xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision 38a7861450409b6b234e12f15b8b516aa71b6610)
1 /*
2  * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <debug.h>
35 #include <gic_common.h>
36 #include "gicv3_private.h"
37 
38 /*
39  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
40  * interrupt `id`, 32 interrupt IDs at a time.
41  */
42 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
43 {
44 	unsigned n = id >> IGRPMODR_SHIFT;
45 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
46 }
47 
48 /*
49  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
50  * interrupt `id`, 32 interrupt IDs at a time.
51  */
52 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
53 {
54 	unsigned n = id >> IGRPMODR_SHIFT;
55 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
56 }
57 
58 /*
59  * Accessor to get the bit corresponding to interrupt ID
60  * in GIC Distributor IGRPMODR.
61  */
62 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
63 {
64 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
65 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
66 
67 	return (reg_val >> bit_num) & 0x1;
68 }
69 
70 /*
71  * Accessor to set the bit corresponding to interrupt ID
72  * in GIC Distributor IGRPMODR.
73  */
74 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
75 {
76 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
77 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
78 
79 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
80 }
81 
82 /*
83  * Accessor to clear the bit corresponding to interrupt ID
84  * in GIC Distributor IGRPMODR.
85  */
86 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
87 {
88 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
89 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
90 
91 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
92 }
93 
94 /*
95  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
96  * interrupt `id`, 4 interrupts IDs at a time.
97  */
98 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
99 {
100 	unsigned n = id >> IPRIORITYR_SHIFT;
101 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
102 }
103 
104 /*
105  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
106  * interrupt `id`, 4 interrupts IDs at a time.
107  */
108 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
109 {
110 	unsigned n = id >> IPRIORITYR_SHIFT;
111 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
112 }
113 
114 /*
115  * Accessor to get the bit corresponding to interrupt ID
116  * from GIC Re-distributor IGROUPR0.
117  */
118 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
119 {
120 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
121 	unsigned int reg_val = gicr_read_igroupr0(base);
122 
123 	return (reg_val >> bit_num) & 0x1;
124 }
125 
126 /*
127  * Accessor to set the bit corresponding to interrupt ID
128  * in GIC Re-distributor IGROUPR0.
129  */
130 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
131 {
132 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
133 	unsigned int reg_val = gicr_read_igroupr0(base);
134 
135 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
136 }
137 
138 /*
139  * Accessor to clear the bit corresponding to interrupt ID
140  * in GIC Re-distributor IGROUPR0.
141  */
142 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
143 {
144 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
145 	unsigned int reg_val = gicr_read_igroupr0(base);
146 
147 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
148 }
149 
150 /*
151  * Accessor to get the bit corresponding to interrupt ID
152  * from GIC Re-distributor IGRPMODR0.
153  */
154 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
155 {
156 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
157 	unsigned int reg_val = gicr_read_igrpmodr0(base);
158 
159 	return (reg_val >> bit_num) & 0x1;
160 }
161 
162 /*
163  * Accessor to set the bit corresponding to interrupt ID
164  * in GIC Re-distributor IGRPMODR0.
165  */
166 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
167 {
168 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
169 	unsigned int reg_val = gicr_read_igrpmodr0(base);
170 
171 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
172 }
173 
174 /*
175  * Accessor to clear the bit corresponding to interrupt ID
176  * in GIC Re-distributor IGRPMODR0.
177  */
178 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
179 {
180 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
181 	unsigned int reg_val = gicr_read_igrpmodr0(base);
182 
183 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
184 }
185 
186 /*
187  * Accessor to set the bit corresponding to interrupt ID
188  * in GIC Re-distributor ISENABLER0.
189  */
190 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
191 {
192 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
193 
194 	gicr_write_isenabler0(base, (1 << bit_num));
195 }
196 
197 /*
198  * Accessor to set the byte corresponding to interrupt ID
199  * in GIC Re-distributor IPRIORITYR.
200  */
201 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
202 {
203 	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
204 }
205 
206 /******************************************************************************
207  * This function marks the core as awake in the re-distributor and
208  * ensures that the interface is active.
209  *****************************************************************************/
210 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
211 {
212 	/*
213 	 * The WAKER_PS_BIT should be changed to 0
214 	 * only when WAKER_CA_BIT is 1.
215 	 */
216 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
217 
218 	/* Mark the connected core as awake */
219 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
220 
221 	/* Wait till the WAKER_CA_BIT changes to 0 */
222 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
223 		;
224 }
225 
226 
227 /******************************************************************************
228  * This function marks the core as asleep in the re-distributor and ensures
229  * that the interface is quiescent.
230  *****************************************************************************/
231 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
232 {
233 	/* Mark the connected core as asleep */
234 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
235 
236 	/* Wait till the WAKER_CA_BIT changes to 1 */
237 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
238 		;
239 }
240 
241 
242 /*******************************************************************************
243  * This function probes the Redistributor frames when the driver is initialised
244  * and saves their base addresses. These base addresses are used later to
245  * initialise each Redistributor interface.
246  ******************************************************************************/
247 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
248 					unsigned int rdistif_num,
249 					uintptr_t gicr_base,
250 					mpidr_hash_fn mpidr_to_core_pos)
251 {
252 	unsigned long mpidr;
253 	unsigned int proc_num;
254 	unsigned long long typer_val;
255 	uintptr_t rdistif_base = gicr_base;
256 
257 	assert(rdistif_base_addrs);
258 
259 	/*
260 	 * Iterate over the Redistributor frames. Store the base address of each
261 	 * frame in the platform provided array. Use the "Processor Number"
262 	 * field to index into the array if the platform has not provided a hash
263 	 * function to convert an MPIDR (obtained from the "Affinity Value"
264 	 * field into a linear index.
265 	 */
266 	do {
267 		typer_val = gicr_read_typer(rdistif_base);
268 		if (mpidr_to_core_pos) {
269 			mpidr = mpidr_from_gicr_typer(typer_val);
270 			proc_num = mpidr_to_core_pos(mpidr);
271 		} else {
272 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
273 				TYPER_PROC_NUM_MASK;
274 		}
275 		assert(proc_num < rdistif_num);
276 		rdistif_base_addrs[proc_num] = rdistif_base;
277 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
278 	} while (!(typer_val & TYPER_LAST_BIT));
279 }
280 
281 /*******************************************************************************
282  * Helper function to configure the default attributes of SPIs.
283  ******************************************************************************/
284 void gicv3_spis_configure_defaults(uintptr_t gicd_base)
285 {
286 	unsigned int index, num_ints;
287 
288 	num_ints = gicd_read_typer(gicd_base);
289 	num_ints &= TYPER_IT_LINES_NO_MASK;
290 	num_ints = (num_ints + 1) << 5;
291 
292 	/*
293 	 * Treat all SPIs as G1NS by default. The number of interrupts is
294 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
295 	 */
296 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
297 		gicd_write_igroupr(gicd_base, index, ~0U);
298 
299 	/* Setup the default SPI priorities doing four at a time */
300 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
301 		gicd_write_ipriorityr(gicd_base,
302 				      index,
303 				      GICD_IPRIORITYR_DEF_VAL);
304 
305 	/*
306 	 * Treat all SPIs as level triggered by default, write 16 at
307 	 * a time
308 	 */
309 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
310 		gicd_write_icfgr(gicd_base, index, 0);
311 }
312 
313 /*******************************************************************************
314  * Helper function to configure secure G0 and G1S SPIs.
315  ******************************************************************************/
316 void gicv3_secure_spis_configure(uintptr_t gicd_base,
317 				     unsigned int num_ints,
318 				     const unsigned int *sec_intr_list,
319 				     unsigned int int_grp)
320 {
321 	unsigned int index, irq_num;
322 	uint64_t gic_affinity_val;
323 
324 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
325 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
326 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
327 
328 	for (index = 0; index < num_ints; index++) {
329 		irq_num = sec_intr_list[index];
330 		if (irq_num >= MIN_SPI_ID) {
331 
332 			/* Configure this interrupt as a secure interrupt */
333 			gicd_clr_igroupr(gicd_base, irq_num);
334 
335 			/* Configure this interrupt as G0 or a G1S interrupt */
336 			if (int_grp == INTR_GROUP1S)
337 				gicd_set_igrpmodr(gicd_base, irq_num);
338 			else
339 				gicd_clr_igrpmodr(gicd_base, irq_num);
340 
341 			/* Set the priority of this interrupt */
342 			gicd_set_ipriorityr(gicd_base,
343 					      irq_num,
344 					      GIC_HIGHEST_SEC_PRIORITY);
345 
346 			/* Target SPIs to the primary CPU */
347 			gic_affinity_val =
348 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
349 			gicd_write_irouter(gicd_base,
350 					   irq_num,
351 					   gic_affinity_val);
352 
353 			/* Enable this interrupt */
354 			gicd_set_isenabler(gicd_base, irq_num);
355 		}
356 	}
357 
358 }
359 
360 /*******************************************************************************
361  * Helper function to configure the default attributes of SPIs.
362  ******************************************************************************/
363 void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
364 {
365 	unsigned int index;
366 
367 	/*
368 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
369 	 * more scalable approach as it avoids clearing the enable bits in the
370 	 * GICD_CTLR
371 	 */
372 	gicr_write_icenabler0(gicr_base, ~0);
373 	gicr_wait_for_pending_write(gicr_base);
374 
375 	/* Treat all SGIs/PPIs as G1NS by default. */
376 	gicr_write_igroupr0(gicr_base, ~0U);
377 
378 	/* Setup the default PPI/SGI priorities doing four at a time */
379 	for (index = 0; index < MIN_SPI_ID; index += 4)
380 		gicr_write_ipriorityr(gicr_base,
381 				      index,
382 				      GICD_IPRIORITYR_DEF_VAL);
383 
384 	/* Configure all PPIs as level triggered by default */
385 	gicr_write_icfgr1(gicr_base, 0);
386 }
387 
388 /*******************************************************************************
389  * Helper function to configure secure G0 and G1S SPIs.
390  ******************************************************************************/
391 void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
392 					unsigned int num_ints,
393 					const unsigned int *sec_intr_list,
394 					unsigned int int_grp)
395 {
396 	unsigned int index, irq_num;
397 
398 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
399 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
400 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
401 
402 	for (index = 0; index < num_ints; index++) {
403 		irq_num = sec_intr_list[index];
404 		if (irq_num < MIN_SPI_ID) {
405 
406 			/* Configure this interrupt as a secure interrupt */
407 			gicr_clr_igroupr0(gicr_base, irq_num);
408 
409 			/* Configure this interrupt as G0 or a G1S interrupt */
410 			if (int_grp == INTR_GROUP1S)
411 				gicr_set_igrpmodr0(gicr_base, irq_num);
412 			else
413 				gicr_clr_igrpmodr0(gicr_base, irq_num);
414 
415 			/* Set the priority of this interrupt */
416 			gicr_set_ipriorityr(gicr_base,
417 					    irq_num,
418 					    GIC_HIGHEST_SEC_PRIORITY);
419 
420 			/* Enable this interrupt */
421 			gicr_set_isenabler0(gicr_base, irq_num);
422 		}
423 	}
424 }
425