xref: /optee_os/mk/config.mk (revision c6e827c0ef7f04c1e4cad39dd46e033e895178f6)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Path to the Python interpreter used by the build system.
36# This variable is set to the default python3 interpreter in the user's
37# path. But build environments that require more explicit control can
38# set the path to a specific interpreter through this variable.
39PYTHON3 ?= python3
40
41# Define DEBUG=1 to compile without optimization (forces -O0)
42# DEBUG=1
43
44# If y, enable debug features of the TEE core (assertions and lock checks
45# are enabled, panic and assert messages are more verbose, data and prefetch
46# aborts show a stack dump). When disabled, the NDEBUG directive is defined
47# so assertions are disabled.
48CFG_TEE_CORE_DEBUG ?= y
49
50# Log levels for the TEE core. Defines which core messages are displayed
51# on the secure console. Disabling core log (level set to 0) also disables
52# logs from the TAs.
53# 0: none
54# 1: error
55# 2: error + warning
56# 3: error + warning + debug
57# 4: error + warning + debug + flow
58CFG_TEE_CORE_LOG_LEVEL ?= 1
59
60# TA log level
61# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
62# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
63# when the TA is built.
64CFG_TEE_TA_LOG_LEVEL ?= 1
65
66# TA enablement
67# When defined to "y", TA traces are output according to
68# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
69CFG_TEE_CORE_TA_TRACE ?= y
70
71# If y, enable the memory leak detection feature in the bget memory allocator.
72# When this feature is enabled, calling mdbg_check(1) will print a list of all
73# the currently allocated buffers and the location of the allocation (file and
74# line number).
75# Note: make sure the log level is high enough for the messages to show up on
76# the secure console! For instance:
77# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
78#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
79# - To debug TEE core allocations: build OP-TEE with:
80#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
81CFG_TEE_CORE_MALLOC_DEBUG ?= n
82CFG_TEE_TA_MALLOC_DEBUG ?= n
83# Prints an error message and dumps the stack on failed memory allocations
84# using malloc() and friends.
85CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
86
87# Mask to select which messages are prefixed with long debugging information
88# (severity, core ID, thread ID, component name, function name, line number)
89# based on the message level. If BIT(level) is set, the long prefix is shown.
90# Otherwise a short prefix is used (severity and component name only).
91# Levels: 0=none 1=error 2=info 3=debug 4=flow
92CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
93
94# PRNG configuration
95# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
96# software PRNG implementation is used.
97# Otherwise, you need to implement hw_get_random_byte() for your platform
98CFG_WITH_SOFTWARE_PRNG ?= y
99
100# Number of threads
101CFG_NUM_THREADS ?= 2
102
103# API implementation version
104CFG_TEE_API_VERSION ?= GPD-1.1-dev
105
106# Implementation description (implementation-dependent)
107CFG_TEE_IMPL_DESCR ?= OPTEE
108
109# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
110# World?
111CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
112
113# Trusted OS implementation version
114TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
115ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
116TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
117else
118TEE_IMPL_GIT_SHA1 := 0x0
119endif
120# The following values are not extracted from the "git describe" output because
121# we might be outside of a Git environment, or the tree may have been cloned
122# with limited depth not including any tag, so there is really no guarantee
123# that TEE_IMPL_VERSION contains the major and minor revision numbers.
124CFG_OPTEE_REVISION_MAJOR ?= 3
125CFG_OPTEE_REVISION_MINOR ?= 13
126
127# Trusted OS implementation manufacturer name
128CFG_TEE_MANUFACTURER ?= LINARO
129
130# Trusted firmware version
131CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
132
133# Trusted OS implementation manufacturer name
134CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
135
136# Rich Execution Environment (REE) file system support: normal world OS
137# provides the actual storage.
138# This is the default FS when enabled (i.e., the one used when
139# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
140CFG_REE_FS ?= y
141
142# RPMB file system support
143CFG_RPMB_FS ?= n
144
145# Device identifier used when CFG_RPMB_FS = y.
146# The exact meaning of this value is platform-dependent. On Linux, the
147# tee-supplicant process will open /dev/mmcblk<id>rpmb
148CFG_RPMB_FS_DEV_ID ?= 0
149
150# This config variable determines the number of entries read in from RPMB at
151# once whenever a function traverses the RPMB FS. Increasing the default value
152# has the following consequences:
153# - More memory required on heap. A single FAT entry currently has a size of
154#   256 bytes.
155# - Potentially significant speed-ups for RPMB I/O. Depending on how many
156#   entries a function needs to traverse, the number of time-consuming RPMB
157#   read-in operations can be reduced.
158# Chosing a proper value is both platform- (available memory) and use-case-
159# dependent (potential number of FAT fs entries), so overwrite in platform
160# config files
161CFG_RPMB_FS_RD_ENTRIES ?= 8
162
163# Enables caching of FAT FS entries when set to a value greater than zero.
164# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
165# entries. The cache is populated when FAT FS entries are initially read in.
166# When traversing the FAT FS entries, we read from the cache instead of reading
167# in the entries from RPMB storage. Consequently, when a FAT FS entry is
168# written, the cache is updated. In scenarios where an estimate of the number
169# of FAT FS entries can be made, the cache may be specifically tailored to
170# store all entries. The caching can improve RPMB I/O at the cost
171# of additional memory.
172# Without caching, we temporarily require
173# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
174# while traversing the FAT FS (e.g. in read_fat).
175# For example 8*256 bytes = 2kB while in read_fat.
176# With caching, we constantly require up to
177# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
178# depending on how many elements are in the cache, and additional temporary
179# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
180# in case the cache is too small to hold all elements when traversing.
181CFG_RPMB_FS_CACHE_ENTRIES ?= 0
182
183# Enables RPMB key programming by the TEE, in case the RPMB partition has not
184# been configured yet.
185# !!! Security warning !!!
186# Do *NOT* enable this in product builds, as doing so would allow the TEE to
187# leak the RPMB key.
188# This option is useful in the following situations:
189# - Testing
190# - RPMB key provisioning in a controlled environment (factory setup)
191CFG_RPMB_WRITE_KEY ?= n
192
193# Signing key for OP-TEE TA's
194# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy
195# key and then set TA_PUBLIC_KEY to match public key from the HSM.
196# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS.
197TA_SIGN_KEY ?= keys/default_ta.pem
198TA_PUBLIC_KEY ?= $(TA_SIGN_KEY)
199
200# Include lib/libutils/isoc in the build? Most platforms need this, but some
201# may not because they obtain the isoc functions from elsewhere
202CFG_LIBUTILS_WITH_ISOC ?= y
203
204# Enables floating point support for user TAs
205# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
206#	 hard-float is basically a super set of soft-float. Hard-float
207#	 requires all the support routines provided for soft-float, but the
208#	 compiler may choose to optimize to not use some of them and use
209#	 the floating-point registers instead.
210# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
211#	 nothing with ` -mgeneral-regs-only`)
212# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
213CFG_TA_FLOAT_SUPPORT ?= y
214
215# Stack unwinding: print a stack dump to the console on core or TA abort, or
216# when a TA panics.
217# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
218# unwound (not paged TAs, however).
219# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
220# this option will increase the size of the 32-bit TEE binary by a few KB.
221# Similarly, TAs have to be compiled with -funwind-tables (default when the
222# option is set) otherwise they can't be unwound.
223# Warning: since the unwind sequence for user-mode (TA) code is implemented in
224# the privileged layer of OP-TEE, enabling this feature will weaken the
225# user/kernel isolation. Therefore it should be disabled in release builds.
226ifeq ($(CFG_TEE_CORE_DEBUG),y)
227CFG_UNWIND ?= y
228endif
229
230# Enable support for dynamically loaded user TAs
231CFG_WITH_USER_TA ?= y
232
233# Choosing the architecture(s) of user-mode libraries (used by TAs)
234#
235# Platforms may define a list of supported architectures for user-mode code
236# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
237# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
238# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
239# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
240# The first entry in $(supported-ta-targets) has a special role, see
241# CFG_USER_TA_TARGET_<ta-name> below.
242#
243# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
244# change the order of the values.
245#
246# The list of TA architectures is ultimately stored in $(ta-targets).
247
248# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
249# defined, selects the unique TA architecture mode for building the in-tree TA
250# <ta-name>. Can be either ta_arm32 or ta_arm64.
251# By default, in-tree TAs are built using the first architecture specified in
252# $(ta-targets).
253
254# Address Space Layout Randomization for user-mode Trusted Applications
255#
256# When this flag is enabled, the ELF loader will introduce a random offset
257# when mapping the application in user space. ASLR makes the exploitation of
258# memory corruption vulnerabilities more difficult.
259CFG_TA_ASLR ?= y
260
261# How much ASLR may shift the base address (in pages). The base address is
262# randomly shifted by an integer number of pages comprised between these two
263# values. Bigger ranges are more secure because they make the addresses harder
264# to guess at the expense of using more memory for the page tables.
265CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
266CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
267
268# Address Space Layout Randomization for TEE Core
269#
270# When this flag is enabled, the early init code will introduce a random
271# offset when mapping TEE Core. ASLR makes the exploitation of memory
272# corruption vulnerabilities more difficult.
273CFG_CORE_ASLR ?= y
274
275# Load user TAs from the REE filesystem via tee-supplicant
276CFG_REE_FS_TA ?= y
277
278# Pre-authentication of TA binaries loaded from the REE filesystem
279#
280# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
281#   "Secure DDR" pool, check the signature, then process the file only if it is
282#   valid.
283# - If disabled: hash the binaries as they are being processed and verify the
284#   signature as a last step.
285CFG_REE_FS_TA_BUFFERED ?= n
286$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
287
288# Support for loading user TAs from a special section in the TEE binary.
289# Such TAs are available even before tee-supplicant is available (hence their
290# name), but note that many services exported to TAs may need tee-supplicant,
291# so early use is limited to a subset of the TEE Internal Core API (crypto...)
292# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
293# file(s). For example:
294#   $ make ... \
295#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
296#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
297# Typical build steps:
298#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
299#                                    # headers, makefiles), ready to build TAs.
300#                                    # CFG_EARLY_TA=y is optional, it prevents
301#                                    # later library recompilations.
302#   <build some TAs>
303#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
304#
305# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
306# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
307# <name-of-ta>/<uuid>
308# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
309ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
310$(call force,CFG_EARLY_TA,y)
311$(call force,CFG_EMBEDDED_TS,y)
312else
313CFG_EARLY_TA ?= n
314endif
315
316ifneq ($(SP_PATHS),)
317$(call force,CFG_SECURE_PARTITION,y)
318$(call force,CFG_EMBEDDED_TS,y)
319else
320CFG_SECURE_PARTITION ?= n
321endif
322
323ifeq ($(CFG_EMBEDDED_TS),y)
324$(call force,CFG_ZLIB,y)
325endif
326
327# By default the early TAs are compressed in the TEE binary, it is possible to
328# not compress them with CFG_EARLY_TA_COMPRESS=n
329CFG_EARLY_TA_COMPRESS ?= y
330
331# Enable paging, requires SRAM, can't be enabled by default
332CFG_WITH_PAGER ?= n
333
334# Use the pager for user TAs
335CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
336
337# If paging of user TAs, that is, R/W paging default to enable paging of
338# TAG and IV in order to reduce heap usage.
339CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA)
340
341# Runtime lock dependency checker: ensures that a proper locking hierarchy is
342# used in the TEE core when acquiring and releasing mutexes. Any violation will
343# cause a panic as soon as the invalid locking condition is detected. If
344# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
345# records the call stacks when locks are taken, and prints them when a
346# potential deadlock is found.
347# Expect a significant performance impact when enabling this.
348CFG_LOCKDEP ?= n
349CFG_LOCKDEP_RECORD_STACK ?= y
350
351# BestFit algorithm in bget reduces the fragmentation of the heap when running
352# with the pager enabled or lockdep
353CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
354
355# Enable support for detected undefined behavior in C
356# Uses a lot of memory, can't be enabled by default
357CFG_CORE_SANITIZE_UNDEFINED ?= n
358
359# Enable Kernel Address sanitizer, has a huge performance impact, uses a
360# lot of memory and need platform specific adaptations, can't be enabled by
361# default
362CFG_CORE_SANITIZE_KADDRESS ?= n
363
364# Add stack guards before/after stacks and periodically check them
365CFG_WITH_STACK_CANARIES ?= y
366
367# Use compiler instrumentation to troubleshoot stack overflows.
368# When enabled, most C functions check the stack pointer against the current
369# stack limits on entry and panic immediately if it is out of range.
370CFG_CORE_DEBUG_CHECK_STACKS ?= n
371
372# Use when the default stack allocations are not sufficient.
373CFG_STACK_THREAD_EXTRA ?= 0
374CFG_STACK_TMP_EXTRA ?= 0
375
376# Device Tree support
377#
378# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
379# device tree blob (DTB) parsing from the core.
380#
381# When CFG_DT is enabled, the TEE _start function expects to find
382# the address of a DTB in register X2/R2 provided by the early boot stage
383# or value 0 if boot stage provides no DTB.
384#
385# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
386# relative path of a DTS file located in core/arch/$(ARCH)/dts.
387# The DTS file is compiled into a DTB file which content is embedded in a
388# read-only section of the core.
389ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
390CFG_EMBED_DTB ?= y
391endif
392ifeq ($(CFG_EMBED_DTB),y)
393$(call force,CFG_DT,y)
394endif
395CFG_EMBED_DTB ?= n
396CFG_DT ?= n
397
398# Maximum size of the Device Tree Blob, has to be large enough to allow
399# editing of the supplied DTB.
400CFG_DTB_MAX_SIZE ?= 0x10000
401
402# Device Tree Overlay support.
403# This define enables support for an OP-TEE provided DTB overlay.
404# One of two modes is supported in this case:
405# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or
406#    passed in arg2
407# 2. Generate a new DTB overlay at CFG_DT_ADDR
408# A subsequent boot stage must then merge the generated overlay DTB into a main
409# DTB using the standard fdt_overlay_apply() method.
410CFG_EXTERNAL_DTB_OVERLAY ?= n
411
412# All embedded tests are supposed to be disabled by default, this flag
413# is used to control the default value of all other embedded tests
414CFG_ENABLE_EMBEDDED_TESTS ?= n
415
416# Enable core self tests and related pseudo TAs
417CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS)
418
419# Compiles bget_main_test() to be called from a test TA
420CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS)
421
422# This option enables OP-TEE to respond to SMP boot request: the Rich OS
423# issues this to request OP-TEE to release secondaries cores out of reset,
424# with specific core number and non-secure entry address.
425CFG_BOOT_SECONDARY_REQUEST ?= n
426
427# Default heap size for Core, 64 kB
428CFG_CORE_HEAP_SIZE ?= 65536
429
430# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
431# is enabled
432CFG_CORE_NEX_HEAP_SIZE ?= 16384
433
434# TA profiling.
435# When this option is enabled, OP-TEE can execute Trusted Applications
436# instrumented with GCC's -pg flag and will output profiling information
437# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
438# tee-supplicant)
439# Note: this does not work well with shared libraries at the moment for a
440# couple of reasons:
441# 1. The profiling code assumes a unique executable section in the TA VA space.
442# 2. The code used to detect at run time if the TA is intrumented assumes that
443# the TA is linked statically.
444CFG_TA_GPROF_SUPPORT ?= n
445
446# TA function tracing.
447# When this option is enabled, OP-TEE can execute Trusted Applications
448# instrumented with GCC's -pg flag and will output function tracing
449# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
450# defined in tee-supplicant)
451CFG_FTRACE_SUPPORT ?= n
452
453# How to make room when the function tracing buffer is full?
454# 'shift': shift the previously stored data by the amount needed in order
455#    to always keep the latest logs (slower, especially with big buffer sizes)
456# 'wrap': discard the previous data and start at the beginning of the buffer
457#    again (fast, but can result in a mostly empty buffer)
458# 'stop': stop logging new data
459CFG_FTRACE_BUF_WHEN_FULL ?= shift
460$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
461$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
462
463# Function tracing: unit to be used when displaying durations
464#  0: always display durations in microseconds
465# >0: if duration is greater or equal to the specified value (in microseconds),
466#     display it in milliseconds
467CFG_FTRACE_US_MS ?= 10000
468
469# Core syscall function tracing.
470# When this option is enabled, OP-TEE core is instrumented with GCC's
471# -pg flag and will output syscall function graph in user TA ftrace
472# buffer
473CFG_SYSCALL_FTRACE ?= n
474$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
475
476# Enable to compile user TA libraries with profiling (-pg).
477# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
478CFG_ULIBS_MCOUNT ?= n
479# Profiling/tracing of syscall wrapper (utee_*)
480CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
481
482ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
483ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
484$(error Cannot instrument user libraries if user mode profiling is disabled)
485endif
486endif
487
488# Build libutee, libutils, libmbedtls as shared libraries.
489# - Static libraries are still generated when this is enabled, but TAs will use
490# the shared libraries unless explicitly linked with the -static flag.
491# - Shared libraries are made of two files: for example, libutee is
492#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
493#   is a totally standard shared object, and should be used to link against.
494#   The '.ta' file is a signed version of the '.so' and should be installed
495#   in the same way as TAs so that they can be found at runtime.
496CFG_ULIBS_SHARED ?= n
497
498ifeq (yy,$(CFG_TA_GPROF_SUPPORT)$(CFG_ULIBS_SHARED))
499$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
500endif
501
502# CFG_GP_SOCKETS
503# Enable Global Platform Sockets support
504CFG_GP_SOCKETS ?= y
505
506# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
507# invocation parameters referring to specific secure memories).
508CFG_SECURE_DATA_PATH ?= n
509
510# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
511# TA binaries are stored encrypted in the REE FS and are protected by
512# metadata in secure storage.
513CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
514$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
515
516# Enable the pseudo TA that managages TA storage in secure storage
517CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
518$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
519
520# Enable the pseudo TA for misc. auxilary services, extending existing
521# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.)
522CFG_SYSTEM_PTA ?= y
523
524# Enable the pseudo TA for enumeration of TEE based devices for the normal
525# world OS.
526CFG_DEVICE_ENUM_PTA ?= y
527
528# Define the number of cores per cluster used in calculating core position.
529# The cluster number is shifted by this value and added to the core ID,
530# so its value represents log2(cores/cluster).
531# Default is 2**(2) = 4 cores per cluster.
532CFG_CORE_CLUSTER_SHIFT ?= 2
533
534# Define the number of threads per core used in calculating processing
535# element's position. The core number is shifted by this value and added to
536# the thread ID, so its value represents log2(threads/core).
537# Default is 2**(0) = 1 threads per core.
538CFG_CORE_THREAD_SHIFT ?= 0
539
540# Enable support for dynamic shared memory (shared memory anywhere in
541# non-secure memory).
542CFG_CORE_DYN_SHM ?= y
543
544# Enable support for reserved shared memory (shared memory in a carved out
545# memory area).
546CFG_CORE_RESERVED_SHM ?= y
547
548# Enables support for larger physical addresses, that is, it will define
549# paddr_t as a 64-bit type.
550CFG_CORE_LARGE_PHYS_ADDR ?= n
551
552# Define the maximum size, in bits, for big numbers in the Internal Core API
553# Arithmetical functions. This does *not* influence the key size that may be
554# manipulated through the Cryptographic API.
555# Set this to a lower value to reduce the TA memory footprint.
556CFG_TA_BIGNUM_MAX_BITS ?= 2048
557
558# Define the maximum size, in bits, for big numbers in the TEE core (privileged
559# layer).
560# This value is an upper limit for the key size in any cryptographic algorithm
561# implemented by the TEE core.
562# Set this to a lower value to reduce the memory footprint.
563CFG_CORE_BIGNUM_MAX_BITS ?= 4096
564
565# Not used since libmpa was removed. Force the values to catch build scripts
566# that would set = n.
567$(call force,CFG_TA_MBEDTLS_MPI,y)
568$(call force,CFG_TA_MBEDTLS,y)
569
570# Compile the TA library mbedTLS with self test functions, the functions
571# need to be called to test anything
572CFG_TA_MBEDTLS_SELF_TEST ?= y
573
574# By default use tomcrypt as the main crypto lib providing an implementation
575# for the API in <crypto/crypto.h>
576# CFG_CRYPTOLIB_NAME is used as libname and
577# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
578#
579# It's also possible to configure to use mbedtls instead of tomcrypt.
580# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
581# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
582CFG_CRYPTOLIB_NAME ?= tomcrypt
583CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
584
585# Not used since libmpa was removed. Force the value to catch build scripts
586# that would set = n.
587$(call force,CFG_CORE_MBEDTLS_MPI,y)
588
589# Enable PKCS#11 TA's TEE Identity based authentication support
590CFG_PKCS11_TA_AUTH_TEE_IDENTITY ?= y
591
592# Enable PKCS#11 TA's C_DigestKey support
593CFG_PKCS11_TA_ALLOW_DIGEST_KEY ?= y
594
595# Enable virtualization support. OP-TEE will not work without compatible
596# hypervisor if this option is enabled.
597CFG_VIRTUALIZATION ?= n
598
599ifeq ($(CFG_VIRTUALIZATION),y)
600$(call force,CFG_CORE_RODATA_NOEXEC,y)
601$(call force,CFG_CORE_RWDATA_NOEXEC,y)
602
603# Default number of virtual guests
604CFG_VIRT_GUEST_COUNT ?= 2
605endif
606
607# Enables backwards compatible derivation of RPMB and SSK keys
608CFG_CORE_HUK_SUBKEY_COMPAT ?= y
609
610# Compress and encode conf.mk into the TEE core, and show the encoded string on
611# boot (with severity TRACE_INFO).
612CFG_SHOW_CONF_ON_BOOT ?= n
613
614# Enables support for passing a TPM Event Log stored in secure memory
615# to a TA, so a TPM Service could use it to extend any measurement
616# taken before the service was up and running.
617CFG_CORE_TPM_EVENT_LOG ?= n
618
619# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
620# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
621# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
622# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
623# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel
624# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support.
625CFG_SCMI_MSG_DRIVERS ?= n
626CFG_SCMI_MSG_CLOCK ?= n
627CFG_SCMI_MSG_RESET_DOMAIN ?= n
628CFG_SCMI_MSG_SMT ?= n
629CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n
630
631# Enable SCMI PTA interface for REE SCMI agents
632CFG_SCMI_PTA ?= n
633
634ifneq ($(CFG_STMM_PATH),)
635$(call force,CFG_WITH_STMM_SP,y)
636else
637CFG_WITH_STMM_SP ?= n
638endif
639ifeq ($(CFG_WITH_STMM_SP),y)
640$(call force,CFG_ZLIB,y)
641endif
642
643# When enabled checks that buffers passed to the GP Internal Core API
644# comply with the rules added as annotations as part of the definition of
645# the API. For example preventing buffers in non-secure shared memory when
646# not allowed.
647CFG_TA_STRICT_ANNOTATION_CHECKS ?= y
648
649# When enabled accepts the DES key sizes excluding parity bits as in
650# the GP Internal API Specification v1.0
651CFG_COMPAT_GP10_DES ?= y
652
653# Defines a limit for many levels TAs may call each others.
654CFG_CORE_MAX_SYSCALL_RECURSION ?= 4
655