1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Path to the Python interpreter used by the build system. 36# This variable is set to the default python3 interpreter in the user's 37# path. But build environments that require more explicit control can 38# set the path to a specific interpreter through this variable. 39PYTHON3 ?= python3 40 41# Define DEBUG=1 to compile without optimization (forces -O0) 42# DEBUG=1 43 44# If y, enable debug features of the TEE core (assertions and lock checks 45# are enabled, panic and assert messages are more verbose, data and prefetch 46# aborts show a stack dump). When disabled, the NDEBUG directive is defined 47# so assertions are disabled. 48CFG_TEE_CORE_DEBUG ?= y 49 50# Log levels for the TEE core. Defines which core messages are displayed 51# on the secure console. Disabling core log (level set to 0) also disables 52# logs from the TAs. 53# 0: none 54# 1: error 55# 2: error + warning 56# 3: error + warning + debug 57# 4: error + warning + debug + flow 58CFG_TEE_CORE_LOG_LEVEL ?= 1 59 60# TA log level 61# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 62# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 63# when the TA is built. 64CFG_TEE_TA_LOG_LEVEL ?= 1 65 66# TA enablement 67# When defined to "y", TA traces are output according to 68# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 69CFG_TEE_CORE_TA_TRACE ?= y 70 71# If y, enable the memory leak detection feature in the bget memory allocator. 72# When this feature is enabled, calling mdbg_check(1) will print a list of all 73# the currently allocated buffers and the location of the allocation (file and 74# line number). 75# Note: make sure the log level is high enough for the messages to show up on 76# the secure console! For instance: 77# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 78# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 79# - To debug TEE core allocations: build OP-TEE with: 80# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 81CFG_TEE_CORE_MALLOC_DEBUG ?= n 82CFG_TEE_TA_MALLOC_DEBUG ?= n 83# Prints an error message and dumps the stack on failed memory allocations 84# using malloc() and friends. 85CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG) 86 87# Mask to select which messages are prefixed with long debugging information 88# (severity, core ID, thread ID, component name, function name, line number) 89# based on the message level. If BIT(level) is set, the long prefix is shown. 90# Otherwise a short prefix is used (severity and component name only). 91# Levels: 0=none 1=error 2=info 3=debug 4=flow 92CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 93 94# PRNG configuration 95# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 96# software PRNG implementation is used. 97# Otherwise, you need to implement hw_get_random_byte() for your platform 98CFG_WITH_SOFTWARE_PRNG ?= y 99 100# Number of threads 101CFG_NUM_THREADS ?= 2 102 103# API implementation version 104CFG_TEE_API_VERSION ?= GPD-1.1-dev 105 106# Implementation description (implementation-dependent) 107CFG_TEE_IMPL_DESCR ?= OPTEE 108 109# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 110# World? 111CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 112 113# Trusted OS implementation version 114TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown) 115ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 116TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 117else 118TEE_IMPL_GIT_SHA1 := 0x0 119endif 120# The following values are not extracted from the "git describe" output because 121# we might be outside of a Git environment, or the tree may have been cloned 122# with limited depth not including any tag, so there is really no guarantee 123# that TEE_IMPL_VERSION contains the major and minor revision numbers. 124CFG_OPTEE_REVISION_MAJOR ?= 3 125CFG_OPTEE_REVISION_MINOR ?= 13 126 127# Trusted OS implementation manufacturer name 128CFG_TEE_MANUFACTURER ?= LINARO 129 130# Trusted firmware version 131CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 132 133# Trusted OS implementation manufacturer name 134CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 135 136# Rich Execution Environment (REE) file system support: normal world OS 137# provides the actual storage. 138# This is the default FS when enabled (i.e., the one used when 139# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 140CFG_REE_FS ?= y 141 142# RPMB file system support 143CFG_RPMB_FS ?= n 144 145# Device identifier used when CFG_RPMB_FS = y. 146# The exact meaning of this value is platform-dependent. On Linux, the 147# tee-supplicant process will open /dev/mmcblk<id>rpmb 148CFG_RPMB_FS_DEV_ID ?= 0 149 150# This config variable determines the number of entries read in from RPMB at 151# once whenever a function traverses the RPMB FS. Increasing the default value 152# has the following consequences: 153# - More memory required on heap. A single FAT entry currently has a size of 154# 256 bytes. 155# - Potentially significant speed-ups for RPMB I/O. Depending on how many 156# entries a function needs to traverse, the number of time-consuming RPMB 157# read-in operations can be reduced. 158# Chosing a proper value is both platform- (available memory) and use-case- 159# dependent (potential number of FAT fs entries), so overwrite in platform 160# config files 161CFG_RPMB_FS_RD_ENTRIES ?= 8 162 163# Enables caching of FAT FS entries when set to a value greater than zero. 164# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS 165# entries. The cache is populated when FAT FS entries are initially read in. 166# When traversing the FAT FS entries, we read from the cache instead of reading 167# in the entries from RPMB storage. Consequently, when a FAT FS entry is 168# written, the cache is updated. In scenarios where an estimate of the number 169# of FAT FS entries can be made, the cache may be specifically tailored to 170# store all entries. The caching can improve RPMB I/O at the cost 171# of additional memory. 172# Without caching, we temporarily require 173# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 174# while traversing the FAT FS (e.g. in read_fat). 175# For example 8*256 bytes = 2kB while in read_fat. 176# With caching, we constantly require up to 177# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 178# depending on how many elements are in the cache, and additional temporary 179# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 180# in case the cache is too small to hold all elements when traversing. 181CFG_RPMB_FS_CACHE_ENTRIES ?= 0 182 183# Enables RPMB key programming by the TEE, in case the RPMB partition has not 184# been configured yet. 185# !!! Security warning !!! 186# Do *NOT* enable this in product builds, as doing so would allow the TEE to 187# leak the RPMB key. 188# This option is useful in the following situations: 189# - Testing 190# - RPMB key provisioning in a controlled environment (factory setup) 191CFG_RPMB_WRITE_KEY ?= n 192 193# Signing key for OP-TEE TA's 194# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy 195# key and then set TA_PUBLIC_KEY to match public key from the HSM. 196# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS. 197TA_SIGN_KEY ?= keys/default_ta.pem 198TA_PUBLIC_KEY ?= $(TA_SIGN_KEY) 199 200# Include lib/libutils/isoc in the build? Most platforms need this, but some 201# may not because they obtain the isoc functions from elsewhere 202CFG_LIBUTILS_WITH_ISOC ?= y 203 204# Enables floating point support for user TAs 205# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 206# hard-float is basically a super set of soft-float. Hard-float 207# requires all the support routines provided for soft-float, but the 208# compiler may choose to optimize to not use some of them and use 209# the floating-point registers instead. 210# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 211# nothing with ` -mgeneral-regs-only`) 212# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 213CFG_TA_FLOAT_SUPPORT ?= y 214 215# Stack unwinding: print a stack dump to the console on core or TA abort, or 216# when a TA panics. 217# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 218# unwound (not paged TAs, however). 219# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 220# this option will increase the size of the 32-bit TEE binary by a few KB. 221# Similarly, TAs have to be compiled with -funwind-tables (default when the 222# option is set) otherwise they can't be unwound. 223# Warning: since the unwind sequence for user-mode (TA) code is implemented in 224# the privileged layer of OP-TEE, enabling this feature will weaken the 225# user/kernel isolation. Therefore it should be disabled in release builds. 226ifeq ($(CFG_TEE_CORE_DEBUG),y) 227CFG_UNWIND ?= y 228endif 229 230# Enable support for dynamically loaded user TAs 231CFG_WITH_USER_TA ?= y 232 233# Choosing the architecture(s) of user-mode libraries (used by TAs) 234# 235# Platforms may define a list of supported architectures for user-mode code 236# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64", 237# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32". 238# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits, 239# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y). 240# The first entry in $(supported-ta-targets) has a special role, see 241# CFG_USER_TA_TARGET_<ta-name> below. 242# 243# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or 244# change the order of the values. 245# 246# The list of TA architectures is ultimately stored in $(ta-targets). 247 248# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if 249# defined, selects the unique TA architecture mode for building the in-tree TA 250# <ta-name>. Can be either ta_arm32 or ta_arm64. 251# By default, in-tree TAs are built using the first architecture specified in 252# $(ta-targets). 253 254# Address Space Layout Randomization for user-mode Trusted Applications 255# 256# When this flag is enabled, the ELF loader will introduce a random offset 257# when mapping the application in user space. ASLR makes the exploitation of 258# memory corruption vulnerabilities more difficult. 259CFG_TA_ASLR ?= y 260 261# How much ASLR may shift the base address (in pages). The base address is 262# randomly shifted by an integer number of pages comprised between these two 263# values. Bigger ranges are more secure because they make the addresses harder 264# to guess at the expense of using more memory for the page tables. 265CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0 266CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128 267 268# Address Space Layout Randomization for TEE Core 269# 270# When this flag is enabled, the early init code will introduce a random 271# offset when mapping TEE Core. ASLR makes the exploitation of memory 272# corruption vulnerabilities more difficult. 273CFG_CORE_ASLR ?= y 274 275# Load user TAs from the REE filesystem via tee-supplicant 276CFG_REE_FS_TA ?= y 277 278# Pre-authentication of TA binaries loaded from the REE filesystem 279# 280# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the 281# "Secure DDR" pool, check the signature, then process the file only if it is 282# valid. 283# - If disabled: hash the binaries as they are being processed and verify the 284# signature as a last step. 285CFG_REE_FS_TA_BUFFERED ?= n 286$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA)) 287 288# Support for loading user TAs from a special section in the TEE binary. 289# Such TAs are available even before tee-supplicant is available (hence their 290# name), but note that many services exported to TAs may need tee-supplicant, 291# so early use is limited to a subset of the TEE Internal Core API (crypto...) 292# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 293# file(s). For example: 294# $ make ... \ 295# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 296# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 297# Typical build steps: 298# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 299# # headers, makefiles), ready to build TAs. 300# # CFG_EARLY_TA=y is optional, it prevents 301# # later library recompilations. 302# <build some TAs> 303# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 304# 305# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 306# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 307# <name-of-ta>/<uuid> 308# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 309ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 310$(call force,CFG_EARLY_TA,y) 311$(call force,CFG_EMBEDDED_TS,y) 312else 313CFG_EARLY_TA ?= n 314endif 315 316ifneq ($(SP_PATHS),) 317$(call force,CFG_SECURE_PARTITION,y) 318$(call force,CFG_EMBEDDED_TS,y) 319else 320CFG_SECURE_PARTITION ?= n 321endif 322 323ifeq ($(CFG_EMBEDDED_TS),y) 324$(call force,CFG_ZLIB,y) 325endif 326 327# By default the early TAs are compressed in the TEE binary, it is possible to 328# not compress them with CFG_EARLY_TA_COMPRESS=n 329CFG_EARLY_TA_COMPRESS ?= y 330 331# Enable paging, requires SRAM, can't be enabled by default 332CFG_WITH_PAGER ?= n 333 334# Use the pager for user TAs 335CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 336 337# If paging of user TAs, that is, R/W paging default to enable paging of 338# TAG and IV in order to reduce heap usage. 339CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA) 340 341# Runtime lock dependency checker: ensures that a proper locking hierarchy is 342# used in the TEE core when acquiring and releasing mutexes. Any violation will 343# cause a panic as soon as the invalid locking condition is detected. If 344# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm 345# records the call stacks when locks are taken, and prints them when a 346# potential deadlock is found. 347# Expect a significant performance impact when enabling this. 348CFG_LOCKDEP ?= n 349CFG_LOCKDEP_RECORD_STACK ?= y 350 351# BestFit algorithm in bget reduces the fragmentation of the heap when running 352# with the pager enabled or lockdep 353CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 354 355# Enable support for detected undefined behavior in C 356# Uses a lot of memory, can't be enabled by default 357CFG_CORE_SANITIZE_UNDEFINED ?= n 358 359# Enable Kernel Address sanitizer, has a huge performance impact, uses a 360# lot of memory and need platform specific adaptations, can't be enabled by 361# default 362CFG_CORE_SANITIZE_KADDRESS ?= n 363 364# Add stack guards before/after stacks and periodically check them 365CFG_WITH_STACK_CANARIES ?= y 366 367# Use compiler instrumentation to troubleshoot stack overflows. 368# When enabled, most C functions check the stack pointer against the current 369# stack limits on entry and panic immediately if it is out of range. 370CFG_CORE_DEBUG_CHECK_STACKS ?= n 371 372# Use when the default stack allocations are not sufficient. 373CFG_STACK_THREAD_EXTRA ?= 0 374CFG_STACK_TMP_EXTRA ?= 0 375 376# Device Tree support 377# 378# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 379# device tree blob (DTB) parsing from the core. 380# 381# When CFG_DT is enabled, the TEE _start function expects to find 382# the address of a DTB in register X2/R2 provided by the early boot stage 383# or value 0 if boot stage provides no DTB. 384# 385# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 386# relative path of a DTS file located in core/arch/$(ARCH)/dts. 387# The DTS file is compiled into a DTB file which content is embedded in a 388# read-only section of the core. 389ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 390CFG_EMBED_DTB ?= y 391endif 392ifeq ($(CFG_EMBED_DTB),y) 393$(call force,CFG_DT,y) 394endif 395CFG_EMBED_DTB ?= n 396CFG_DT ?= n 397 398# Maximum size of the Device Tree Blob, has to be large enough to allow 399# editing of the supplied DTB. 400CFG_DTB_MAX_SIZE ?= 0x10000 401 402# Device Tree Overlay support. 403# This define enables support for an OP-TEE provided DTB overlay. 404# One of two modes is supported in this case: 405# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or 406# passed in arg2 407# 2. Generate a new DTB overlay at CFG_DT_ADDR 408# A subsequent boot stage must then merge the generated overlay DTB into a main 409# DTB using the standard fdt_overlay_apply() method. 410CFG_EXTERNAL_DTB_OVERLAY ?= n 411 412# All embedded tests are supposed to be disabled by default, this flag 413# is used to control the default value of all other embedded tests 414CFG_ENABLE_EMBEDDED_TESTS ?= n 415 416# Enable core self tests and related pseudo TAs 417CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS) 418 419# Compiles bget_main_test() to be called from a test TA 420CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS) 421 422# This option enables OP-TEE to respond to SMP boot request: the Rich OS 423# issues this to request OP-TEE to release secondaries cores out of reset, 424# with specific core number and non-secure entry address. 425CFG_BOOT_SECONDARY_REQUEST ?= n 426 427# Default heap size for Core, 64 kB 428CFG_CORE_HEAP_SIZE ?= 65536 429 430# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION 431# is enabled 432CFG_CORE_NEX_HEAP_SIZE ?= 16384 433 434# TA profiling. 435# When this option is enabled, OP-TEE can execute Trusted Applications 436# instrumented with GCC's -pg flag and will output profiling information 437# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 438# tee-supplicant) 439# Note: this does not work well with shared libraries at the moment for a 440# couple of reasons: 441# 1. The profiling code assumes a unique executable section in the TA VA space. 442# 2. The code used to detect at run time if the TA is intrumented assumes that 443# the TA is linked statically. 444CFG_TA_GPROF_SUPPORT ?= n 445 446# TA function tracing. 447# When this option is enabled, OP-TEE can execute Trusted Applications 448# instrumented with GCC's -pg flag and will output function tracing 449# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is 450# defined in tee-supplicant) 451CFG_FTRACE_SUPPORT ?= n 452 453# How to make room when the function tracing buffer is full? 454# 'shift': shift the previously stored data by the amount needed in order 455# to always keep the latest logs (slower, especially with big buffer sizes) 456# 'wrap': discard the previous data and start at the beginning of the buffer 457# again (fast, but can result in a mostly empty buffer) 458# 'stop': stop logging new data 459CFG_FTRACE_BUF_WHEN_FULL ?= shift 460$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap) 461$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y) 462 463# Function tracing: unit to be used when displaying durations 464# 0: always display durations in microseconds 465# >0: if duration is greater or equal to the specified value (in microseconds), 466# display it in milliseconds 467CFG_FTRACE_US_MS ?= 10000 468 469# Core syscall function tracing. 470# When this option is enabled, OP-TEE core is instrumented with GCC's 471# -pg flag and will output syscall function graph in user TA ftrace 472# buffer 473CFG_SYSCALL_FTRACE ?= n 474$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT) 475 476# Enable to compile user TA libraries with profiling (-pg). 477# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT. 478CFG_ULIBS_MCOUNT ?= n 479# Profiling/tracing of syscall wrapper (utee_*) 480CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT) 481 482ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT))) 483ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT))) 484$(error Cannot instrument user libraries if user mode profiling is disabled) 485endif 486endif 487 488# Build libutee, libutils, libmbedtls as shared libraries. 489# - Static libraries are still generated when this is enabled, but TAs will use 490# the shared libraries unless explicitly linked with the -static flag. 491# - Shared libraries are made of two files: for example, libutee is 492# libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file 493# is a totally standard shared object, and should be used to link against. 494# The '.ta' file is a signed version of the '.so' and should be installed 495# in the same way as TAs so that they can be found at runtime. 496CFG_ULIBS_SHARED ?= n 497 498ifeq (yy,$(CFG_TA_GPROF_SUPPORT)$(CFG_ULIBS_SHARED)) 499$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible) 500endif 501 502# CFG_GP_SOCKETS 503# Enable Global Platform Sockets support 504CFG_GP_SOCKETS ?= y 505 506# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 507# invocation parameters referring to specific secure memories). 508CFG_SECURE_DATA_PATH ?= n 509 510# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 511# TA binaries are stored encrypted in the REE FS and are protected by 512# metadata in secure storage. 513CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 514$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 515 516# Enable the pseudo TA that managages TA storage in secure storage 517CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 518$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 519 520# Enable the pseudo TA for misc. auxilary services, extending existing 521# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.) 522CFG_SYSTEM_PTA ?= y 523 524# Enable the pseudo TA for enumeration of TEE based devices for the normal 525# world OS. 526CFG_DEVICE_ENUM_PTA ?= y 527 528# Define the number of cores per cluster used in calculating core position. 529# The cluster number is shifted by this value and added to the core ID, 530# so its value represents log2(cores/cluster). 531# Default is 2**(2) = 4 cores per cluster. 532CFG_CORE_CLUSTER_SHIFT ?= 2 533 534# Define the number of threads per core used in calculating processing 535# element's position. The core number is shifted by this value and added to 536# the thread ID, so its value represents log2(threads/core). 537# Default is 2**(0) = 1 threads per core. 538CFG_CORE_THREAD_SHIFT ?= 0 539 540# Enable support for dynamic shared memory (shared memory anywhere in 541# non-secure memory). 542CFG_CORE_DYN_SHM ?= y 543 544# Enable support for reserved shared memory (shared memory in a carved out 545# memory area). 546CFG_CORE_RESERVED_SHM ?= y 547 548# Enables support for larger physical addresses, that is, it will define 549# paddr_t as a 64-bit type. 550CFG_CORE_LARGE_PHYS_ADDR ?= n 551 552# Define the maximum size, in bits, for big numbers in the Internal Core API 553# Arithmetical functions. This does *not* influence the key size that may be 554# manipulated through the Cryptographic API. 555# Set this to a lower value to reduce the TA memory footprint. 556CFG_TA_BIGNUM_MAX_BITS ?= 2048 557 558# Define the maximum size, in bits, for big numbers in the TEE core (privileged 559# layer). 560# This value is an upper limit for the key size in any cryptographic algorithm 561# implemented by the TEE core. 562# Set this to a lower value to reduce the memory footprint. 563CFG_CORE_BIGNUM_MAX_BITS ?= 4096 564 565# Not used since libmpa was removed. Force the values to catch build scripts 566# that would set = n. 567$(call force,CFG_TA_MBEDTLS_MPI,y) 568$(call force,CFG_TA_MBEDTLS,y) 569 570# Compile the TA library mbedTLS with self test functions, the functions 571# need to be called to test anything 572CFG_TA_MBEDTLS_SELF_TEST ?= y 573 574# By default use tomcrypt as the main crypto lib providing an implementation 575# for the API in <crypto/crypto.h> 576# CFG_CRYPTOLIB_NAME is used as libname and 577# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library 578# 579# It's also possible to configure to use mbedtls instead of tomcrypt. 580# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and 581# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively. 582CFG_CRYPTOLIB_NAME ?= tomcrypt 583CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt 584 585# Not used since libmpa was removed. Force the value to catch build scripts 586# that would set = n. 587$(call force,CFG_CORE_MBEDTLS_MPI,y) 588 589# Enable PKCS#11 TA's TEE Identity based authentication support 590CFG_PKCS11_TA_AUTH_TEE_IDENTITY ?= y 591 592# Enable PKCS#11 TA's C_DigestKey support 593CFG_PKCS11_TA_ALLOW_DIGEST_KEY ?= y 594 595# Enable virtualization support. OP-TEE will not work without compatible 596# hypervisor if this option is enabled. 597CFG_VIRTUALIZATION ?= n 598 599ifeq ($(CFG_VIRTUALIZATION),y) 600$(call force,CFG_CORE_RODATA_NOEXEC,y) 601$(call force,CFG_CORE_RWDATA_NOEXEC,y) 602 603# Default number of virtual guests 604CFG_VIRT_GUEST_COUNT ?= 2 605endif 606 607# Enables backwards compatible derivation of RPMB and SSK keys 608CFG_CORE_HUK_SUBKEY_COMPAT ?= y 609 610# Compress and encode conf.mk into the TEE core, and show the encoded string on 611# boot (with severity TRACE_INFO). 612CFG_SHOW_CONF_ON_BOOT ?= n 613 614# Enables support for passing a TPM Event Log stored in secure memory 615# to a TA, so a TPM Service could use it to extend any measurement 616# taken before the service was up and running. 617CFG_CORE_TPM_EVENT_LOG ?= n 618 619# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core. 620# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_* 621# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support. 622# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support. 623# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel 624# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support. 625CFG_SCMI_MSG_DRIVERS ?= n 626CFG_SCMI_MSG_CLOCK ?= n 627CFG_SCMI_MSG_RESET_DOMAIN ?= n 628CFG_SCMI_MSG_SMT ?= n 629CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n 630 631# Enable SCMI PTA interface for REE SCMI agents 632CFG_SCMI_PTA ?= n 633 634ifneq ($(CFG_STMM_PATH),) 635$(call force,CFG_WITH_STMM_SP,y) 636else 637CFG_WITH_STMM_SP ?= n 638endif 639ifeq ($(CFG_WITH_STMM_SP),y) 640$(call force,CFG_ZLIB,y) 641endif 642 643# When enabled checks that buffers passed to the GP Internal Core API 644# comply with the rules added as annotations as part of the definition of 645# the API. For example preventing buffers in non-secure shared memory when 646# not allowed. 647CFG_TA_STRICT_ANNOTATION_CHECKS ?= y 648 649# When enabled accepts the DES key sizes excluding parity bits as in 650# the GP Internal API Specification v1.0 651CFG_COMPAT_GP10_DES ?= y 652 653# Defines a limit for many levels TAs may call each others. 654CFG_CORE_MAX_SYSCALL_RECURSION ?= 4 655