xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision 61f72a34250d063da67f4fc2b0eb8c3fda3376be)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <interrupt_props.h>
13 #include "../common/gic_common_private.h"
14 #include "gicv3_private.h"
15 
16 /*
17  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
18  * interrupt `id`, 32 interrupt IDs at a time.
19  */
20 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
21 {
22 	unsigned n = id >> IGRPMODR_SHIFT;
23 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
24 }
25 
26 /*
27  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
28  * interrupt `id`, 32 interrupt IDs at a time.
29  */
30 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
31 {
32 	unsigned n = id >> IGRPMODR_SHIFT;
33 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
34 }
35 
36 /*
37  * Accessor to get the bit corresponding to interrupt ID
38  * in GIC Distributor IGRPMODR.
39  */
40 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
41 {
42 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
43 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
44 
45 	return (reg_val >> bit_num) & 0x1;
46 }
47 
48 /*
49  * Accessor to set the bit corresponding to interrupt ID
50  * in GIC Distributor IGRPMODR.
51  */
52 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
53 {
54 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
55 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
56 
57 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
58 }
59 
60 /*
61  * Accessor to clear the bit corresponding to interrupt ID
62  * in GIC Distributor IGRPMODR.
63  */
64 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
65 {
66 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
67 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
68 
69 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
70 }
71 
72 /*
73  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
74  * interrupt `id`, 4 interrupts IDs at a time.
75  */
76 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
77 {
78 	unsigned n = id >> IPRIORITYR_SHIFT;
79 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
80 }
81 
82 /*
83  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
84  * interrupt `id`, 4 interrupts IDs at a time.
85  */
86 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
87 {
88 	unsigned n = id >> IPRIORITYR_SHIFT;
89 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
90 }
91 
92 /*
93  * Accessor to get the bit corresponding to interrupt ID
94  * from GIC Re-distributor IGROUPR0.
95  */
96 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
97 {
98 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
99 	unsigned int reg_val = gicr_read_igroupr0(base);
100 
101 	return (reg_val >> bit_num) & 0x1;
102 }
103 
104 /*
105  * Accessor to set the bit corresponding to interrupt ID
106  * in GIC Re-distributor IGROUPR0.
107  */
108 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
109 {
110 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
111 	unsigned int reg_val = gicr_read_igroupr0(base);
112 
113 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
114 }
115 
116 /*
117  * Accessor to clear the bit corresponding to interrupt ID
118  * in GIC Re-distributor IGROUPR0.
119  */
120 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
121 {
122 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
123 	unsigned int reg_val = gicr_read_igroupr0(base);
124 
125 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
126 }
127 
128 /*
129  * Accessor to get the bit corresponding to interrupt ID
130  * from GIC Re-distributor IGRPMODR0.
131  */
132 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
133 {
134 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
135 	unsigned int reg_val = gicr_read_igrpmodr0(base);
136 
137 	return (reg_val >> bit_num) & 0x1;
138 }
139 
140 /*
141  * Accessor to set the bit corresponding to interrupt ID
142  * in GIC Re-distributor IGRPMODR0.
143  */
144 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
145 {
146 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
147 	unsigned int reg_val = gicr_read_igrpmodr0(base);
148 
149 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
150 }
151 
152 /*
153  * Accessor to clear the bit corresponding to interrupt ID
154  * in GIC Re-distributor IGRPMODR0.
155  */
156 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
157 {
158 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
159 	unsigned int reg_val = gicr_read_igrpmodr0(base);
160 
161 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
162 }
163 
164 /*
165  * Accessor to set the bit corresponding to interrupt ID
166  * in GIC Re-distributor ISENABLER0.
167  */
168 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
169 {
170 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
171 
172 	gicr_write_isenabler0(base, (1 << bit_num));
173 }
174 
175 /*
176  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
177  * ICENABLER0.
178  */
179 void gicr_set_icenabler0(uintptr_t base, unsigned int id)
180 {
181 	unsigned bit_num = id & ((1 << ICENABLER_SHIFT) - 1);
182 
183 	gicr_write_icenabler0(base, (1 << bit_num));
184 }
185 
186 /*
187  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
188  * ISACTIVER0.
189  */
190 unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
191 {
192 	unsigned bit_num = id & ((1 << ISACTIVER_SHIFT) - 1);
193 	unsigned int reg_val = gicr_read_isactiver0(base);
194 
195 	return (reg_val >> bit_num) & 0x1;
196 }
197 
198 /*
199  * Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor
200  * ICPENDRR0.
201  */
202 void gicr_set_icpendr0(uintptr_t base, unsigned int id)
203 {
204 	unsigned bit_num = id & ((1 << ICPENDR_SHIFT) - 1);
205 
206 	gicr_write_icpendr0(base, (1 << bit_num));
207 }
208 
209 /*
210  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
211  * ISPENDR0.
212  */
213 void gicr_set_ispendr0(uintptr_t base, unsigned int id)
214 {
215 	unsigned bit_num = id & ((1 << ISPENDR_SHIFT) - 1);
216 
217 	gicr_write_ispendr0(base, (1 << bit_num));
218 }
219 
220 /*
221  * Accessor to set the byte corresponding to interrupt ID
222  * in GIC Re-distributor IPRIORITYR.
223  */
224 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
225 {
226 	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
227 }
228 
229 /*
230  * Accessor to set the bit fields corresponding to interrupt ID
231  * in GIC Re-distributor ICFGR0.
232  */
233 void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg)
234 {
235 	/* Interrupt configuration is a 2-bit field */
236 	unsigned int bit_num = id & ((1 << ICFGR_SHIFT) - 1);
237 	unsigned int bit_shift = bit_num << 1;
238 
239 	uint32_t reg_val = gicr_read_icfgr0(base);
240 
241 	/* Clear the field, and insert required configuration */
242 	reg_val &= ~(GIC_CFG_MASK << bit_shift);
243 	reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
244 
245 	gicr_write_icfgr0(base, reg_val);
246 }
247 
248 /*
249  * Accessor to set the bit fields corresponding to interrupt ID
250  * in GIC Re-distributor ICFGR1.
251  */
252 void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg)
253 {
254 	/* Interrupt configuration is a 2-bit field */
255 	unsigned int bit_num = id & ((1 << ICFGR_SHIFT) - 1);
256 	unsigned int bit_shift = bit_num << 1;
257 
258 	uint32_t reg_val = gicr_read_icfgr1(base);
259 
260 	/* Clear the field, and insert required configuration */
261 	reg_val &= ~(GIC_CFG_MASK << bit_shift);
262 	reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
263 
264 	gicr_write_icfgr1(base, reg_val);
265 }
266 
267 /******************************************************************************
268  * This function marks the core as awake in the re-distributor and
269  * ensures that the interface is active.
270  *****************************************************************************/
271 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
272 {
273 	/*
274 	 * The WAKER_PS_BIT should be changed to 0
275 	 * only when WAKER_CA_BIT is 1.
276 	 */
277 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
278 
279 	/* Mark the connected core as awake */
280 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
281 
282 	/* Wait till the WAKER_CA_BIT changes to 0 */
283 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
284 		;
285 }
286 
287 
288 /******************************************************************************
289  * This function marks the core as asleep in the re-distributor and ensures
290  * that the interface is quiescent.
291  *****************************************************************************/
292 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
293 {
294 	/* Mark the connected core as asleep */
295 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
296 
297 	/* Wait till the WAKER_CA_BIT changes to 1 */
298 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
299 		;
300 }
301 
302 
303 /*******************************************************************************
304  * This function probes the Redistributor frames when the driver is initialised
305  * and saves their base addresses. These base addresses are used later to
306  * initialise each Redistributor interface.
307  ******************************************************************************/
308 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
309 					unsigned int rdistif_num,
310 					uintptr_t gicr_base,
311 					mpidr_hash_fn mpidr_to_core_pos)
312 {
313 	u_register_t mpidr;
314 	unsigned int proc_num;
315 	unsigned long long typer_val;
316 	uintptr_t rdistif_base = gicr_base;
317 
318 	assert(rdistif_base_addrs);
319 
320 	/*
321 	 * Iterate over the Redistributor frames. Store the base address of each
322 	 * frame in the platform provided array. Use the "Processor Number"
323 	 * field to index into the array if the platform has not provided a hash
324 	 * function to convert an MPIDR (obtained from the "Affinity Value"
325 	 * field into a linear index.
326 	 */
327 	do {
328 		typer_val = gicr_read_typer(rdistif_base);
329 		if (mpidr_to_core_pos) {
330 			mpidr = mpidr_from_gicr_typer(typer_val);
331 			proc_num = mpidr_to_core_pos(mpidr);
332 		} else {
333 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
334 				TYPER_PROC_NUM_MASK;
335 		}
336 		assert(proc_num < rdistif_num);
337 		rdistif_base_addrs[proc_num] = rdistif_base;
338 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
339 	} while (!(typer_val & TYPER_LAST_BIT));
340 }
341 
342 /*******************************************************************************
343  * Helper function to configure the default attributes of SPIs.
344  ******************************************************************************/
345 void gicv3_spis_config_defaults(uintptr_t gicd_base)
346 {
347 	unsigned int index, num_ints;
348 
349 	num_ints = gicd_read_typer(gicd_base);
350 	num_ints &= TYPER_IT_LINES_NO_MASK;
351 	num_ints = (num_ints + 1) << 5;
352 
353 	/*
354 	 * Treat all SPIs as G1NS by default. The number of interrupts is
355 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
356 	 */
357 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
358 		gicd_write_igroupr(gicd_base, index, ~0U);
359 
360 	/* Setup the default SPI priorities doing four at a time */
361 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
362 		gicd_write_ipriorityr(gicd_base,
363 				      index,
364 				      GICD_IPRIORITYR_DEF_VAL);
365 
366 	/*
367 	 * Treat all SPIs as level triggered by default, write 16 at
368 	 * a time
369 	 */
370 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
371 		gicd_write_icfgr(gicd_base, index, 0);
372 }
373 
374 #if !ERROR_DEPRECATED
375 /*******************************************************************************
376  * Helper function to configure secure G0 and G1S SPIs.
377  ******************************************************************************/
378 void gicv3_secure_spis_config(uintptr_t gicd_base,
379 				     unsigned int num_ints,
380 				     const unsigned int *sec_intr_list,
381 				     unsigned int int_grp)
382 {
383 	unsigned int index, irq_num;
384 	unsigned long long gic_affinity_val;
385 
386 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
387 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
388 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
389 
390 	for (index = 0; index < num_ints; index++) {
391 		irq_num = sec_intr_list[index];
392 		if (irq_num >= MIN_SPI_ID) {
393 
394 			/* Configure this interrupt as a secure interrupt */
395 			gicd_clr_igroupr(gicd_base, irq_num);
396 
397 			/* Configure this interrupt as G0 or a G1S interrupt */
398 			if (int_grp == INTR_GROUP1S)
399 				gicd_set_igrpmodr(gicd_base, irq_num);
400 			else
401 				gicd_clr_igrpmodr(gicd_base, irq_num);
402 
403 			/* Set the priority of this interrupt */
404 			gicd_set_ipriorityr(gicd_base,
405 					      irq_num,
406 					      GIC_HIGHEST_SEC_PRIORITY);
407 
408 			/* Target SPIs to the primary CPU */
409 			gic_affinity_val =
410 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
411 			gicd_write_irouter(gicd_base,
412 					   irq_num,
413 					   gic_affinity_val);
414 
415 			/* Enable this interrupt */
416 			gicd_set_isenabler(gicd_base, irq_num);
417 		}
418 	}
419 
420 }
421 #endif
422 
423 /*******************************************************************************
424  * Helper function to configure properties of secure SPIs
425  ******************************************************************************/
426 unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
427 		const interrupt_prop_t *interrupt_props,
428 		unsigned int interrupt_props_num)
429 {
430 	unsigned int i;
431 	const interrupt_prop_t *current_prop;
432 	unsigned long long gic_affinity_val;
433 	unsigned int ctlr_enable = 0;
434 
435 	/* Make sure there's a valid property array */
436 	assert(interrupt_props_num > 0 ? interrupt_props != NULL : 1);
437 
438 	for (i = 0; i < interrupt_props_num; i++) {
439 		current_prop = &interrupt_props[i];
440 
441 		if (current_prop->intr_num < MIN_SPI_ID)
442 			continue;
443 
444 		/* Configure this interrupt as a secure interrupt */
445 		gicd_clr_igroupr(gicd_base, current_prop->intr_num);
446 
447 		/* Configure this interrupt as G0 or a G1S interrupt */
448 		assert((current_prop->intr_grp == INTR_GROUP0) ||
449 				(current_prop->intr_grp == INTR_GROUP1S));
450 		if (current_prop->intr_grp == INTR_GROUP1S) {
451 			gicd_set_igrpmodr(gicd_base, current_prop->intr_num);
452 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
453 		} else {
454 			gicd_clr_igrpmodr(gicd_base, current_prop->intr_num);
455 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
456 		}
457 
458 		/* Set interrupt configuration */
459 		gicd_set_icfgr(gicd_base, current_prop->intr_num,
460 				current_prop->intr_cfg);
461 
462 		/* Set the priority of this interrupt */
463 		gicd_set_ipriorityr(gicd_base, current_prop->intr_num,
464 				current_prop->intr_pri);
465 
466 		/* Target SPIs to the primary CPU */
467 		gic_affinity_val = gicd_irouter_val_from_mpidr(read_mpidr(), 0);
468 		gicd_write_irouter(gicd_base, current_prop->intr_num,
469 				gic_affinity_val);
470 
471 		/* Enable this interrupt */
472 		gicd_set_isenabler(gicd_base, current_prop->intr_num);
473 	}
474 
475 	return ctlr_enable;
476 }
477 
478 /*******************************************************************************
479  * Helper function to configure the default attributes of SPIs.
480  ******************************************************************************/
481 void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
482 {
483 	unsigned int index;
484 
485 	/*
486 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
487 	 * more scalable approach as it avoids clearing the enable bits in the
488 	 * GICD_CTLR
489 	 */
490 	gicr_write_icenabler0(gicr_base, ~0);
491 	gicr_wait_for_pending_write(gicr_base);
492 
493 	/* Treat all SGIs/PPIs as G1NS by default. */
494 	gicr_write_igroupr0(gicr_base, ~0U);
495 
496 	/* Setup the default PPI/SGI priorities doing four at a time */
497 	for (index = 0; index < MIN_SPI_ID; index += 4)
498 		gicr_write_ipriorityr(gicr_base,
499 				      index,
500 				      GICD_IPRIORITYR_DEF_VAL);
501 
502 	/* Configure all PPIs as level triggered by default */
503 	gicr_write_icfgr1(gicr_base, 0);
504 }
505 
506 #if !ERROR_DEPRECATED
507 /*******************************************************************************
508  * Helper function to configure secure G0 and G1S SPIs.
509  ******************************************************************************/
510 void gicv3_secure_ppi_sgi_config(uintptr_t gicr_base,
511 					unsigned int num_ints,
512 					const unsigned int *sec_intr_list,
513 					unsigned int int_grp)
514 {
515 	unsigned int index, irq_num;
516 
517 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
518 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
519 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
520 
521 	for (index = 0; index < num_ints; index++) {
522 		irq_num = sec_intr_list[index];
523 		if (irq_num < MIN_SPI_ID) {
524 
525 			/* Configure this interrupt as a secure interrupt */
526 			gicr_clr_igroupr0(gicr_base, irq_num);
527 
528 			/* Configure this interrupt as G0 or a G1S interrupt */
529 			if (int_grp == INTR_GROUP1S)
530 				gicr_set_igrpmodr0(gicr_base, irq_num);
531 			else
532 				gicr_clr_igrpmodr0(gicr_base, irq_num);
533 
534 			/* Set the priority of this interrupt */
535 			gicr_set_ipriorityr(gicr_base,
536 					    irq_num,
537 					    GIC_HIGHEST_SEC_PRIORITY);
538 
539 			/* Enable this interrupt */
540 			gicr_set_isenabler0(gicr_base, irq_num);
541 		}
542 	}
543 }
544 #endif
545 
546 /*******************************************************************************
547  * Helper function to configure properties of secure G0 and G1S PPIs and SGIs.
548  ******************************************************************************/
549 unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
550 		const interrupt_prop_t *interrupt_props,
551 		unsigned int interrupt_props_num)
552 {
553 	unsigned int i;
554 	const interrupt_prop_t *current_prop;
555 	unsigned int ctlr_enable = 0;
556 
557 	/* Make sure there's a valid property array */
558 	assert(interrupt_props_num > 0 ? interrupt_props != NULL : 1);
559 
560 	for (i = 0; i < interrupt_props_num; i++) {
561 		current_prop = &interrupt_props[i];
562 
563 		if (current_prop->intr_num >= MIN_SPI_ID)
564 			continue;
565 
566 		/* Configure this interrupt as a secure interrupt */
567 		gicr_clr_igroupr0(gicr_base, current_prop->intr_num);
568 
569 		/* Configure this interrupt as G0 or a G1S interrupt */
570 		assert((current_prop->intr_grp == INTR_GROUP0) ||
571 				(current_prop->intr_grp == INTR_GROUP1S));
572 		if (current_prop->intr_grp == INTR_GROUP1S) {
573 			gicr_set_igrpmodr0(gicr_base, current_prop->intr_num);
574 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
575 		} else {
576 			gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num);
577 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
578 		}
579 
580 		/* Set the priority of this interrupt */
581 		gicr_set_ipriorityr(gicr_base, current_prop->intr_num,
582 				current_prop->intr_pri);
583 
584 		/*
585 		 * Set interrupt configuration for PPIs. Configuration for SGIs
586 		 * are ignored.
587 		 */
588 		if ((current_prop->intr_num >= MIN_PPI_ID) &&
589 				(current_prop->intr_num < MIN_SPI_ID)) {
590 			gicr_set_icfgr1(gicr_base, current_prop->intr_num,
591 					current_prop->intr_cfg);
592 		}
593 
594 		/* Enable this interrupt */
595 		gicr_set_isenabler0(gicr_base, current_prop->intr_num);
596 	}
597 
598 	return ctlr_enable;
599 }
600