355 			gicd_clr_igroupr(gicd_base, irq_num);
356 
357 			/* Configure this interrupt as G0 or a G1S interrupt */
358 			if (int_grp == INTR_GROUP1S)
359 				gicd_set_igrpmodr(gicd_base, irq_num);
360 			else
361 				gicd_clr_igrpmodr(gicd_base, irq_num);
362 
363 			/* Set the priority of this interrupt */
364 			gicd_set_ipriorityr(gicd_base,
365 					      irq_num,
366 					      GIC_HIGHEST_SEC_PRIORITY);
367 
368 			/* Target SPIs to the primary CPU */
369 			gic_affinity_val =
370 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
371 			gicd_write_irouter(gicd_base,
372 					   irq_num,
373 					   gic_affinity_val);
374 
375 			/* Enable this interrupt */
376 			gicd_set_isenabler(gicd_base, irq_num);
377 		}
378 	}
379 
380 }
381 
382 /*******************************************************************************
383  * Helper function to configure the default attributes of SPIs.
384  ******************************************************************************/
385 void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
386 {
387 	unsigned int index;
388 
389 	/*
390 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
391 	 * more scalable approach as it avoids clearing the enable bits in the
392 	 * GICD_CTLR
393 	 */
394 	gicr_write_icenabler0(gicr_base, ~0);
395 	gicr_wait_for_pending_write(gicr_base);
396 
397 	/* Treat all SGIs/PPIs as G1NS by default. */
398 	gicr_write_igroupr0(gicr_base, ~0U);
399 
400 	/* Setup the default PPI/SGI priorities doing four at a time */
401 	for (index = 0; index < MIN_SPI_ID; index += 4)
402 		gicr_write_ipriorityr(gicr_base,
403 				      index,
404 				      GICD_IPRIORITYR_DEF_VAL);
405 
406 	/* Configure all PPIs as level triggered by default */
407 	gicr_write_icfgr1(gicr_base, 0);
408 }
409 
410 /*******************************************************************************
411  * Helper function to configure secure G0 and G1S SPIs.
412  ******************************************************************************/
413 void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
414 					unsigned int num_ints,
415 					const unsigned int *sec_intr_list,
416 					unsigned int int_grp)
417 {
418 	unsigned int index, irq_num;
419 
420 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
421 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
422 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
423 
424 	for (index = 0; index < num_ints; index++) {
425 		irq_num = sec_intr_list[index];
426 		if (irq_num < MIN_SPI_ID) {
427 
428 			/* Configure this interrupt as a secure interrupt */
429 			gicr_clr_igroupr0(gicr_base, irq_num);
430 
431 			/* Configure this interrupt as G0 or a G1S interrupt */
432 			if (int_grp == INTR_GROUP1S)
433 				gicr_set_igrpmodr0(gicr_base, irq_num);
434 			else
435 				gicr_clr_igrpmodr0(gicr_base, irq_num);
436 
437 			/* Set the priority of this interrupt */
438 			gicr_set_ipriorityr(gicr_base,
439 					    irq_num,
440 					    GIC_HIGHEST_SEC_PRIORITY);
441 
442 			/* Enable this interrupt */
443 			gicr_set_isenabler0(gicr_base, irq_num);
444 		}
445 	}
446 }
447