xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision 6331a31a66cdcf53421d3dccd3067f072c6da175)
1 /*
2  * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <debug.h>
35 #include <gic_common.h>
36 #include "../common/gic_common_private.h"
37 #include "gicv3_private.h"
38 
39 /*
40  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
41  * interrupt `id`, 32 interrupt IDs at a time.
42  */
43 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
44 {
45 	unsigned n = id >> IGRPMODR_SHIFT;
46 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
47 }
48 
49 /*
50  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
51  * interrupt `id`, 32 interrupt IDs at a time.
52  */
53 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
54 {
55 	unsigned n = id >> IGRPMODR_SHIFT;
56 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
57 }
58 
59 /*
60  * Accessor to get the bit corresponding to interrupt ID
61  * in GIC Distributor IGRPMODR.
62  */
63 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
64 {
65 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
66 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
67 
68 	return (reg_val >> bit_num) & 0x1;
69 }
70 
71 /*
72  * Accessor to set the bit corresponding to interrupt ID
73  * in GIC Distributor IGRPMODR.
74  */
75 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
76 {
77 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
78 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
79 
80 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
81 }
82 
83 /*
84  * Accessor to clear the bit corresponding to interrupt ID
85  * in GIC Distributor IGRPMODR.
86  */
87 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
88 {
89 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
90 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
91 
92 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
93 }
94 
95 /*
96  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
97  * interrupt `id`, 4 interrupts IDs at a time.
98  */
99 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
100 {
101 	unsigned n = id >> IPRIORITYR_SHIFT;
102 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
103 }
104 
105 /*
106  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
107  * interrupt `id`, 4 interrupts IDs at a time.
108  */
109 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
110 {
111 	unsigned n = id >> IPRIORITYR_SHIFT;
112 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
113 }
114 
115 /*
116  * Accessor to get the bit corresponding to interrupt ID
117  * from GIC Re-distributor IGROUPR0.
118  */
119 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
120 {
121 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
122 	unsigned int reg_val = gicr_read_igroupr0(base);
123 
124 	return (reg_val >> bit_num) & 0x1;
125 }
126 
127 /*
128  * Accessor to set the bit corresponding to interrupt ID
129  * in GIC Re-distributor IGROUPR0.
130  */
131 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
132 {
133 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
134 	unsigned int reg_val = gicr_read_igroupr0(base);
135 
136 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
137 }
138 
139 /*
140  * Accessor to clear the bit corresponding to interrupt ID
141  * in GIC Re-distributor IGROUPR0.
142  */
143 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
144 {
145 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
146 	unsigned int reg_val = gicr_read_igroupr0(base);
147 
148 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
149 }
150 
151 /*
152  * Accessor to get the bit corresponding to interrupt ID
153  * from GIC Re-distributor IGRPMODR0.
154  */
155 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
156 {
157 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
158 	unsigned int reg_val = gicr_read_igrpmodr0(base);
159 
160 	return (reg_val >> bit_num) & 0x1;
161 }
162 
163 /*
164  * Accessor to set the bit corresponding to interrupt ID
165  * in GIC Re-distributor IGRPMODR0.
166  */
167 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
168 {
169 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
170 	unsigned int reg_val = gicr_read_igrpmodr0(base);
171 
172 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
173 }
174 
175 /*
176  * Accessor to clear the bit corresponding to interrupt ID
177  * in GIC Re-distributor IGRPMODR0.
178  */
179 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
180 {
181 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
182 	unsigned int reg_val = gicr_read_igrpmodr0(base);
183 
184 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
185 }
186 
187 /*
188  * Accessor to set the bit corresponding to interrupt ID
189  * in GIC Re-distributor ISENABLER0.
190  */
191 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
192 {
193 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
194 
195 	gicr_write_isenabler0(base, (1 << bit_num));
196 }
197 
198 /*
199  * Accessor to set the byte corresponding to interrupt ID
200  * in GIC Re-distributor IPRIORITYR.
201  */
202 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
203 {
204 	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
205 }
206 
207 /******************************************************************************
208  * This function marks the core as awake in the re-distributor and
209  * ensures that the interface is active.
210  *****************************************************************************/
211 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
212 {
213 	/*
214 	 * The WAKER_PS_BIT should be changed to 0
215 	 * only when WAKER_CA_BIT is 1.
216 	 */
217 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
218 
219 	/* Mark the connected core as awake */
220 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
221 
222 	/* Wait till the WAKER_CA_BIT changes to 0 */
223 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
224 		;
225 }
226 
227 
228 /******************************************************************************
229  * This function marks the core as asleep in the re-distributor and ensures
230  * that the interface is quiescent.
231  *****************************************************************************/
232 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
233 {
234 	/* Mark the connected core as asleep */
235 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
236 
237 	/* Wait till the WAKER_CA_BIT changes to 1 */
238 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
239 		;
240 }
241 
242 
243 /*******************************************************************************
244  * This function probes the Redistributor frames when the driver is initialised
245  * and saves their base addresses. These base addresses are used later to
246  * initialise each Redistributor interface.
247  ******************************************************************************/
248 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
249 					unsigned int rdistif_num,
250 					uintptr_t gicr_base,
251 					mpidr_hash_fn mpidr_to_core_pos)
252 {
253 	unsigned long mpidr;
254 	unsigned int proc_num;
255 	unsigned long long typer_val;
256 	uintptr_t rdistif_base = gicr_base;
257 
258 	assert(rdistif_base_addrs);
259 
260 	/*
261 	 * Iterate over the Redistributor frames. Store the base address of each
262 	 * frame in the platform provided array. Use the "Processor Number"
263 	 * field to index into the array if the platform has not provided a hash
264 	 * function to convert an MPIDR (obtained from the "Affinity Value"
265 	 * field into a linear index.
266 	 */
267 	do {
268 		typer_val = gicr_read_typer(rdistif_base);
269 		if (mpidr_to_core_pos) {
270 			mpidr = mpidr_from_gicr_typer(typer_val);
271 			proc_num = mpidr_to_core_pos(mpidr);
272 		} else {
273 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
274 				TYPER_PROC_NUM_MASK;
275 		}
276 		assert(proc_num < rdistif_num);
277 		rdistif_base_addrs[proc_num] = rdistif_base;
278 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
279 	} while (!(typer_val & TYPER_LAST_BIT));
280 }
281 
282 /*******************************************************************************
283  * Helper function to configure the default attributes of SPIs.
284  ******************************************************************************/
285 void gicv3_spis_configure_defaults(uintptr_t gicd_base)
286 {
287 	unsigned int index, num_ints;
288 
289 	num_ints = gicd_read_typer(gicd_base);
290 	num_ints &= TYPER_IT_LINES_NO_MASK;
291 	num_ints = (num_ints + 1) << 5;
292 
293 	/*
294 	 * Treat all SPIs as G1NS by default. The number of interrupts is
295 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
296 	 */
297 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
298 		gicd_write_igroupr(gicd_base, index, ~0U);
299 
300 	/* Setup the default SPI priorities doing four at a time */
301 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
302 		gicd_write_ipriorityr(gicd_base,
303 				      index,
304 				      GICD_IPRIORITYR_DEF_VAL);
305 
306 	/*
307 	 * Treat all SPIs as level triggered by default, write 16 at
308 	 * a time
309 	 */
310 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
311 		gicd_write_icfgr(gicd_base, index, 0);
312 }
313 
314 /*******************************************************************************
315  * Helper function to configure secure G0 and G1S SPIs.
316  ******************************************************************************/
317 void gicv3_secure_spis_configure(uintptr_t gicd_base,
318 				     unsigned int num_ints,
319 				     const unsigned int *sec_intr_list,
320 				     unsigned int int_grp)
321 {
322 	unsigned int index, irq_num;
323 	uint64_t gic_affinity_val;
324 
325 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
326 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
327 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
328 
329 	for (index = 0; index < num_ints; index++) {
330 		irq_num = sec_intr_list[index];
331 		if (irq_num >= MIN_SPI_ID) {
332 
333 			/* Configure this interrupt as a secure interrupt */
334 			gicd_clr_igroupr(gicd_base, irq_num);
335 
336 			/* Configure this interrupt as G0 or a G1S interrupt */
337 			if (int_grp == INTR_GROUP1S)
338 				gicd_set_igrpmodr(gicd_base, irq_num);
339 			else
340 				gicd_clr_igrpmodr(gicd_base, irq_num);
341 
342 			/* Set the priority of this interrupt */
343 			gicd_set_ipriorityr(gicd_base,
344 					      irq_num,
345 					      GIC_HIGHEST_SEC_PRIORITY);
346 
347 			/* Target SPIs to the primary CPU */
348 			gic_affinity_val =
349 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
350 			gicd_write_irouter(gicd_base,
351 					   irq_num,
352 					   gic_affinity_val);
353 
354 			/* Enable this interrupt */
355 			gicd_set_isenabler(gicd_base, irq_num);
356 		}
357 	}
358 
359 }
360 
361 /*******************************************************************************
362  * Helper function to configure the default attributes of SPIs.
363  ******************************************************************************/
364 void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
365 {
366 	unsigned int index;
367 
368 	/*
369 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
370 	 * more scalable approach as it avoids clearing the enable bits in the
371 	 * GICD_CTLR
372 	 */
373 	gicr_write_icenabler0(gicr_base, ~0);
374 	gicr_wait_for_pending_write(gicr_base);
375 
376 	/* Treat all SGIs/PPIs as G1NS by default. */
377 	gicr_write_igroupr0(gicr_base, ~0U);
378 
379 	/* Setup the default PPI/SGI priorities doing four at a time */
380 	for (index = 0; index < MIN_SPI_ID; index += 4)
381 		gicr_write_ipriorityr(gicr_base,
382 				      index,
383 				      GICD_IPRIORITYR_DEF_VAL);
384 
385 	/* Configure all PPIs as level triggered by default */
386 	gicr_write_icfgr1(gicr_base, 0);
387 }
388 
389 /*******************************************************************************
390  * Helper function to configure secure G0 and G1S SPIs.
391  ******************************************************************************/
392 void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
393 					unsigned int num_ints,
394 					const unsigned int *sec_intr_list,
395 					unsigned int int_grp)
396 {
397 	unsigned int index, irq_num;
398 
399 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
400 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
401 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
402 
403 	for (index = 0; index < num_ints; index++) {
404 		irq_num = sec_intr_list[index];
405 		if (irq_num < MIN_SPI_ID) {
406 
407 			/* Configure this interrupt as a secure interrupt */
408 			gicr_clr_igroupr0(gicr_base, irq_num);
409 
410 			/* Configure this interrupt as G0 or a G1S interrupt */
411 			if (int_grp == INTR_GROUP1S)
412 				gicr_set_igrpmodr0(gicr_base, irq_num);
413 			else
414 				gicr_clr_igrpmodr0(gicr_base, irq_num);
415 
416 			/* Set the priority of this interrupt */
417 			gicr_set_ipriorityr(gicr_base,
418 					    irq_num,
419 					    GIC_HIGHEST_SEC_PRIORITY);
420 
421 			/* Enable this interrupt */
422 			gicr_set_isenabler0(gicr_base, irq_num);
423 		}
424 	}
425 }
426