xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision 3105f7ba9a3a9f6f0e78761e8bdd4da621254730)
1 /*
2  * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <debug.h>
35 #include <gic_common.h>
36 #include "gicv3_private.h"
37 
38 /*
39  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
40  * interrupt `id`, 32 interrupt IDs at a time.
41  */
42 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
43 {
44 	unsigned n = id >> IGRPMODR_SHIFT;
45 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
46 }
47 
48 /*
49  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
50  * interrupt `id`, 32 interrupt IDs at a time.
51  */
52 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
53 {
54 	unsigned n = id >> IGRPMODR_SHIFT;
55 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
56 }
57 
58 /*
59  * Accessor to get the bit corresponding to interrupt ID
60  * in GIC Distributor IGRPMODR.
61  */
62 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
63 {
64 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
65 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
66 
67 	return (reg_val >> bit_num) & 0x1;
68 }
69 
70 /*
71  * Accessor to set the bit corresponding to interrupt ID
72  * in GIC Distributor IGRPMODR.
73  */
74 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
75 {
76 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
77 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
78 
79 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
80 }
81 
82 /*
83  * Accessor to clear the bit corresponding to interrupt ID
84  * in GIC Distributor IGRPMODR.
85  */
86 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
87 {
88 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
89 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
90 
91 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
92 }
93 
94 /*
95  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
96  * interrupt `id`, 4 interrupts IDs at a time.
97  */
98 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
99 {
100 	unsigned n = id >> IPRIORITYR_SHIFT;
101 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
102 }
103 
104 /*
105  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
106  * interrupt `id`, 4 interrupts IDs at a time.
107  */
108 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
109 {
110 	unsigned n = id >> IPRIORITYR_SHIFT;
111 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
112 }
113 
114 /*
115  * Accessor to get the bit corresponding to interrupt ID
116  * from GIC Re-distributor IGROUPR0.
117  */
118 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
119 {
120 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
121 	unsigned int reg_val = gicr_read_igroupr0(base);
122 
123 	return (reg_val >> bit_num) & 0x1;
124 }
125 
126 /*
127  * Accessor to set the bit corresponding to interrupt ID
128  * in GIC Re-distributor IGROUPR0.
129  */
130 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
131 {
132 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
133 	unsigned int reg_val = gicr_read_igroupr0(base);
134 
135 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
136 }
137 
138 /*
139  * Accessor to clear the bit corresponding to interrupt ID
140  * in GIC Re-distributor IGROUPR0.
141  */
142 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
143 {
144 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
145 	unsigned int reg_val = gicr_read_igroupr0(base);
146 
147 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
148 }
149 
150 /*
151  * Accessor to get the bit corresponding to interrupt ID
152  * from GIC Re-distributor IGRPMODR0.
153  */
154 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
155 {
156 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
157 	unsigned int reg_val = gicr_read_igrpmodr0(base);
158 
159 	return (reg_val >> bit_num) & 0x1;
160 }
161 
162 /*
163  * Accessor to set the bit corresponding to interrupt ID
164  * in GIC Re-distributor IGRPMODR0.
165  */
166 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
167 {
168 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
169 	unsigned int reg_val = gicr_read_igrpmodr0(base);
170 
171 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
172 }
173 
174 /*
175  * Accessor to clear the bit corresponding to interrupt ID
176  * in GIC Re-distributor IGRPMODR0.
177  */
178 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
179 {
180 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
181 	unsigned int reg_val = gicr_read_igrpmodr0(base);
182 
183 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
184 }
185 
186 /*
187  * Accessor to set the bit corresponding to interrupt ID
188  * in GIC Re-distributor ISENABLER0.
189  */
190 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
191 {
192 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
193 
194 	gicr_write_isenabler0(base, (1 << bit_num));
195 }
196 
197 /******************************************************************************
198  * This function marks the core as awake in the re-distributor and
199  * ensures that the interface is active.
200  *****************************************************************************/
201 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
202 {
203 	/*
204 	 * The WAKER_PS_BIT should be changed to 0
205 	 * only when WAKER_CA_BIT is 1.
206 	 */
207 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
208 
209 	/* Mark the connected core as awake */
210 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
211 
212 	/* Wait till the WAKER_CA_BIT changes to 0 */
213 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
214 		;
215 }
216 
217 
218 /******************************************************************************
219  * This function marks the core as asleep in the re-distributor and ensures
220  * that the interface is quiescent.
221  *****************************************************************************/
222 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
223 {
224 	/* Mark the connected core as asleep */
225 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
226 
227 	/* Wait till the WAKER_CA_BIT changes to 1 */
228 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
229 		;
230 }
231 
232 
233 /*******************************************************************************
234  * This function probes the Redistributor frames when the driver is initialised
235  * and saves their base addresses. These base addresses are used later to
236  * initialise each Redistributor interface.
237  ******************************************************************************/
238 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
239 					unsigned int rdistif_num,
240 					uintptr_t gicr_base,
241 					mpidr_hash_fn mpidr_to_core_pos)
242 {
243 	unsigned long mpidr;
244 	unsigned int proc_num;
245 	unsigned long long typer_val;
246 	uintptr_t rdistif_base = gicr_base;
247 
248 	assert(rdistif_base_addrs);
249 
250 	/*
251 	 * Iterate over the Redistributor frames. Store the base address of each
252 	 * frame in the platform provided array. Use the "Processor Number"
253 	 * field to index into the array if the platform has not provided a hash
254 	 * function to convert an MPIDR (obtained from the "Affinity Value"
255 	 * field into a linear index.
256 	 */
257 	do {
258 		typer_val = gicr_read_typer(rdistif_base);
259 		if (mpidr_to_core_pos) {
260 			mpidr = mpidr_from_gicr_typer(typer_val);
261 			proc_num = mpidr_to_core_pos(mpidr);
262 		} else {
263 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
264 				TYPER_PROC_NUM_MASK;
265 		}
266 		assert(proc_num < rdistif_num);
267 		rdistif_base_addrs[proc_num] = rdistif_base;
268 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
269 	} while (!(typer_val & TYPER_LAST_BIT));
270 }
271 
272 /*******************************************************************************
273  * Helper function to configure the default attributes of SPIs.
274  ******************************************************************************/
275 void gicv3_spis_configure_defaults(uintptr_t gicd_base)
276 {
277 	unsigned int index, num_ints;
278 
279 	num_ints = gicd_read_typer(gicd_base);
280 	num_ints &= TYPER_IT_LINES_NO_MASK;
281 	num_ints = (num_ints + 1) << 5;
282 
283 	/*
284 	 * Treat all SPIs as G1NS by default. The number of interrupts is
285 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
286 	 */
287 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
288 		gicd_write_igroupr(gicd_base, index, ~0U);
289 
290 	/* Setup the default SPI priorities doing four at a time */
291 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
292 		gicd_write_ipriorityr(gicd_base,
293 				      index,
294 				      GICD_IPRIORITYR_DEF_VAL);
295 
296 	/*
297 	 * Treat all SPIs as level triggered by default, write 16 at
298 	 * a time
299 	 */
300 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
301 		gicd_write_icfgr(gicd_base, index, 0);
302 }
303 
304 /*******************************************************************************
305  * Helper function to configure secure G0 and G1S SPIs.
306  ******************************************************************************/
307 void gicv3_secure_spis_configure(uintptr_t gicd_base,
308 				     unsigned int num_ints,
309 				     const unsigned int *sec_intr_list,
310 				     unsigned int int_grp)
311 {
312 	unsigned int index, irq_num;
313 	uint64_t gic_affinity_val;
314 
315 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
316 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
317 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
318 
319 	for (index = 0; index < num_ints; index++) {
320 		irq_num = sec_intr_list[index];
321 		if (irq_num >= MIN_SPI_ID) {
322 
323 			/* Configure this interrupt as a secure interrupt */
324 			gicd_clr_igroupr(gicd_base, irq_num);
325 
326 			/* Configure this interrupt as G0 or a G1S interrupt */
327 			if (int_grp == INTR_GROUP1S)
328 				gicd_set_igrpmodr(gicd_base, irq_num);
329 			else
330 				gicd_clr_igrpmodr(gicd_base, irq_num);
331 
332 			/* Set the priority of this interrupt */
333 			gicd_write_ipriorityr(gicd_base,
334 					      irq_num,
335 					      GIC_HIGHEST_SEC_PRIORITY);
336 
337 			/* Target SPIs to the primary CPU */
338 			gic_affinity_val =
339 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
340 			gicd_write_irouter(gicd_base,
341 					   irq_num,
342 					   gic_affinity_val);
343 
344 			/* Enable this interrupt */
345 			gicd_set_isenabler(gicd_base, irq_num);
346 		}
347 	}
348 
349 }
350 
351 /*******************************************************************************
352  * Helper function to configure the default attributes of SPIs.
353  ******************************************************************************/
354 void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
355 {
356 	unsigned int index;
357 
358 	/*
359 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
360 	 * more scalable approach as it avoids clearing the enable bits in the
361 	 * GICD_CTLR
362 	 */
363 	gicr_write_icenabler0(gicr_base, ~0);
364 	gicr_wait_for_pending_write(gicr_base);
365 
366 	/* Treat all SGIs/PPIs as G1NS by default. */
367 	gicr_write_igroupr0(gicr_base, ~0U);
368 
369 	/* Setup the default PPI/SGI priorities doing four at a time */
370 	for (index = 0; index < MIN_SPI_ID; index += 4)
371 		gicr_write_ipriorityr(gicr_base,
372 				      index,
373 				      GICD_IPRIORITYR_DEF_VAL);
374 
375 	/* Configure all PPIs as level triggered by default */
376 	gicr_write_icfgr1(gicr_base, 0);
377 }
378 
379 /*******************************************************************************
380  * Helper function to configure secure G0 and G1S SPIs.
381  ******************************************************************************/
382 void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
383 					unsigned int num_ints,
384 					const unsigned int *sec_intr_list,
385 					unsigned int int_grp)
386 {
387 	unsigned int index, irq_num;
388 
389 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
390 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
391 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
392 
393 	for (index = 0; index < num_ints; index++) {
394 		irq_num = sec_intr_list[index];
395 		if (irq_num < MIN_SPI_ID) {
396 
397 			/* Configure this interrupt as a secure interrupt */
398 			gicr_clr_igroupr0(gicr_base, irq_num);
399 
400 			/* Configure this interrupt as G0 or a G1S interrupt */
401 			if (int_grp == INTR_GROUP1S)
402 				gicr_set_igrpmodr0(gicr_base, irq_num);
403 			else
404 				gicr_clr_igrpmodr0(gicr_base, irq_num);
405 
406 			/* Set the priority of this interrupt */
407 			gicr_write_ipriorityr(gicr_base,
408 					    irq_num,
409 					    GIC_HIGHEST_SEC_PRIORITY);
410 
411 			/* Enable this interrupt */
412 			gicr_set_isenabler0(gicr_base, irq_num);
413 		}
414 	}
415 }
416