xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision 1dcc28cfbac5dae3992ad9581f9ea68f6cb339c1)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <interrupt_props.h>
13 #include "../common/gic_common_private.h"
14 #include "gicv3_private.h"
15 
16 /*
17  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
18  * interrupt `id`, 32 interrupt IDs at a time.
19  */
20 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
21 {
22 	unsigned int n = id >> IGRPMODR_SHIFT;
23 
24 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
25 }
26 
27 /*
28  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
29  * interrupt `id`, 32 interrupt IDs at a time.
30  */
31 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
32 {
33 	unsigned int n = id >> IGRPMODR_SHIFT;
34 
35 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
36 }
37 
38 /*
39  * Accessor to get the bit corresponding to interrupt ID
40  * in GIC Distributor IGRPMODR.
41  */
42 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
43 {
44 	unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
45 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
46 
47 	return (reg_val >> bit_num) & 0x1U;
48 }
49 
50 /*
51  * Accessor to set the bit corresponding to interrupt ID
52  * in GIC Distributor IGRPMODR.
53  */
54 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
55 {
56 	unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
57 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
58 
59 	gicd_write_igrpmodr(base, id, reg_val | (1U << bit_num));
60 }
61 
62 /*
63  * Accessor to clear the bit corresponding to interrupt ID
64  * in GIC Distributor IGRPMODR.
65  */
66 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
67 {
68 	unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
69 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
70 
71 	gicd_write_igrpmodr(base, id, reg_val & ~(1U << bit_num));
72 }
73 
74 /*
75  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
76  * interrupt `id`, 4 interrupts IDs at a time.
77  */
78 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
79 {
80 	unsigned int n = id >> IPRIORITYR_SHIFT;
81 
82 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
83 }
84 
85 /*
86  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
87  * interrupt `id`, 4 interrupts IDs at a time.
88  */
89 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
90 {
91 	unsigned int n = id >> IPRIORITYR_SHIFT;
92 
93 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
94 }
95 
96 /*
97  * Accessor to get the bit corresponding to interrupt ID
98  * from GIC Re-distributor IGROUPR0.
99  */
100 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
101 {
102 	unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
103 	unsigned int reg_val = gicr_read_igroupr0(base);
104 
105 	return (reg_val >> bit_num) & 0x1U;
106 }
107 
108 /*
109  * Accessor to set the bit corresponding to interrupt ID
110  * in GIC Re-distributor IGROUPR0.
111  */
112 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
113 {
114 	unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
115 	unsigned int reg_val = gicr_read_igroupr0(base);
116 
117 	gicr_write_igroupr0(base, reg_val | (1U << bit_num));
118 }
119 
120 /*
121  * Accessor to clear the bit corresponding to interrupt ID
122  * in GIC Re-distributor IGROUPR0.
123  */
124 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
125 {
126 	unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
127 	unsigned int reg_val = gicr_read_igroupr0(base);
128 
129 	gicr_write_igroupr0(base, reg_val & ~(1U << bit_num));
130 }
131 
132 /*
133  * Accessor to get the bit corresponding to interrupt ID
134  * from GIC Re-distributor IGRPMODR0.
135  */
136 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
137 {
138 	unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
139 	unsigned int reg_val = gicr_read_igrpmodr0(base);
140 
141 	return (reg_val >> bit_num) & 0x1U;
142 }
143 
144 /*
145  * Accessor to set the bit corresponding to interrupt ID
146  * in GIC Re-distributor IGRPMODR0.
147  */
148 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
149 {
150 	unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
151 	unsigned int reg_val = gicr_read_igrpmodr0(base);
152 
153 	gicr_write_igrpmodr0(base, reg_val | (1U << bit_num));
154 }
155 
156 /*
157  * Accessor to clear the bit corresponding to interrupt ID
158  * in GIC Re-distributor IGRPMODR0.
159  */
160 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
161 {
162 	unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
163 	unsigned int reg_val = gicr_read_igrpmodr0(base);
164 
165 	gicr_write_igrpmodr0(base, reg_val & ~(1U << bit_num));
166 }
167 
168 /*
169  * Accessor to set the bit corresponding to interrupt ID
170  * in GIC Re-distributor ISENABLER0.
171  */
172 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
173 {
174 	unsigned int bit_num = id & ((1U << ISENABLER_SHIFT) - 1U);
175 
176 	gicr_write_isenabler0(base, (1U << bit_num));
177 }
178 
179 /*
180  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
181  * ICENABLER0.
182  */
183 void gicr_set_icenabler0(uintptr_t base, unsigned int id)
184 {
185 	unsigned int bit_num = id & ((1U << ICENABLER_SHIFT) - 1U);
186 
187 	gicr_write_icenabler0(base, (1U << bit_num));
188 }
189 
190 /*
191  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
192  * ISACTIVER0.
193  */
194 unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
195 {
196 	unsigned int bit_num = id & ((1U << ISACTIVER_SHIFT) - 1U);
197 	unsigned int reg_val = gicr_read_isactiver0(base);
198 
199 	return (reg_val >> bit_num) & 0x1U;
200 }
201 
202 /*
203  * Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor
204  * ICPENDRR0.
205  */
206 void gicr_set_icpendr0(uintptr_t base, unsigned int id)
207 {
208 	unsigned int bit_num = id & ((1U << ICPENDR_SHIFT) - 1U);
209 
210 	gicr_write_icpendr0(base, (1U << bit_num));
211 }
212 
213 /*
214  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
215  * ISPENDR0.
216  */
217 void gicr_set_ispendr0(uintptr_t base, unsigned int id)
218 {
219 	unsigned int bit_num = id & ((1U << ISPENDR_SHIFT) - 1U);
220 
221 	gicr_write_ispendr0(base, (1U << bit_num));
222 }
223 
224 /*
225  * Accessor to set the byte corresponding to interrupt ID
226  * in GIC Re-distributor IPRIORITYR.
227  */
228 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
229 {
230 	uint8_t val = pri & GIC_PRI_MASK;
231 
232 	mmio_write_8(base + GICR_IPRIORITYR + id, val);
233 }
234 
235 /*
236  * Accessor to set the bit fields corresponding to interrupt ID
237  * in GIC Re-distributor ICFGR0.
238  */
239 void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg)
240 {
241 	/* Interrupt configuration is a 2-bit field */
242 	unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
243 	unsigned int bit_shift = bit_num << 1U;
244 
245 	uint32_t reg_val = gicr_read_icfgr0(base);
246 
247 	/* Clear the field, and insert required configuration */
248 	reg_val &= ~(GIC_CFG_MASK << bit_shift);
249 	reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
250 
251 	gicr_write_icfgr0(base, reg_val);
252 }
253 
254 /*
255  * Accessor to set the bit fields corresponding to interrupt ID
256  * in GIC Re-distributor ICFGR1.
257  */
258 void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg)
259 {
260 	/* Interrupt configuration is a 2-bit field */
261 	unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
262 	unsigned int bit_shift = bit_num << 1U;
263 
264 	uint32_t reg_val = gicr_read_icfgr1(base);
265 
266 	/* Clear the field, and insert required configuration */
267 	reg_val &= ~(GIC_CFG_MASK << bit_shift);
268 	reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
269 
270 	gicr_write_icfgr1(base, reg_val);
271 }
272 
273 /******************************************************************************
274  * This function marks the core as awake in the re-distributor and
275  * ensures that the interface is active.
276  *****************************************************************************/
277 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
278 {
279 	/*
280 	 * The WAKER_PS_BIT should be changed to 0
281 	 * only when WAKER_CA_BIT is 1.
282 	 */
283 	assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U);
284 
285 	/* Mark the connected core as awake */
286 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
287 
288 	/* Wait till the WAKER_CA_BIT changes to 0 */
289 	while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U)
290 		;
291 }
292 
293 
294 /******************************************************************************
295  * This function marks the core as asleep in the re-distributor and ensures
296  * that the interface is quiescent.
297  *****************************************************************************/
298 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
299 {
300 	/* Mark the connected core as asleep */
301 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
302 
303 	/* Wait till the WAKER_CA_BIT changes to 1 */
304 	while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U)
305 		;
306 }
307 
308 
309 /*******************************************************************************
310  * This function probes the Redistributor frames when the driver is initialised
311  * and saves their base addresses. These base addresses are used later to
312  * initialise each Redistributor interface.
313  ******************************************************************************/
314 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
315 					unsigned int rdistif_num,
316 					uintptr_t gicr_base,
317 					mpidr_hash_fn mpidr_to_core_pos)
318 {
319 	u_register_t mpidr;
320 	unsigned int proc_num;
321 	uint64_t typer_val;
322 	uintptr_t rdistif_base = gicr_base;
323 
324 	assert(rdistif_base_addrs != NULL);
325 
326 	/*
327 	 * Iterate over the Redistributor frames. Store the base address of each
328 	 * frame in the platform provided array. Use the "Processor Number"
329 	 * field to index into the array if the platform has not provided a hash
330 	 * function to convert an MPIDR (obtained from the "Affinity Value"
331 	 * field into a linear index.
332 	 */
333 	do {
334 		typer_val = gicr_read_typer(rdistif_base);
335 		if (mpidr_to_core_pos != NULL) {
336 			mpidr = mpidr_from_gicr_typer(typer_val);
337 			proc_num = mpidr_to_core_pos(mpidr);
338 		} else {
339 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
340 				TYPER_PROC_NUM_MASK;
341 		}
342 		assert(proc_num < rdistif_num);
343 		rdistif_base_addrs[proc_num] = rdistif_base;
344 		rdistif_base += (1U << GICR_PCPUBASE_SHIFT);
345 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
346 }
347 
348 /*******************************************************************************
349  * Helper function to configure the default attributes of SPIs.
350  ******************************************************************************/
351 void gicv3_spis_config_defaults(uintptr_t gicd_base)
352 {
353 	unsigned int index, num_ints;
354 
355 	num_ints = gicd_read_typer(gicd_base);
356 	num_ints &= TYPER_IT_LINES_NO_MASK;
357 	num_ints = (num_ints + 1U) << 5;
358 
359 	/*
360 	 * Treat all SPIs as G1NS by default. The number of interrupts is
361 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
362 	 */
363 	for (index = MIN_SPI_ID; index < num_ints; index += 32U)
364 		gicd_write_igroupr(gicd_base, index, ~0U);
365 
366 	/* Setup the default SPI priorities doing four at a time */
367 	for (index = MIN_SPI_ID; index < num_ints; index += 4U)
368 		gicd_write_ipriorityr(gicd_base,
369 				      index,
370 				      GICD_IPRIORITYR_DEF_VAL);
371 
372 	/*
373 	 * Treat all SPIs as level triggered by default, write 16 at
374 	 * a time
375 	 */
376 	for (index = MIN_SPI_ID; index < num_ints; index += 16U)
377 		gicd_write_icfgr(gicd_base, index, 0U);
378 }
379 
380 /*******************************************************************************
381  * Helper function to configure properties of secure SPIs
382  ******************************************************************************/
383 unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
384 		const interrupt_prop_t *interrupt_props,
385 		unsigned int interrupt_props_num)
386 {
387 	unsigned int i;
388 	const interrupt_prop_t *current_prop;
389 	unsigned long long gic_affinity_val;
390 	unsigned int ctlr_enable = 0U;
391 
392 	/* Make sure there's a valid property array */
393 	if (interrupt_props_num > 0U)
394 		assert(interrupt_props != NULL);
395 
396 	for (i = 0U; i < interrupt_props_num; i++) {
397 		current_prop = &interrupt_props[i];
398 
399 		if (current_prop->intr_num < MIN_SPI_ID)
400 			continue;
401 
402 		/* Configure this interrupt as a secure interrupt */
403 		gicd_clr_igroupr(gicd_base, current_prop->intr_num);
404 
405 		/* Configure this interrupt as G0 or a G1S interrupt */
406 		assert((current_prop->intr_grp == INTR_GROUP0) ||
407 				(current_prop->intr_grp == INTR_GROUP1S));
408 		if (current_prop->intr_grp == INTR_GROUP1S) {
409 			gicd_set_igrpmodr(gicd_base, current_prop->intr_num);
410 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
411 		} else {
412 			gicd_clr_igrpmodr(gicd_base, current_prop->intr_num);
413 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
414 		}
415 
416 		/* Set interrupt configuration */
417 		gicd_set_icfgr(gicd_base, current_prop->intr_num,
418 				current_prop->intr_cfg);
419 
420 		/* Set the priority of this interrupt */
421 		gicd_set_ipriorityr(gicd_base, current_prop->intr_num,
422 				current_prop->intr_pri);
423 
424 		/* Target SPIs to the primary CPU */
425 		gic_affinity_val =
426 			gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
427 		gicd_write_irouter(gicd_base, current_prop->intr_num,
428 				gic_affinity_val);
429 
430 		/* Enable this interrupt */
431 		gicd_set_isenabler(gicd_base, current_prop->intr_num);
432 	}
433 
434 	return ctlr_enable;
435 }
436 
437 /*******************************************************************************
438  * Helper function to configure the default attributes of SPIs.
439  ******************************************************************************/
440 void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
441 {
442 	unsigned int index;
443 
444 	/*
445 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
446 	 * more scalable approach as it avoids clearing the enable bits in the
447 	 * GICD_CTLR
448 	 */
449 	gicr_write_icenabler0(gicr_base, ~0U);
450 	gicr_wait_for_pending_write(gicr_base);
451 
452 	/* Treat all SGIs/PPIs as G1NS by default. */
453 	gicr_write_igroupr0(gicr_base, ~0U);
454 
455 	/* Setup the default PPI/SGI priorities doing four at a time */
456 	for (index = 0U; index < MIN_SPI_ID; index += 4U)
457 		gicr_write_ipriorityr(gicr_base,
458 				      index,
459 				      GICD_IPRIORITYR_DEF_VAL);
460 
461 	/* Configure all PPIs as level triggered by default */
462 	gicr_write_icfgr1(gicr_base, 0U);
463 }
464 
465 /*******************************************************************************
466  * Helper function to configure properties of secure G0 and G1S PPIs and SGIs.
467  ******************************************************************************/
468 unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
469 		const interrupt_prop_t *interrupt_props,
470 		unsigned int interrupt_props_num)
471 {
472 	unsigned int i;
473 	const interrupt_prop_t *current_prop;
474 	unsigned int ctlr_enable = 0U;
475 
476 	/* Make sure there's a valid property array */
477 	if (interrupt_props_num > 0U)
478 		assert(interrupt_props != NULL);
479 
480 	for (i = 0U; i < interrupt_props_num; i++) {
481 		current_prop = &interrupt_props[i];
482 
483 		if (current_prop->intr_num >= MIN_SPI_ID)
484 			continue;
485 
486 		/* Configure this interrupt as a secure interrupt */
487 		gicr_clr_igroupr0(gicr_base, current_prop->intr_num);
488 
489 		/* Configure this interrupt as G0 or a G1S interrupt */
490 		assert((current_prop->intr_grp == INTR_GROUP0) ||
491 				(current_prop->intr_grp == INTR_GROUP1S));
492 		if (current_prop->intr_grp == INTR_GROUP1S) {
493 			gicr_set_igrpmodr0(gicr_base, current_prop->intr_num);
494 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
495 		} else {
496 			gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num);
497 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
498 		}
499 
500 		/* Set the priority of this interrupt */
501 		gicr_set_ipriorityr(gicr_base, current_prop->intr_num,
502 				current_prop->intr_pri);
503 
504 		/*
505 		 * Set interrupt configuration for PPIs. Configuration for SGIs
506 		 * are ignored.
507 		 */
508 		if ((current_prop->intr_num >= MIN_PPI_ID) &&
509 				(current_prop->intr_num < MIN_SPI_ID)) {
510 			gicr_set_icfgr1(gicr_base, current_prop->intr_num,
511 					current_prop->intr_cfg);
512 		}
513 
514 		/* Enable this interrupt */
515 		gicr_set_isenabler0(gicr_base, current_prop->intr_num);
516 	}
517 
518 	return ctlr_enable;
519 }
520