xref: /optee_os/mk/config.mk (revision f5a70e3efb80be4b9bff2c9c811ddc139058e05a)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Define DEBUG=1 to compile without optimization (forces -O0)
36# DEBUG=1
37
38# If y, enable debug features of the TEE core (assertions and lock checks
39# are enabled, panic and assert messages are more verbose, data and prefetch
40# aborts show a stack dump). When disabled, the NDEBUG directive is defined
41# so assertions are disabled.
42CFG_TEE_CORE_DEBUG ?= y
43
44# Log levels for the TEE core. Defines which core messages are displayed
45# on the secure console. Disabling core log (level set to 0) also disables
46# logs from the TAs.
47# 0: none
48# 1: error
49# 2: error + warning
50# 3: error + warning + debug
51# 4: error + warning + debug + flow
52CFG_TEE_CORE_LOG_LEVEL ?= 1
53
54# TA log level
55# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
56# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
57# when the TA is built.
58CFG_TEE_TA_LOG_LEVEL ?= 1
59
60# TA enablement
61# When defined to "y", TA traces are output according to
62# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
63CFG_TEE_CORE_TA_TRACE ?= y
64
65# If y, enable the memory leak detection feature in the bget memory allocator.
66# When this feature is enabled, calling mdbg_check(1) will print a list of all
67# the currently allocated buffers and the location of the allocation (file and
68# line number).
69# Note: make sure the log level is high enough for the messages to show up on
70# the secure console! For instance:
71# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
72#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
73# - To debug TEE core allocations: build OP-TEE with:
74#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
75CFG_TEE_CORE_MALLOC_DEBUG ?= n
76CFG_TEE_TA_MALLOC_DEBUG ?= n
77# Prints an error message and dumps the stack on failed memory allocations
78# using malloc() and friends.
79CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
80
81# Mask to select which messages are prefixed with long debugging information
82# (severity, core ID, thread ID, component name, function name, line number)
83# based on the message level. If BIT(level) is set, the long prefix is shown.
84# Otherwise a short prefix is used (severity and component name only).
85# Levels: 0=none 1=error 2=info 3=debug 4=flow
86CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
87
88# PRNG configuration
89# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
90# software PRNG implementation is used.
91# Otherwise, you need to implement hw_get_random_byte() for your platform
92CFG_WITH_SOFTWARE_PRNG ?= y
93
94# Number of threads
95CFG_NUM_THREADS ?= 2
96
97# API implementation version
98CFG_TEE_API_VERSION ?= GPD-1.1-dev
99
100# Implementation description (implementation-dependent)
101CFG_TEE_IMPL_DESCR ?= OPTEE
102
103# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
104# World?
105CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
106
107# Trusted OS implementation version
108TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
109ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
110TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
111else
112TEE_IMPL_GIT_SHA1 := 0x0
113endif
114# The following values are not extracted from the "git describe" output because
115# we might be outside of a Git environment, or the tree may have been cloned
116# with limited depth not including any tag, so there is really no guarantee
117# that TEE_IMPL_VERSION contains the major and minor revision numbers.
118CFG_OPTEE_REVISION_MAJOR ?= 3
119CFG_OPTEE_REVISION_MINOR ?= 8
120
121# Trusted OS implementation manufacturer name
122CFG_TEE_MANUFACTURER ?= LINARO
123
124# Trusted firmware version
125CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
126
127# Trusted OS implementation manufacturer name
128CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
129
130# Rich Execution Environment (REE) file system support: normal world OS
131# provides the actual storage.
132# This is the default FS when enabled (i.e., the one used when
133# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
134CFG_REE_FS ?= y
135
136# RPMB file system support
137CFG_RPMB_FS ?= n
138
139# Device identifier used when CFG_RPMB_FS = y.
140# The exact meaning of this value is platform-dependent. On Linux, the
141# tee-supplicant process will open /dev/mmcblk<id>rpmb
142CFG_RPMB_FS_DEV_ID ?= 0
143
144# This config variable determines the number of entries read in from RPMB at
145# once whenever a function traverses the RPMB FS. Increasing the default value
146# has the following consequences:
147# - More memory required on heap. A single FAT entry currently has a size of
148#   256 bytes.
149# - Potentially significant speed-ups for RPMB I/O. Depending on how many
150#   entries a function needs to traverse, the number of time-consuming RPMB
151#   read-in operations can be reduced.
152# Chosing a proper value is both platform- (available memory) and use-case-
153# dependent (potential number of FAT fs entries), so overwrite in platform
154# config files
155CFG_RPMB_FS_RD_ENTRIES ?= 8
156
157# Enables RPMB key programming by the TEE, in case the RPMB partition has not
158# been configured yet.
159# !!! Security warning !!!
160# Do *NOT* enable this in product builds, as doing so would allow the TEE to
161# leak the RPMB key.
162# This option is useful in the following situations:
163# - Testing
164# - RPMB key provisioning in a controlled environment (factory setup)
165CFG_RPMB_WRITE_KEY ?= n
166
167# Embed public part of this key in OP-TEE OS
168TA_SIGN_KEY ?= keys/default_ta.pem
169
170# Include lib/libutils/isoc in the build? Most platforms need this, but some
171# may not because they obtain the isoc functions from elsewhere
172CFG_LIBUTILS_WITH_ISOC ?= y
173
174# Enables floating point support for user TAs
175# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
176#	 hard-float is basically a super set of soft-float. Hard-float
177#	 requires all the support routines provided for soft-float, but the
178#	 compiler may choose to optimize to not use some of them and use
179#	 the floating-point registers instead.
180# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
181#	 nothing with ` -mgeneral-regs-only`)
182# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
183CFG_TA_FLOAT_SUPPORT ?= y
184
185# Stack unwinding: print a stack dump to the console on core or TA abort, or
186# when a TA panics.
187# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
188# unwound (not paged TAs, however).
189# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
190# this option will increase the size of the 32-bit TEE binary by a few KB.
191# Similarly, TAs have to be compiled with -funwind-tables (default when the
192# option is set) otherwise they can't be unwound.
193# Warning: since the unwind sequence for user-mode (TA) code is implemented in
194# the privileged layer of OP-TEE, enabling this feature will weaken the
195# user/kernel isolation. Therefore it should be disabled in release builds.
196ifeq ($(CFG_TEE_CORE_DEBUG),y)
197CFG_UNWIND ?= y
198endif
199
200# Enable support for dynamically loaded user TAs
201CFG_WITH_USER_TA ?= y
202
203# Choosing the architecture(s) of user-mode libraries (used by TAs)
204#
205# Platforms may define a list of supported architectures for user-mode code
206# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
207# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
208# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
209# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
210# The first entry in $(supported-ta-targets) has a special role, see
211# CFG_USER_TA_TARGET_<ta-name> below.
212#
213# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
214# change the order of the values.
215#
216# The list of TA architectures is ultimately stored in $(ta-targets).
217
218# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
219# defined, selects the unique TA architecture mode for building the in-tree TA
220# <ta-name>. Can be either ta_arm32 or ta_arm64.
221# By default, in-tree TAs are built using the first architecture specified in
222# $(ta-targets).
223
224# Address Space Layout Randomization for user-mode Trusted Applications
225#
226# When this flag is enabled, the ELF loader will introduce a random offset
227# when mapping the application in user space. ASLR makes the exploitation of
228# memory corruption vulnerabilities more difficult.
229CFG_TA_ASLR ?= y
230
231# How much ASLR may shift the base address (in pages). The base address is
232# randomly shifted by an integer number of pages comprised between these two
233# values. Bigger ranges are more secure because they make the addresses harder
234# to guess at the expense of using more memory for the page tables.
235CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
236CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
237
238# Address Space Layout Randomization for TEE Core
239#
240# When this flag is enabled, the early init code will introduce a random
241# offset when mapping TEE Core. ASLR makes the exploitation of memory
242# corruption vulnerabilities more difficult.
243CFG_CORE_ASLR ?= y
244
245# Load user TAs from the REE filesystem via tee-supplicant
246CFG_REE_FS_TA ?= y
247
248# Pre-authentication of TA binaries loaded from the REE filesystem
249#
250# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
251#   "Secure DDR" pool, check the signature, then process the file only if it is
252#   valid.
253# - If disabled: hash the binaries as they are being processed and verify the
254#   signature as a last step.
255CFG_REE_FS_TA_BUFFERED ?= n
256$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
257
258# Support for loading user TAs from a special section in the TEE binary.
259# Such TAs are available even before tee-supplicant is available (hence their
260# name), but note that many services exported to TAs may need tee-supplicant,
261# so early use is limited to a subset of the TEE Internal Core API (crypto...)
262# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
263# file(s). For example:
264#   $ make ... \
265#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
266#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
267# Typical build steps:
268#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
269#                                    # headers, makefiles), ready to build TAs.
270#                                    # CFG_EARLY_TA=y is optional, it prevents
271#                                    # later library recompilations.
272#   <build some TAs>
273#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
274#
275# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
276# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
277# <name-of-ta>/<uuid>
278# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
279ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
280$(call force,CFG_EARLY_TA,y)
281else
282CFG_EARLY_TA ?= n
283endif
284ifeq ($(CFG_EARLY_TA),y)
285$(call force,CFG_ZLIB,y)
286endif
287
288# Enable paging, requires SRAM, can't be enabled by default
289CFG_WITH_PAGER ?= n
290
291# Runtime lock dependency checker: ensures that a proper locking hierarchy is
292# used in the TEE core when acquiring and releasing mutexes. Any violation will
293# cause a panic as soon as the invalid locking condition is detected. If
294# CFG_UNWIND is enabled, the algorithm records the call stacks when locks are
295# taken, and prints them when a potential deadlock is found.
296# Expect a significant performance impact when enabling this.
297CFG_LOCKDEP ?= n
298
299# BestFit algorithm in bget reduces the fragmentation of the heap when running
300# with the pager enabled or lockdep
301CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
302
303# Use the pager for user TAs
304CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
305
306# Enable support for detected undefined behavior in C
307# Uses a lot of memory, can't be enabled by default
308CFG_CORE_SANITIZE_UNDEFINED ?= n
309
310# Enable Kernel Address sanitizer, has a huge performance impact, uses a
311# lot of memory and need platform specific adaptations, can't be enabled by
312# default
313CFG_CORE_SANITIZE_KADDRESS ?= n
314
315# Device Tree support
316#
317# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
318# device tree blob (DTB) parsing from the core.
319#
320# When CFG_DT is enabled, the TEE _start function expects to find
321# the address of a DTB in register X2/R2 provided by the early boot stage
322# or value 0 if boot stage provides no DTB.
323#
324# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
325# relative path of a DTS file located in core/arch/$(ARCH)/dts.
326# The DTS file is compiled into a DTB file which content is embedded in a
327# read-only section of the core.
328ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
329CFG_EMBED_DTB ?= y
330endif
331ifeq ($(CFG_EMBED_DTB),y)
332$(call force,CFG_DT,y)
333endif
334CFG_EMBED_DTB ?= n
335CFG_DT ?= n
336
337# Maximum size of the Device Tree Blob, has to be large enough to allow
338# editing of the supplied DTB.
339CFG_DTB_MAX_SIZE ?= 0x10000
340
341# Device Tree Overlay support.
342# This define enables support for an OP-TEE provided DTB overlay.
343# One of two modes is supported in this case:
344# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or
345#    passed in arg2
346# 2. Generate a new DTB overlay at CFG_DT_ADDR
347# A subsequent boot stage must then merge the generated overlay DTB into a main
348# DTB using the standard fdt_overlay_apply() method.
349CFG_EXTERNAL_DTB_OVERLAY ?= n
350
351# Enable core self tests and related pseudo TAs
352CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y
353
354# This option enables OP-TEE to respond to SMP boot request: the Rich OS
355# issues this to request OP-TEE to release secondaries cores out of reset,
356# with specific core number and non-secure entry address.
357CFG_BOOT_SECONDARY_REQUEST ?= n
358
359# Default heap size for Core, 64 kB
360CFG_CORE_HEAP_SIZE ?= 65536
361
362# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
363# is enabled
364CFG_CORE_NEX_HEAP_SIZE ?= 16384
365
366# TA profiling.
367# When this option is enabled, OP-TEE can execute Trusted Applications
368# instrumented with GCC's -pg flag and will output profiling information
369# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
370# tee-supplicant)
371# Note: this does not work well with shared libraries at the moment for a
372# couple of reasons:
373# 1. The profiling code assumes a unique executable section in the TA VA space.
374# 2. The code used to detect at run time if the TA is intrumented assumes that
375# the TA is linked statically.
376CFG_TA_GPROF_SUPPORT ?= n
377
378# TA function tracing.
379# When this option is enabled, OP-TEE can execute Trusted Applications
380# instrumented with GCC's -pg flag and will output function tracing
381# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
382# defined in tee-supplicant)
383CFG_FTRACE_SUPPORT ?= n
384
385# How to make room when the function tracing buffer is full?
386# 'shift': shift the previously stored data by the amount needed in order
387#    to always keep the latest logs (slower, especially with big buffer sizes)
388# 'wrap': discard the previous data and start at the beginning of the buffer
389#    again (fast, but can result in a mostly empty buffer)
390# 'stop': stop logging new data
391CFG_FTRACE_BUF_WHEN_FULL ?= shift
392$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
393$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
394
395# Function tracing: unit to be used when displaying durations
396#  0: always display durations in microseconds
397# >0: if duration is greater or equal to the specified value (in microseconds),
398#     display it in milliseconds
399CFG_FTRACE_US_MS ?= 10000
400
401# Core syscall function tracing.
402# When this option is enabled, OP-TEE core is instrumented with GCC's
403# -pg flag and will output syscall function graph in user TA ftrace
404# buffer
405CFG_SYSCALL_FTRACE ?= n
406$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
407
408# Enable to compile user TA libraries with profiling (-pg).
409# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
410CFG_ULIBS_MCOUNT ?= n
411# Profiling/tracing of syscall wrapper (utee_*)
412CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
413
414ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
415ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
416$(error Cannot instrument user libraries if user mode profiling is disabled)
417endif
418endif
419
420# Build libutee, libutils, libmbedtls as shared libraries.
421# - Static libraries are still generated when this is enabled, but TAs will use
422# the shared libraries unless explicitly linked with the -static flag.
423# - Shared libraries are made of two files: for example, libutee is
424#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
425#   is a totally standard shared object, and should be used to link against.
426#   The '.ta' file is a signed version of the '.so' and should be installed
427#   in the same way as TAs so that they can be found at runtime.
428CFG_ULIBS_SHARED ?= n
429
430ifeq (yy,$(CFG_TA_GPROF_SUPPORT)$(CFG_ULIBS_SHARED))
431$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
432endif
433
434# CFG_GP_SOCKETS
435# Enable Global Platform Sockets support
436CFG_GP_SOCKETS ?= y
437
438# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
439# invocation parameters referring to specific secure memories).
440CFG_SECURE_DATA_PATH ?= n
441
442# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
443# TA binaries are stored encrypted in the REE FS and are protected by
444# metadata in secure storage.
445CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
446$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
447
448# Enable the pseudo TA that managages TA storage in secure storage
449CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
450$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
451
452# Enable the pseudo TA for misc. auxilary services, extending existing
453# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.)
454CFG_SYSTEM_PTA ?= y
455
456# Enable the pseudo TA for enumeration of TEE based devices for the normal
457# world OS.
458CFG_DEVICE_ENUM_PTA ?= y
459
460# Define the number of cores per cluster used in calculating core position.
461# The cluster number is shifted by this value and added to the core ID,
462# so its value represents log2(cores/cluster).
463# Default is 2**(2) = 4 cores per cluster.
464CFG_CORE_CLUSTER_SHIFT ?= 2
465
466# Define the number of threads per core used in calculating processing
467# element's position. The core number is shifted by this value and added to
468# the thread ID, so its value represents log2(threads/core).
469# Default is 2**(0) = 1 threads per core.
470CFG_CORE_THREAD_SHIFT ?= 0
471
472# Enable support for dynamic shared memory (shared memory anywhere in
473# non-secure memory).
474CFG_CORE_DYN_SHM ?= y
475
476# Enable support for reserved shared memory (shared memory in a carved out
477# memory area).
478CFG_CORE_RESERVED_SHM ?= y
479
480# Enables support for larger physical addresses, that is, it will define
481# paddr_t as a 64-bit type.
482CFG_CORE_LARGE_PHYS_ADDR ?= n
483
484# Define the maximum size, in bits, for big numbers in the Internal Core API
485# Arithmetical functions. This does *not* influence the key size that may be
486# manipulated through the Cryptographic API.
487# Set this to a lower value to reduce the TA memory footprint.
488CFG_TA_BIGNUM_MAX_BITS ?= 2048
489
490# Define the maximum size, in bits, for big numbers in the TEE core (privileged
491# layer).
492# This value is an upper limit for the key size in any cryptographic algorithm
493# implemented by the TEE core.
494# Set this to a lower value to reduce the memory footprint.
495CFG_CORE_BIGNUM_MAX_BITS ?= 4096
496
497# Not used since libmpa was removed. Force the values to catch build scripts
498# that would set = n.
499$(call force,CFG_TA_MBEDTLS_MPI,y)
500$(call force,CFG_TA_MBEDTLS,y)
501
502# Compile the TA library mbedTLS with self test functions, the functions
503# need to be called to test anything
504CFG_TA_MBEDTLS_SELF_TEST ?= y
505
506# By default use tomcrypt as the main crypto lib providing an implementation
507# for the API in <crypto/crypto.h>
508# CFG_CRYPTOLIB_NAME is used as libname and
509# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
510#
511# It's also possible to configure to use mbedtls instead of tomcrypt.
512# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
513# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
514CFG_CRYPTOLIB_NAME ?= tomcrypt
515CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
516
517# Enable TEE_ALG_RSASSA_PKCS1_V1_5 algorithm for signing with PKCS#1 v1.5 EMSA
518# without ASN.1 around the hash.
519ifeq ($(CFG_CRYPTOLIB_NAME),tomcrypt)
520CFG_CRYPTO_RSASSA_NA1 ?= y
521endif
522
523# Not used since libmpa was removed. Force the value to catch build scripts
524# that would set = n.
525$(call force,CFG_CORE_MBEDTLS_MPI,y)
526
527# Enable virtualization support. OP-TEE will not work without compatible
528# hypervisor if this option is enabled.
529CFG_VIRTUALIZATION ?= n
530
531ifeq ($(CFG_VIRTUALIZATION),y)
532$(call force,CFG_CORE_RODATA_NOEXEC,y)
533$(call force,CFG_CORE_RWDATA_NOEXEC,y)
534
535# Default number of virtual guests
536CFG_VIRT_GUEST_COUNT ?= 2
537endif
538
539# Enables backwards compatible derivation of RPMB and SSK keys
540CFG_CORE_HUK_SUBKEY_COMPAT ?= y
541
542# Compress and encode conf.mk into the TEE core, and show the encoded string on
543# boot (with severity TRACE_INFO).
544CFG_SHOW_CONF_ON_BOOT ?= n
545
546# Enables support for passing a TPM Event Log stored in secure memory
547# to a TA, so a TPM Service could use it to extend any measurement
548# taken before the service was up and running.
549CFG_CORE_TPM_EVENT_LOG ?= n
550